Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools
Abstract
:1. Introduction
2. Main Arthropod Pests/Vectors in Olive Groves
2.1. Bactrocera (Dacus) oleae
2.2. Prays oleae
2.3. Fam. Aphrophoridae
3. Pest Management. EFSA Regulations in the European Context and National Management Plans
4. Biological Control and the Three Ps: Predation, Parasitism, and Pathogens
- Predators: These organisms feed directly on pests, thereby reducing their populations.
- Parasitoids: Parasitoids are organisms that lay their eggs inside or on the bodies of pests. The emerging larvae feed on the pest, eventually killing it.
- Pathogens: These are microorganisms, such as bacteria, fungi, or viruses, which infect and cause diseases in pests. By spreading among pest populations, they significantly reduce their numbers.
4.1. Predation
4.2. Parasitism
4.3. Pathogens
5. Biopesticides and Inert Materials in IPM
6. Genetics and Biotechnology in the Service of IPM
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaniewsky, D.; Van Campo, E.; Boiy, T.; Terral, J.F.; Khadari, B.; Besnard, G. Primary domestication and early uses of emblematic olive tree: Paleobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 2012, 87, 855–899. [Google Scholar] [CrossRef] [PubMed]
- Loukas, M.; Kimbras, C.B. History of olive cultivars based on their genetic distances. J. Hortic. Sci. 1983, 58, 121–127. [Google Scholar] [CrossRef]
- Besnard, G.; Terral, J.F.; Cornille, A. On the origins and domestication of the olive: A review and perspectives. Ann. Bot. 2018, 121, 385–403. [Google Scholar] [CrossRef]
- Namdar, D.; Amrani, A.; Getzov, N.; Milevski, I. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, Northern Israel. Isr. J. Plant Sci. 2015, 62, 65–74. [Google Scholar] [CrossRef]
- Liphschitz, N.; Gophna, R.; Hartman, M.; Biger, G. The beginning of olive (Olea europaea) cultivation in the Old World: A reassessment. J. Archaeol. Sci. 1991, 18, 441–453. [Google Scholar] [CrossRef]
- Kiritsakis, A.; Shahidi, F. Olives and Olive Oil as Functional Foods; John Wiley & Sons: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization of the United Nations. Statistics. Available online: https://www.fao.org/statistics/es/ (accessed on 18 August 2023).
- IOC, International Olive Council. Available online: https://www.internationaloliveoil.org/ (accessed on 18 August 2023).
- MAPA, Ministerio de Agricultura, Pesca y Alimentación. Available online: https://www.mapa.gob.es/es/ (accessed on 18 August 2023).
- UNESCO, United Nations Educational, Scientific and Cultural Organization. World Heritage Convention. Available online: https://whc.unesco.org/ (accessed on 18 August 2023).
- Campón-Cerro, A.M.; Folgado-Fernández, J.A.; Hernández-Mogollón, J.M. Rural Destination Development Based on Olive Oil Tourism: The Impact of Residents’ Community Attachment and Quality of Life on Their Support for Tourism Development. Sustainability 2017, 9, 1624. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
- Picornell, A.; Abreu, I.; Ribeiro, H. Trends and future projections of Olea flowering in the western Mediterranean: The example of the Alentejo region (Portugal). Agric. Meteorol. 2023, 339, 109559. [Google Scholar] [CrossRef]
- Victoriano, M.; Oliveira, L.; Oliveira, H.P. Automated Detection and Identification of Olive Fruit Fly Using YOLOv7 Algorithm. In Iberian Conference on Pattern Recognition and Image Analysis; Springer: Cham, Switzerland, 2023; pp. 211–222. [Google Scholar]
- IPPC Secretariat. Scientific Review of the Impact of Climate Change on Plant Pests—A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems; FAO on behalf of the IPPC Secretariat: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization of the United Nations. IPM Practices. Available online: www.fao.org/agriculture/crops/thematic-sitemap/theme/compendium/scpi-practices/integrated-pest-management/en/ (accessed on 26 October 2023).
- European Commission. Directorate-General for Agriculture and Rural Development, Farmer’s Toolbox for Integrated Pest Management: Final Report, Publications Office of the European Union. Available online: https://data.europa.eu/doi/10.2762/457165 (accessed on 18 August 2023).
- EPPO, European and Mediterranean Plant Protection Organization. Available online: https://gd.eppo.int/taxon/DACUOL/distribution (accessed on 18 August 2023).
- Caselli, A.; Petacchi, R. Climate change and major pests of Mediterranean olive orchards: Are we ready to face the global heating? Insects 2021, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Haniotakis, G.E. Olive pest control: Present status and prospects. IOBC WPRS Bull. 2005, 28, 1. [Google Scholar]
- Daane, K.M.; Johnson, M.W. Olive fruit fly: Managing an ancient pest in modern times. Ann. Rev. Entomol. 2010, 55, 151–169. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; De Meyer, M.; Stonehouse, J.M. A review of native and introduced fruit flies (Diptera, Tephritidae) in the Indian Ocean islands of Mauritius, Reunion, and Seychelles. In Proceedings of the Indian Ocean Commission, Regional Fruit Fly Symposium, Flic en Flac, Mauritius, 5–9 June 2000; Price, N.S., Seewooruthun, S.I., Eds.; Indian Ocean Commission/European Union: Flic en Flac, Mauritius, 2000; pp. 15–21. [Google Scholar]
- Vargas, R.I.; Piñero, J.C.; Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 2015, 6, 297–318. [Google Scholar] [CrossRef] [PubMed]
- Duyck, P.F.; David, P.; Quilici, S. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol. Entomol. 2004, 29, 511–520. [Google Scholar] [CrossRef]
- Aluja, M.; Norrbom, A. (Eds.) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Rice, R.E. Bionomics of the olive fruit fly Bactrocera (Dacus) oleae. Plant Prot. Q. 2000, 10, 1–5. [Google Scholar]
- Ruiz Castro, A. Fauna entomológica del olivo en España (SI). In Estudio Sistemático—Biológico de las Especies de Mayor Importancia Económica; Instituto Español de Entomología; CSIC: Madrid, Spain, 1941. [Google Scholar]
- Trombik, J.; Ward, S.F.; Norrbom, A.L.; Liebhold, A.M. Global drivers of historical true fruit fly (Diptera: Tephritidae) invasions. J. Pest. Sci. 2023, 96, 345–357. [Google Scholar] [CrossRef]
- Collier, T.; Van Steenwyk, R. Prospects for integrated control of olive fruit fly are promising in California. Calif. Agric. 2003, 1, 28–32. [Google Scholar] [CrossRef]
- Marchini, D.; Petacchi, R.; Marchi, S. Bactrocera oleae reproductive biology: New evidence on wintering wild populations in olive groves of Tuscany (Italy). Bull. Insectol. 2017, 70, 121–128. [Google Scholar]
- Segura, M.D. Estudio Poblacional y Evolutivo de la Especie Bactrocera oleae Mediante el Uso de Marcadores Moleculares. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2002. [Google Scholar]
- Ramos, P.; Campos, M.; Ramos, J.M. Long-term study on the evaluation of yield and economic losses caused by Prays oleae Bern. in the olive crop of Granada (southern Spain). Crop Prot. 1998, 17, 645–647. [Google Scholar] [CrossRef]
- Alves, J.F.; Mendes, S.; Alves da Silva, A.; Sousa, J.P.; Paredes, D. Land-use effect on olive groves pest Prays oleae and on its potential biocontrol agent Chrysoperla carnea. Insects 2021, 12, 46. [Google Scholar] [CrossRef]
- Armendáriz, I.; De la Iglesia, L.; Santiago, Y.; Campillo, G.; Alberte, C.; Miranda, L.; Juárez, S.; Pérez-Sanz, A. Ciclo del prays del olivo (Prays oleae, Bern.) en Arribes del Duero. Bol. San. Veg. Plagas. 2007, 33, 443–445. [Google Scholar]
- Bjeliš, M.; Radunić, D.; Maček, J.L. Control of olive moth—Prays oleae Bernhard (Lepidoptera, Hyponomeutidae) flower generation by insecticide cover sprays. Zb. Pred. Ref. 2009, 9, 403–409. [Google Scholar]
- Morris, T.I.; Symondson, W.O.C.; Kidd, N.A.C.; Campos, M. The effect of different ant species on the olive moth, Prays oleae (Bern.), in Spanish olive orchard. J. Appl. Entomol. 2002, 126, 224–230. [Google Scholar] [CrossRef]
- Villa, M.; Santos, S.A.P.; Sousa, J.P.; Ferreira, A.; Martins da Silva, P.; Patanita, I.; Ortega, M.; Pascual, S.; Pereira, J.A. Landscape composition and configuration affect the abundance of the olive moth (Prays oleae, Bernard) in olive groves. Agric. Ecosyst. Environ. 2020, 294, 106854. [Google Scholar] [CrossRef]
- Drosopoulos, S.; Remane, R. Biogeographic studies on the spittlebug Philaenus signatus Melichar, 1896 species group (Hemiptera: Aphrophoridae) with the description of two new allopatric species. In Annales de la Société Entomologique de France; Société Entomologique de France: Paris, France, 2000; Volume 36, pp. 269–277. [Google Scholar]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; De Stradis, A.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/topics/topic/xylella-fastidiosa (accessed on 18 August 2023).
- Cornara, D.; Sicard, A.; Zeilinger, A.R.; Porcelli, F.; Purcell, A.H.; Almeida, R.P.P. Transmission of Xylella fastidiosa to Grapevine by the Meadow Spittlebug. Phytopathology 2016, 106, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 668. [Google Scholar]
- Almeida, R.P.P. Xylella fastidiosa vector transmission biology. In Vector-Mediated Transmission of Plant Pathogens; Brown, J.K., Ed.; American Phytopathological Society Press: St. Paul, MN, USA, 2016; pp. 165–174. [Google Scholar]
- Weaver, C.R.; King, D.R. Meadow spittlebug, Philaenus leucophthalmus (L.). Res. Bull. Ohio Agric. Exp. Stn. 1954, 741, 1–99. [Google Scholar]
- Halkka, A.; Halkka, L.; Halkka, O.; Roukka, K.; Pokki, J. Lagged effects of North Atlantic Oscillation on spittlebug Philaenus spumarius (Homoptera) abundance and survival. Glob. Chang. Biol. 2006, 12, 2250–2262. [Google Scholar] [CrossRef]
- Picciotti, U.; Lahbib, N.; Sefa, V.; Porcelli, F.; Garganese, F. Aphrophoridae Role in Xylella fastidiosa subsp. pauca ST53 Invasion in Southern Italy. Pathogens 2021, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Acquasanta, F.; Bacci, L.; Baser, N.; Carmignano, P.M.; Cavalieri, V.; Cioffi, M.; Convertini, S.; D’Accolti, A.; Dal Maso, E.; Diana, F.; et al. Tradizione e Innovazione nel Controllo del Philaenus spumarius Linnaeus, 1758 (Hemiptera Aphrophoridae). In Proceedings of the Giornate Fitopatologiche; Atti Giornate Fitopatologiche I: Chianciano Terme, Italy, 2018; pp. 181–190. [Google Scholar]
- Dáder, B.; Viñuela, E.; Moreno, A.; Plaza, M.; Garzo, E.; Del Estal, P.; Fereres, A. Sulfoxaflor and natural Pyrethrin with Piperonyl Butoxide are effective alternatives to Neonicotinoids against juveniles of Philaenus spumarius, the European vector of Xylella fastidiosa. Insects 2019, 10, 225. [Google Scholar] [CrossRef]
- Commission Implementing Decision (EU) 2015/789 of 18 May 2015 as Regards Measures to Prevent the Introduction into and the Spread within the Union of Xylella fastidiosa (Wells et al.) (Notified under Document C(2015) 3415). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015D0789 (accessed on 17 October 2023).
- EIP-AGRI Focus Group. Pests and Diseases of the Olive Tree. 2020. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/fg33_mp_biodiversitypestmanagement_2019_en.pdf (accessed on 18 October 2023).
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Phys. 2014, 121, 122–128. [Google Scholar] [CrossRef]
- Dogaç, E.; Kandemir, I.; Taskin, V. Geographical distribution and frequencies of organophosphate-resistant ace alleles and morphometric variations in olive fruit fly populations. Pest. Manag. 2014, 71, 1529–1539. [Google Scholar] [CrossRef]
- Pereira-Castro, I.; Van Asch, B.; Trinidade-Rei, F.; Teixeira Da Costa, L. Bactrocera oleae (Diptera: Tephritidae) organophosphate resistance alleles in Iberia: Recent expansion and variable frequencies. Eur. J. Entomol. 2015, 112, 20–26. [Google Scholar]
- Kampouraki, A.; Stavrakaki, M.; Karataraki, A.; Katsikogiannis, G.; Pitika, E.; Varikou, K.; Vlachaki, A.; Chrysargyris, A.; Malandraki, E.; Sidiropoulos, N.; et al. Recent evolution and operational impact of insecticide resistance in olive fruit fly Bactrocera oleae populations from Greece. J. Pest. Sci. 2018, 91, 1429–1439. [Google Scholar] [CrossRef]
- Lantero, E.; Matallanas, B.; Pascual, S.; Ochando, M.D.; Callejas, C. Phylogeography of organophosphate resistant ace alleles in Spanish olive fruit fly populations: A Mediterranean perspective in global change context. Insects 2020, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Porras, A.; Marti, J.; Tudela, A.; Rodríguez-González, Á.; Sambado, P. Mating Disruption of the Olive Moth Prays oleae (Bernard) in Olive Groves Using Aerosol Dispensers. Insects 2021, 12, 1113. [Google Scholar] [CrossRef] [PubMed]
- Budzinski, H.; Couderchet, M. Environmental and human health issues related to pesticides: From usage and environmental fate to impact. Environ. Sci. Pollut. R. 2018, 25, 14277–14279. [Google Scholar] [CrossRef] [PubMed]
- Brühl, C.A.; Zaller, J.G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Env. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- European Directive 2009/128/CE 21 of the European Parliament and of the Council. A Framework to Achieve a Sustainable Use of Pesticides by Reducing the Risks and Impacts of Pesticide Use on Human Health and the Environment and Promoting the Use of Integrated Pest Management and of Alternative Approaches or Techniques Such as Non-Chemical Alternatives to Pesticides; Bulletin 309; October 2009; pp. 71–83. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32009L0128 (accessed on 17 October 2023).
- MAPA, Ministerio de Agricultura Pesca y Alimentación de España. Registro de Productos Fitosanitarios. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro-productos/ (accessed on 16 October 2023).
- BOE-A-2012-11605, Real Decreto 1311/2012, de 14 de Septiembre de 2012 BOE 223. Marco de Actuación para Conseguir un Uso Sostenible de los Productos Fitosanitarios. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2012-11605 (accessed on 17 October 2023).
- Selim, M. A review of advantages, disadvantages and challenges of crop rotations. Egypt. J. Agron. 2019, 41, 1–10. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations Conservation Agriculture: Case Studies in Latin America and Africa; FAO Soils Bulletin; FAO: Rome, Italy, 2002; Volume 78. [Google Scholar]
- Gordon, P.; Lampinen, B.; Milliron, L.; Duncan, R.; Lightle, D.; Connell, J.; Brar, R.; Reyes, C.; Vasquez-Mendoza, J. Evaluation of almond cultivars from an integrated pest management perspective. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovative Perennial Crops Management, Angers, France, 14 August 2022; Volume 1366, pp. 435–442. [Google Scholar]
- Dolatabadian, A.; Cornelsen, J.; Huang, S.; Zou, Z.; Fernando, W.D. Sustainability on the farm: Breeding for resistance and management of major canola diseases in Canada contributing towards an IPM approach. Can. J. Plant Pathol. 2022, 44, 157–190. [Google Scholar]
- Darwish, A.; Attia, M.M.; Khozimy, A.M. Effect of some integrated pest management elements on the population density of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on tomato plants (Solanum lycopersicum L.). Alex. Sci. Exch. 2021, 42, 57–68. [Google Scholar]
- Abbasi, N.; Ghassemi-Kahrizeh, A.; Hosseinzadeh, A. The effect of cultivar and planting date on density and damage of chickpea leaf-miner (Liriomyza congesta Becker) in the Oshnavia region, West Azarbaijan province, Iran. Iran. J. Pulses Res. 2021, 12, 165–182. [Google Scholar]
- Uyi, O.; Reay-Jones, F.P.; Ni, X.; Buntin, D.; Jacobson, A.; Punnuri, S.; Toews, M.D. Impact of Planting Date and Insecticide Application Methods on Melanaphis sorghi (Hemiptera: Aphididae) Infestation and Forage Type Sorghum Yield. Insects 2022, 13, 1038. [Google Scholar]
- Han, P.; Desneux, N.; Becker, C.; Larbat, R.; Le Bot, J.; Adamowicz, S.; Zhang, J.; Lavoir, A.-V. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: Implications for Integrated Pest Management. J. Pest. Sci. 2019, 92, 1359–1370. [Google Scholar]
- Devkota, K.P.; Pasuquin, E.; Elmido-Mabilangan, A.; Dikitanan, R.; Singleton, G.R.; Stuart, A.M.; Vithoonjit, D.; Vidiyangkura, L.; Pustika, A.B.; Afriani, R.; et al. Economic and environmental indicators of sustainable rice cultivation: A comparison across intensive irrigated rice cropping systems in six Asian countries. Ecol. Indic. 2019, 105, 199–214. [Google Scholar]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest. Sci. 2022, 95, 17–39. [Google Scholar]
- MAPA, Ministerio de Agricultura Pesca y Alimentación de España. Guidelines for IPM. Available online: www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/guias-gestion-plagas (accessed on 18 August 2023).
- MAPA, Ministerio de Agricultura, Pesca y Alimentación. Olive Crops Guidelines. Available online: www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/guias-gestion-plagas/olivar/default.aspx (accessed on 18 August 2023).
- Deguine, J.P.; Aubertot, J.N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.G.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- MAPA, Ministerio de Agricultura, Pesca y Alimentación. Informe de Resultados de Aplicación del PAN 2021. Available online: https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/informepan2021_tcm30-620872.pdf (accessed on 18 August 2023).
- European Commission. IPM Toolbox for Farmers. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef/sustainability/ipm-toolbox-farmers_en (accessed on 18 August 2023).
- Cloyd, R.A. How Effective Is Conservation Biological Control in Regulating Insect Pest Populations in Organic Crop Production Systems? Insects 2020, 11, 744. [Google Scholar] [CrossRef]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 2016, 222, 138–147. [Google Scholar] [CrossRef]
- Carpio, A.J.; Castro, J.; Tortosa, F.S. Arthropod biodiversity in olive groves under two soil management systems: Presence versus absence of herbaceous cover crop. Agric. For. Entomol. 2019, 21, 58–68. [Google Scholar] [CrossRef]
- Paredes, D.; Rosenheim, J.A.; Karp, D.S. The causes and consequences of pest population variability in agricultural landscapes. agriRxiv 2022, 32, 5. [Google Scholar]
- Boccaccio, L.; Petacchi, R. Landscape effects on the complex of Bactrocera oleae parasitoids and implications for conservation biological control. BioControl 2009, 54, 607–616. [Google Scholar] [CrossRef]
- Lantero, E.; Ortega, M.; Sánchez-Ramos, I.; Núñez, M.G.; Fernández, C.E.; Rescia, A.J.; Matallanas, B.; Callejas, C.; Pascual, S. Effect of local and landscape factors on abundance of ground beetles and assessment of their role as biocontrol agents in the olive growing area of southeastern Madrid, Spain. BioControl 2019, 64, 685–696. [Google Scholar]
- Ortega, M.; Moreno, N.; Fernández, C.E.; Pascual, S. Olive landscape affects Bactrocera oleae abundance, movement and infestation. Agronomy 2021, 12, 4. [Google Scholar] [CrossRef]
- Ortega, M.; Pascual, S. Spatio-temporal analysis of the relationship between landscape structure and the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Agric. For. Entomol. 2014, 16, 14–23. [Google Scholar] [CrossRef]
- Jaworski, E.T.; Rusch, A.; Lavoir, A.V.; Wang, S.; Desneux, N. Crop diversification to promote arthropod pest management: A review. Agric. Commun. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Dinis, A.M.; Pereira, J.A.; Pimenta, M.C.; Oliveira, J.; Benhadi-Marín, J.; Santos, S.A.P. Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J. Appl. Entomol. 2016, 140, 677–687. [Google Scholar] [CrossRef]
- Picchi, M.S.; Marchi, S.; Albertini, A.; Petacchi, R. Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). BioControl 2017, 108, 9–15. [Google Scholar] [CrossRef]
- Ortega, M.; Sanchez-Ramos, I.; González-Nuñez, M.; Pascual, S. Time course study of Bactrocera oleae (Diptera: Tephritidae) pupae predation in soil: The effect of landscape structure and soil condition. Agric. For. Entomol. 2018, 20, 201–207. [Google Scholar] [CrossRef]
- Martínez-Núñez, P.J.; Rey, T.; Salido, A.J.; Manzaneda, F.M.; Camacho, J.I. Ant community potential for pest control in olive groves: Management and landscape effects. Agric. Ecosyst. Environ. 2021, 305, 107185. [Google Scholar] [CrossRef]
- Albertini, A.; Pizzolotto, R.; Petacchi, R. Carabid patterns in olive orchards and woody semi-natural habitats: First implications for conservation biological control against Bactrocera oleae. BioControl 2017, 62, 71–83. [Google Scholar] [CrossRef]
- Albertini, A.; Marchi, S.; Ratti, C.; Burgio, G.; Petacchi, R.; Magagnoli, S. Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis. BioControl 2018, 63, 227–239. [Google Scholar] [CrossRef]
- Benhadi-Marín, J.; Pereira, J.A.; Barrientos, J.A.; Sousa, J.P.; Santos, S.A.P. Stones on the ground in olive groves promote the presence of spiders (Araneae). Eur. J. Entomol. 2018, 115, 372–379. [Google Scholar] [CrossRef]
- Benhadi-Marín, J.; Pereira, J.A.; Sousa, J.P.; Santos, S.A.P. Distribution of the spider community in the olive grove agroecosystem (Portugal): Potential bioindicators. Agric. For. Entomol. 2020, 22, 10–19. [Google Scholar] [CrossRef]
- Picchi, M.S. Spiders (Araneae) of olive groves and adjacent semi-natural habitats from central Italy. Arachnol. Mitt. 2020, 60, 1–11. [Google Scholar] [CrossRef]
- Picchi, M.S.; Bocci, G.; Petacchi, R.; Entling, M.H. Taxonomic and functional differentiation of spiders in habitats in a traditional olive producing landscape in Italy. Eur. J. Entomol. 2020, 117, 18–26. [Google Scholar] [CrossRef]
- Gkisakis, V.; Volakakis, N.; Kollaros, D.; Bàrberi, P.; Kabourakis, E.M. Soil arthropod community in the olive agroecosystem: Determined by environment and farming practices in different management systems and agroecological zones. Agric. Ecosyst. Env. 2016, 218, 178–189. [Google Scholar] [CrossRef]
- Lantero, E. Estudio Genético de la Plaga del Olivo Bactrocera oleae (Rossi 1790) y su Aplicación al Control Biológico. Ph.D. Thesis, Universidad Complutense of Madrid, Alcala de Henares, Spain, 2018. [Google Scholar]
- Lantero, E.; Pascual, S.; Ortega, M.; Rescia, A.; González-Núñez, M.; Sánchez-Ramos, I.; Pérez, S.; Matallanas, B.; Callejas, C. Post mortem gut content analysis for determining the contribution of different soil predators to control Bactrocera oleae. Bull. IOBC-WPRS 2019, 141, 161–167. [Google Scholar]
- Porcel, M.; Ruano, F.; Cotes, B.; Peña, A.; Campos, M. Agricultural management systems affect the green lacewing community (Neuroptera: Chrysopidae) in olive orchards in Southern Spain. Environ. Entomol. 2013, 42, 97–106. [Google Scholar] [CrossRef]
- Pappas, M.L.; Broufas, G.D.; Koveos, D.S. Chrysopid predators and their role in biological control. J. Entomol. 2011, 8, 301–326. [Google Scholar] [CrossRef]
- Bento, A.; Lopes, J.; Torres, L.; Passos-Carvalho, P. Biological control of Prays oleae (Bern.) by chrysopids in Trás-os-Montes region (Northeastern Portugal). In Proceedings of the III International Symposium on Olive Growing, Crete, Greece, 22–26 September 1997; International Society for Horticultural Science: Leuven, Beligum, 1999; Volume 474, pp. 535–540. [Google Scholar]
- Pascual, S.; Ortega, M.; Villa, M. Prays oleae (Bernard), its potential predators and biocontrol depend on the structure of the surrounding landscape. Biol. Control. 2022, 176, 105092. [Google Scholar] [CrossRef]
- Choae, B.; Drummond, F.A. Ants as biological control agents in agricultural cropping systems. Terr. Arthropod Rev. 2011, 4, 157–180. [Google Scholar]
- Álvarez, H.A.; García-García, A.; Sandoval, P.; Martín-Blázquez, R.; Seifert, B.; Tinaut, A.; Ruano, F. Elucidating the trophic role of Tapinoma ibericum (Hymenoptera: Formicidae) as a potential predator of olive pests. J. Appl. Entomol. 2023, 147, 667–675. [Google Scholar] [CrossRef]
- EIP-AGRI Focus Group. Pest and Diseases of Olive Trees, Biodiversity and Pest Management. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_pests_diseases_olive_tree_final_report_2020_en.pdf (accessed on 18 August 2023).
- Lantero, E.; Matallanas, B.; Pascual, S.; Callejas, C. PCR Species-Specific Primers for Molecular Gut Content Analysis to Determine the Contribution of Generalist Predators to the Biological Control of the Vector of Xylella fastidiosa. Sustainability 2018, 10, 2207. [Google Scholar] [CrossRef]
- Rodrigues, I.; Ramos, V.; Benhadi-Marín, J.; Moreno, A.; Fereres, A.; Pereira, J.A.; Baptista, P. A novel molecular diagnostic method for the gut content analysis of Philaenus DNA. Sci. Rep. 2022, 12, 492. [Google Scholar] [CrossRef]
- Benhadi-Marín, J.; Villa, M.; Pereira, L.F.; Rodrigues, I.; Morente, M.; Baptista, P.; Pereira, J.A. A Guild-Based Protocol to Target Potential Natural Enemies of Philaenus spumarius (Hemiptera: Aphrophoridae), a Vector of Xylella fastidiosa (Xanthomonadaceae): A Case Study with Spiders in the Olive Grove. Insects 2020, 11, 100. [Google Scholar] [CrossRef]
- Daane, K.; Johnson, M.; Pickett, C.; Sime, K.; Wang, X.G.; Nadel, H.; Andrews, J.; Hoelmer, K. Biological controls investigated to aid management of olive fruit fly in California. Calif. Agric. 2011, 65, 21–28. [Google Scholar] [CrossRef]
- Daane, K.M.; Sime, K.; Wang, X.G.; Nadel, H.; Johnson, M.; Walton, V.; Kirk, A.; Pickett, C. Psyttalia lonsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol. Control 2008, 44, 79–89. [Google Scholar] [CrossRef]
- Yokoyama, V.Y.; Cáceres, C.E.; Kuenen, L.P.S.; Wang, X.G.; Rendón, P.A.; Johnson, M.W.; Daane, K.M. Field performance and fitness of an olive fruit fly parasitoid, Psyttalia humilis (Hymenoptera: Braconidae), mass reared on irradiated Medfly. Biol. Control 2010, 54, 90–99. [Google Scholar] [CrossRef]
- Wang, X.G.; Johnson, M.; Daane, K.; Yokoyama, V. Larger olive fruit size reduces the efficiency of Psyttalia concolor as a parasitoid of the olive fruit fly. Biol. Control 2009, 49, 45–51. [Google Scholar] [CrossRef]
- Villa, M.; Santos, S.A.P.; Mexia, A.; Bento, A.; Pereira, J.A. Ground cover management affects parasitism of Prays oleae (Bernard). Biol. Control 2016, 96, 72–77. [Google Scholar] [CrossRef]
- Pappalardo, S.; Villa, M.; Santos, S.A.P.; Benhadi-Marín, J.; Pereira, J.A.; Venturino, E. A tritrophic interaction model for an olive tree pest, the olive moth—Prays oleae (Bernard). Ecol. Model. 2021, 462, 109776. [Google Scholar] [CrossRef]
- Whittaker, J.B. Density Regulation in a Population of Philaenus spumarius (L.) (Homoptera: Cercopidae). J. Anim. Ecol. 1973, 42, 163–172. [Google Scholar] [CrossRef]
- Molinatto, G.; Demichelis, S.; Bodino, N.; Giorgini, M.; Mori, N.; Bosco, D. Biology and Prevalence in Northern Italy of Verrallia aucta (Diptera, Pipunculidae), a Parasitoid of Philaenus spumarius (Hemiptera, Aphrophoridae), the Main Vector of Xylella fastidiosa in Europe. Insects 2020, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Mesmin, X.; Chartois, M.; Genson, G.; Rossi, J.; Cruaud, A.; Rasplus, J. Ooctonus vulgatus (Hymenoptera, Mymaridae), a potential biocontrol agent to reduce populations of Philaenus spumarius (Hemiptera, Aphrophoridae) the main vector of Xylella fastidiosa in Europe. PeerJ 2020, 8, e8591. [Google Scholar] [CrossRef]
- Vongati, M.; Mohanty, S.; Das, K. Role of Microbial Pesticides in IPM. Just Agric. 2022, 2, 12. [Google Scholar]
- Ortiz, A.; Sansinenea, E. Bacillus thuringiensis based biopesticides for integrated crop management. In Biopesticides; Rakshit, M., Meena, V.S., Abhilash, P.C., Sarma, B.K., Singh, H.B., Fraceto, L.F., Parihar, M., Singh, A.K., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Arora, N.; Agrawal, N.; Yerramilli, V.; Bhatnagar, R.K. Biology and Applications of Bacillus thuringiensis. In Integrated Pest Management. General Concepts in Integrated Pest and Disease Management; Ciancio, A., Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 1, pp. 227–244. [Google Scholar] [CrossRef]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Jhala, J.; Baloda, A.S.; Rajput, V.S. Role of bio-pesticides in recent trends of insect pest management: A review. J. Pharmacogn. Phytochem. 2020, 9, 2237–2240. [Google Scholar]
- Essiedu, J.A.; Adepoju, F.O.; Ivantsova, M.N. Benefits and limitations in using biopesticides: A review. In Proceedings of the AIP Conference Proceedings, Ekaterinburg, Russia, 18–22 May 2020; AIP Publishing: Melville, NY, USA, 2020; Volume 2313, p. 1. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Botanical pesticides for eco-friendly pest management: Drawbacks and limitations. In Pesticides in Crop Production: Physiological and Biochemical Action; Srivastava, P.K., Singh, V.P., Singh, A., Tripathi, D.K., Singh, S., Prasad, S.M., Chauhan, D.K., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 181–193. [Google Scholar] [CrossRef]
- Fernández-Chapa, D.; Ramírez-Villalobos, J.; Galán-Wong, L. Toxic potential of Bacillus thuringiensis: An overview. In Protecting Rice Grains in the Post-Genomic Era; Jia, Y., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Unzué Pozas, A. Multifunctional Analysis of New Bacillus thuringiensis Strains and Their Potential as Pest Control Agents. Ph.D. Thesis, Universidad de Navarra, Pamplona, Spain, 2023. [Google Scholar]
- Sanchis, V. From microbial sprays to insect-resistant transgenic plants: History of the biospesticide Bacillus thuringiensis. A Review. Agron. Sustain. Dev. 2011, 31, 217–231. [Google Scholar] [CrossRef]
- Cárdenas, A.R.T.; Rebull, J. Control de” Prays oleae” con” Bacillus thuringiensis”, y efecto sobre la comunidad entomológica. Phytoma España Rev. Prof. Sanid. Veg. 2022, 343, 132–135. [Google Scholar]
- Godena, S.; Rojnić, I.D.; Žanić, K.; Dean, B.A.N. Monitoring and population characteristics of Prays oleae (Lepidoptera: Yponomeutidae) on different insecticidal treatments. Rev. Soc. Entomol. 2019, 78, 65–74. [Google Scholar] [CrossRef]
- Blibech, I.; Ksantini, M.; Shete, M. Insecticidal Activity of an Indian Botanical Insecticide ULTRA ACT® against the Olive Pest Bactrocera oleae (Diptera: Tephritidae) in Tunisia. Adv. Chem. Eng. 2020, 10, 69. [Google Scholar] [CrossRef]
- Azizoglu, U.; Jouzani, G.S.; Sansinenea, E.; Sanchis-Borja, V. Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Rev. Env. Sci. Biotechnol. 2023, 22, 319–348. [Google Scholar] [CrossRef]
- Sanahuja, G.; Banakar, R.; Twyman, R.M.; Capell, T.; Christou, P. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J. 2011, 9, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Darby, A.C. Symbiosis research as a novel strategy for insect pest control. In Biorational Control of Arthropod Pests: Application and Resistance Management; Ishaaya, I., Horowitz, A.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 207–231. [Google Scholar]
- Klepzig, K.D.; Adams, A.S.; Handelsman, J.; Raffa, K.F. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ. Entomol. 2009, 38, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.K.; Douglas, A.E. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J. Insect. Physiol. 2017, 103, 10–17. [Google Scholar] [CrossRef]
- Petri, L. Ricerche sopra i batteri intestinali della mosca olearia. In Memorie della Regia Stazione di Patologia Vegetale di Roma; Tipografia nazionale di G. Bertero e c.: Roma, Italy, 1909. [Google Scholar]
- Yamvrias, C.; Panagopiulos, C.G.; Psallidas, P.G. Preliminary study of the internal bacterial flora of the olive fruit fly (Dacus oleae Gmelin). Ann. L’institut Phytopathol. Benaki 1970, 9, 201–206. [Google Scholar]
- Daser, U.; Brandl, R. Microbial gut floras of eight species of tephritids. Biol. J. Linn. Soc. 1992, 45, 155–165. [Google Scholar] [CrossRef]
- Konstantopoulou, M.A.; Raptopoulos, D.G.; Stavrakis, N.G.; Mazomenos, B.E. Microflora species and their volatile compounds affecting development of an alcohol dehydrogenase homozygous strain (Adh-I) of Bactrocera (Dacus) oleae (Diptera: Tephritidae). J. Econ. Entomol. 2009, 98, 1943–1949. [Google Scholar] [CrossRef]
- Rempoulakis, P.; Sela, S.; Nemny-Lavy, E.; Pinto, R.; Birke, A.; Nestel, D. Microbial composition affects the performance of an artificial Tephritid larval diet. Bull. Entomol. Res. 2018, 108, 434–441. [Google Scholar] [CrossRef]
- Kounatidis, I.; Crotti, E.; Sapountzis, P.; Sacchi, L.; Rizzi, A.; Chouaia, B.; Bandi, C.; Alma, A.; Daffonchio, D.; Mavragani-Tsipidou, P.; et al. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl. Environ. Microbiol. 2009, 75, 3281–3288. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, P.; Granchietti, A.; Landini, S.; Viti, C.; Giovannetti, L.; Belcari, A. Relationships between the olive fly and bacteria. J. Appl. Entomol. 2008, 132, 682–689. [Google Scholar] [CrossRef]
- Estes, A.M.; Hearn, D.J.; Bronstein, J.L.; Pierson, E.A. The olive fly endosymbiont, “Candidatus Erwinia dacicola,” switches from an intracellular existence to an extracellular existence during host insect development. Appl. Environ. Microbiol. 2009, 75, 7097–7106. [Google Scholar] [PubMed]
- Blow, F.; Gioti, A.; Goodhead, I.B.; Kalyva, M.; Kampouraki, A.; Vontas, J.; Darby, A.C. Functional genomics of a symbiotic community: Shared traits in the olive fruit fly gut microbiota. Genome Biol. Evol. 2019, 12, 3778–3791. [Google Scholar]
- Capuzzo, C.; Firrao, G.; Mazzon, L.; Squartini, A.; Girolami, V. ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int. J. Syst. Evol. Microbiol. 2005, 55, 1641–1647. [Google Scholar] [PubMed]
- Savio, C.; Mazzon, L.; Martinez-Sanudo, I.; Simonato, M.; Squartini, A.; Girolami, V. Evidence of two lineages of the symbiont ‘Candidatus Erwinia dacicola’ in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. Int. J. Syst. Evol. Microbiol. 2012, 62, 179–187. [Google Scholar] [CrossRef]
- Ben-Yosef, M.; Pasternak, Z.; Jurkevitch, E.; Yuval, B. Symbiotic bacteria enable olive fly larvae to overcome host defences. Roy. Soc. Open Sci. 2015, 2, 150–170. [Google Scholar]
- Sinno, M.; Bézier, A.; Vinale, F.; Giron, D.; Laudonia, S.; Garonna, A.P.; Pennacchio, F. Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. Pest. Manag. Sci. 2020, 76, 3199–3207. [Google Scholar] [CrossRef]
- Belcari, A.; Sacchetti, P.; Rosi, M.C.; Del Pianta, R. The use of copper products to control the olive fly (Bactrocera oleae) in central Italy. IOBC WPRS Bull. 2005, 28, 45. [Google Scholar]
- Caleca, V.; Lo Verde, G.; Lo Verde, V.; Piccionello, M.P.; Rizzo, R. Control of Bactrocera oleae and Ceratitis capitata in organic orchards: Use of clays and copper products. Acta Hortic. 2010, 873, 227–234. [Google Scholar] [CrossRef]
- Nobre, T. Symbiosis in sustainable agriculture: Can olive fruit fly bacterial microbiome be useful in pest management? Microorganisms 2019, 7, 238. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Ruocco, M.; Woo, S.L.; Lorito, M. Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun. 2012, 7, 1545–1550. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Singh, H.B.; Hermosa, R.; García-Estrada, C.; Caradus, J.; He, Y.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Vinale, F.; et al. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agent. Appl. Microbiol. Biotechnol. 2019, 103, 9287–9303. [Google Scholar]
- Bigiotti, G.; Pastorelli, R.; Belcari, A.; Sacchetti, P. Symbiosis interruption in the olive fly: Effect of copper and propolis on Candidatus Erwinia dacicola. J. Appl. Entomol. 2019, 143, 357–364. [Google Scholar] [CrossRef]
- Tsolakis, H.; Ragusa, E.; Tarantino, P. Control of Bactrocera oleae by low environmental impact methods: NPC methodology to evaluate the efficacy of lure-and-kill method and copper hydroxide treatments. Bull. Insectol. 2011, 64, 1–8. [Google Scholar]
- Gonçalves, F.; Torres, L. Effect of copper oxychloride on the olive infestation by Bactrocera oleae in northeastern Portugal. Acta Hortic. 2012, 949, 333–340. [Google Scholar] [CrossRef]
- Vizzarri, V.; Lombardo, L.; Novellis, C.; Rizzo, P.; Pellegrino, M.; Cruceli, G.; Godino, G.; Zaffina, F.; Ienco, A. Testing the Single and Combined Effect of Kaolin and Spinosad against Bactrocera oleae and Its Natural Antagonist Insects in an Organic Olive Grove. Life 2023, 13, 607. [Google Scholar] [CrossRef]
- González-Núñez, M.; Pascual, S.; Cobo, A.; Seris, E.; Cobos, G.; Fernández, C.E.; Sánchez-Ramos, I. Copper and kaolin sprays as tools for controlling the olive fruit fly. Entomol. Gen. 2021, 41, 97–110. [Google Scholar] [CrossRef]
- Sparks, T.; Crouse, G.; Durst, G. Natural products as insecticides: The biology, biochemistry and quantitative structure activity relationships of spinosyns and spinosoids. Pest. Manag. Sci. 2001, 57, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.V.; Silva, C.E.; Oliveira, C.M.; de Morais, C.R.; Limongi, J.E.; Pereira, B.B. Evaluation of toxicity and environmental safety in use of spinosad to rationalize control strategies against Aedes aegypti. Chemosphere 2019, 226, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Chio, E.H.; Li, Q.X. Pesticide Research and Development: General Discussion and Spinosad Case. J. Agric. Food Chem. 2022, 70, 8913–8919. [Google Scholar] [CrossRef] [PubMed]
- Sagri, E.; Reczko, M.; Gregoriou, M.E.; Tsoumani, K.T.; Zygouridis, N.E.; Salpea, K.D.; Zalom, F.G.; Ragoussis, J.; Mathiopoulos, K.D. Olive fly transcriptomics analysis implicates energy metabolism genes in spinosad resistance. BMC Genom. 2014, 15, 714. [Google Scholar] [CrossRef] [PubMed]
- Gress, B.E.; Zalom, F.G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest. Manag. Sci. 2019, 75, 1270–1276. [Google Scholar] [CrossRef]
- Guillem-Amat, A.; Sánchez, L.; López-Errasquín, E.; Ureña, E.; Hernández-Crespo, P.; Ortego, F. Field detection and predicted evolution of spinosad resistance in Ceratitis capitata. Pest. Manag. Sci. 2020, 76, 3702–3710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, M.; Ma, Z.; You, C.; Gao, X.; Shi, X. Esterase-mediated spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Ecotoxicology 2020, 29, 35–44. [Google Scholar] [CrossRef]
- Hsu, J.C.; Chou, M.Y.; Mau, R.F.; Maeda, C.; Shikano, I.; Manoukis, N.C.; Vargas, R.I. Spinosad resistance in field populations of melon fly, Zeugodacus cucurbitae (Coquillett), in Hawaii. Pest. Manag. Sci. 2021, 77, 5439–5444. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Ramasamy, G.G.; Pathak, J.; Nayyar, N.; Muthugounder, M.; Maria, P.; Rai, A.; Thiruvengadam, V. Deciphering the Molecular Mechanisms of Insecticide Resistance from the Transcriptome Data of Field Evolved Spinosad Resistant and Susceptible Populations of Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2022, 115, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, R.; van den Berg, J.; van Rensburg, P.J.; du Plessis, H. Residual activity of spinosad applied as a soil drench to tomato seedlings for control of Tuta absoluta. Pest. Manag. Sci. 2023, 79, 1860–1867. [Google Scholar] [CrossRef]
- Pascual, S.; Cobos, G.; Seris, E.; Sánchez-Ramos, I.; González-Núñez, M. Spinosad bait sprays against the olive fruit fly (Bactrocera oleae (Rossi)): Effect on the canopy non-target arthropod fauna. Int. J. Pest. Manag. 2014, 60, 258–268. [Google Scholar] [CrossRef]
- Martelli, F.; Hernandes, N.H.; Zuo, Z.; Wang, J.; Wong, C.O.; Karagas, N.E.; Roessner, U.; Rupasinghe, T.; Robin, C.; Venkatachalam, K.; et al. Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. Elife 2022, 11, e73812. [Google Scholar] [CrossRef]
- Araújo, R.D.S.; Lopes, M.P.; Viana, T.A.; Bastos, D.S.S.; Machado-Neves, M.; Botina, L.L.; Martins, G.F. Bioinsecticide spinosad poses multiple harmful effects on foragers of Apis mellifera. Environ. Sci. Pollut. Res. 2023, 30, 66923–66935. [Google Scholar] [CrossRef]
- Perrin, M.; Borowiec, N.; Thaon, M.; Siegwart, M.; Delattre, T.; Moiroux, J. Differential influence of temperature on the toxicity of three insecticides against the codling moth Cydia pomonella (L.) and two natural enemies. J. Pest. Sci. 2023, 76, 1410–1415. [Google Scholar] [CrossRef]
- Anjum, F.; Wright, D.J. Foliar Residual Toxicity of Insecticides to Brassica Pests and Their Natural Enemies. J. Econ. Entom. 2023, 116, 153–159. [Google Scholar] [CrossRef]
- Calabrese, G.; Perrino, E.V.; Ladisa, G.; Aly, A.; Tesfmichael Solomon, M.; Mazdaric, S.; Benedetti, A.; Ceglie, F.G. Short-term effects of different soil management practices on biodiversity and soil quality of Mediterranean ancient olive orchards. Org. Agric. 2015, 5, 209–223. [Google Scholar] [CrossRef]
- Lombardo, L.; Palese, A.M.; Grasso, F.; Duffy, D.H., III; BriccoliBati, C.; Xiloyannis, C. Mechanical Tillage Diversely Affects Glomalin Content, Water Stable Aggregates and AM Fungal Community in the Soil Profiles of Two Differently Managed Olive Orchards. Biomolecules 2019, 9, 639. [Google Scholar] [CrossRef]
- Sharma, R.R.; Reddy, S.V.R.; Datta, S.C. Particle films and their applications in horticultural crops. Appl. Clay Sci. 2015, 116–117, 54–68. [Google Scholar] [CrossRef]
- Glenn, D.M.; Puterka, G.J. Particle films: A new technology for agriculture. Hort. Rev. 2005, 31, 1–44. [Google Scholar]
- Salerno, G.; Rebora, M.; Kovalev, A.; Gorb, E.; Gorb, S. Kaolin nano-powder effect on insect attachment ability. J. Pest. Sci. 2020, 93, 315–327. [Google Scholar] [CrossRef]
- Marcotegui, A.; Sánchez-Ramos, I.; Pascual, S.; Fernández, C.E.; Cobos, G.; Armendáriz, I.; Cobo, A.; González-Núñez, M. Kaolin and potassium soap with thyme essential oil to control Monosteira unicostata and other phytophagous arthropods of almond trees in organic orchards. J. Pest. Sci. 2015, 88, 753–765. [Google Scholar] [CrossRef]
- Faghih, S.; Zamani, Z.; Fatahi, R.; Liaghat, A. Effects of deficit irrigation and kaolin application on vegetative growth and fruit traits of two early ripening apple cultivars. Biol. Res. 2019, 52, 43. [Google Scholar] [CrossRef]
- Arbabi, M.; Shokat, G.A.A.; Khiavi, H.K.; Imami, M.S.; Kamali, H.; Farazmand, H. Evaluation of kaolin in control of Panonychus ulmi in apple orchards of Iran. Indian. J. Plant Prot. 2020, 34, 47–53. [Google Scholar]
- Singh, R.K.; Afonso, J.; Nogueira, M.; Oliveira, A.A.; Cosme, F.; Falco, V. Silicates of potassium and aluminium (kaolin); comparative foliar mitigation treatments and biochemical insight on grape berry quality in Vitis vinifera L. (cv. Touriga National and Touriga Franca). Biology 2020, 9, 58. [Google Scholar] [CrossRef]
- Cahenzli, F.; Boutry, C. Autumn Kaolin Treatments and Early Spring Oil Treatments against Myzus cerasi in Sweet Cherries. In Proceedings of the 20th International Conference on Organic Fruit-Growing, Hohenheim, Germany, 21–23 February 2022; pp. 175–179. Available online: https://www.ecofruit.net/wp-content/uploads/2022/02/175_179_BP_12_ShortContribution_CahenzliBoutry_AutumnKaolinTreatmentsSweetcherries_formatiert.pdf (accessed on 17 October 2023).
- Nottingham, L.B.; Orpet, R.J.; Beers, E.H. Integrated pest management programs for pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), using kaolin clay and reflective plastic mulch. J. Econ. Entomol. 2022, 115, 1607–1619. [Google Scholar] [CrossRef]
- Linder, C.; Rösti, J.; Lorenzini, F.; Deneulin, P.; Badertscher, R.; Kehrli, P. Efficacy of kaolin treatments against Drosophila suzukii and their impact on the composition and taste of processed wines. Vitis 2020, 59, 49–52. [Google Scholar] [CrossRef]
- Azizifar, S.; Abdossi, V.; Gholami, R.; Ghavami, M.; Torkashvand, A.M. Effect of salicylic acid and kaolin on yield, physiological traits, and fatty acid composition in olive cultivars under regulated deficit irrigation. Acta Sci. Pol-Hortoru 2022, 21, 131–140. [Google Scholar] [CrossRef]
- Dey, M.; Singh, R.K. Neurotoxic effects of aluminium exposure as a potential risk factor for Alzheimer’s disease. Pharmacol. Rep. 2022, 74, 439–450. [Google Scholar] [CrossRef]
- Stahl, T.; FalkLK, S.; RohrbeCK, A.; Georgii, S.; Herzog, C.; Wiegand, A.; Hotz, S.; Boschek, B.; Zorn, H.; Brunn, H. Migration of aluminium from food contact materials to food—A health risk for consumers? Part I of III: Exposure to aluminium, release of aluminium, tolerable weekly intake (TWI), toxicological effects of aluminium, study design, and methods. Environ. Sci. Eur. 2017, 29, 19. [Google Scholar] [CrossRef]
- Torres, E.; Mancebo, J.; Lara, A.; Maurer, W.; Geraldo, Y.; Pilar, M.; Torres-Quezada, I.; Caro, J.C.; Lopez, L. Early Results of Kaolin Clay Applications in the Dominican Republic. EC Agric. 2021, 7, 8–16. [Google Scholar]
- Moarefi, M.; Seddigh, S.; Hamrahi, A. Effects of processed kaolin on Aphis fabae and Hippodamia variegata on broad bean: A lab and field case study. J. Crop Prot. 2022, 11, 211–227. [Google Scholar]
- Rizzo, R.; Pistillo, M.; Germinara, G.S.; Lo Verde, G.; Sinacori, M.; Maggi, F.; Petrelli, R.; Spinozzi, E.; Cappellacci, L.; Zeni, V.; et al. Bioactivity of Carlina acaulis Essential Oil and Its Main Component towards the Olive Fruit Fly, Bactrocera oleae: Ingestion Toxicity, Electrophysiological and Behavioral Insights. Insects 2021, 12, 880. [Google Scholar] [CrossRef]
- Blasco, C.L. Dispersal Behaviour, Ecology and Control of Philaenus spumarius: The Main Vector of Xylella fastidiosa in Europe. Ph.D. Dissertation, Universidad Politécnica de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Bengochea, P.; Amor, F.; Saelices, R.; Hernando, S.; Budia, F.; Adán, A.; Medina, P. Kaolin and copper-based products applications: Ecotoxicology on four natural enemies. Chemosphere 2013, 91, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Bengochea, P.; Budia, F.; Viñuela, E.; Medina, P. Are kaolin and copper treatments safe to the olive fruit fly parasitoid Psyttalia concolor? J. Pest. Sci. 2014, 87, 351–359. [Google Scholar] [CrossRef]
- Gómez-Guzmán, J.A.; Sainz-Pérez, M.; González-Ruiz, R. Monitoring and inference of behavioral resistance in beneficial insects to insecticides in two pest control systems: IPM and organic. Agronomy 2022, 12, 538. [Google Scholar] [CrossRef]
- Pecenka, J.R.; Ingwell, L.L.; Foster, R.E.; Krupke, C.H.; Kaplan, I. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc. Natl. Acad. Sci. USA 2021, 118, e2108429118. [Google Scholar] [CrossRef] [PubMed]
- Lafargue, G.L.; Medina, J.M.A.; Acosta, A.L.; Llanes, Y.M. Piretrinas y Piretroides. Anu. Cienc. UNAH 2018, 16, 4–13. [Google Scholar]
- Alfaro-Tapia, A.; Alvarez-Baca, J.K.; Fuentes-Contreras, E.; Figueroa, C.C. Biological control may fail on pests applied with high doses of insecticides: Effects of sub-lethal concentrations of a pyrethroid on the host-searching behaviour of the aphid parasitoid Aphidius colemani (Hymenoptera, Braconidae) on aphid pests. Agriculture 2021, 11, 539. [Google Scholar] [CrossRef]
- Ravula, A.R.; Yenugu, S. Pyrethroid based pesticides–chemical and biological aspects. Crit. Rev. Toxicol. 2021, 51, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Dávila, O.L.; Sánchez-Martínez, G.; Rico-Martínez, R. Toxicity tests, bioaccumulation and residuality of pyrethroid insecticides commonly used to control conifer bark beetles in Mexico. Ecotoxicology 2022, 31, 782–796. [Google Scholar] [CrossRef] [PubMed]
- Lybrand, D.B.; Xu, H.; Last, R.L.; Pichersky, E. How plants synthesize Pyrethrins: Safe and biodegradable insecticides. Trends. Plant. Sci. 2020, 25, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.V.; Holle, S.G.; Hutchison, W.D.; Koch, R.L. Lethal and sublethal effects of conventional and organic insecticides on the parasitoid Trissolcus japonicus, a biological control agent for Halyomorpha halys. Front. Insect. Sci. 2021, 1, 5. [Google Scholar] [CrossRef]
- Yan, R.; Zhou, Q.; Xu, Z.; Wu, Y.; Zhu, G.; Wang, M.; Guo, Y.; Dong, K.; Chen, M. Pyrethrins elicit olfactory response and spatial repellency in Aedes albopictus. Pest. Manag. Sci. 2021, 77, 3706–3712. [Google Scholar] [CrossRef]
- Dara, S.K. Five shades of gray mold control in strawberry: Evaluating chemical, organic oil, botanical, bacterial, and fungal active ingredients. EJ Entomol. Biol. 2019. [Google Scholar]
- Ciceoi, R.; IordĂChescu, M.; UdriȘTe, A.A.; BĂDulescu, L.A. Insights on solanaceous resistance against tomato leafminer (Tuta absoluta), with emphasis on chemical compounds useful in integrated pest management. Not. Bot. Horti Agrobo 2021, 49, 12543. [Google Scholar] [CrossRef]
- Balanza, V.; Mendoza, J.E.; Cifuentes, D.; Bielza, P. Selection for resistance to pyrethroids in the predator Orius laevigatus. Pest. Manag. Sci. 2021, 77, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Dougoud, J.; Toepfer, S.; Bateman, M.; Jenner, W.H. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 2019, 39, 1–22. [Google Scholar] [CrossRef]
- Fita, T.; Getu, E.; Wakgari, M.; Woldetsadike, K. Potency of Neem, Azadirachta indica L. (A. juss) Leaf Aqueous Extract Insecticide against White Mango Scale, Aulacuspis tubercularis Newstead (Homoptera: Diaspididae) Infesting Mango (Mangifera indica L.). In Insecticides—Advances in Insect Control and Sustainable Pest Management; Habib, A., Adnan, N.S., Muhammad, B.T., Sajid, F., Basharat, A., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Show, N. Determining the Efficacy of Syringa (Melia azedarach L.) Extracts and Garlic (Allium sativum L.) Extracts in the Control of Tobacco Spider Mites (Tetranychus evansi) in Tomatoes (Lycopersicum esculentum) under Field Conditions in Chiredzi District, in Zimbabwe. Ph.D. Dissertation, University of South Africa, Pretoria, South Africa, 2023. [Google Scholar]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Abd Rashed, A.; Rathi, D.-N.G.; Ahmad Nasir, N.A.H.; Abd Rahman, A.Z. Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. Molecules 2021, 26, 1093. [Google Scholar] [CrossRef] [PubMed]
- Visakh, N.U.; Pathrose, B.; Narayanankutty, A.; Alfarhan, A.; Ramesh, V. Utilization of pomelo (Citrus maxima) peel waste into bioactive essential oils: Chemical composition and insecticidal properties. Insects 2022, 13, 480. [Google Scholar] [CrossRef] [PubMed]
- Lalruatsangi, K. Botanicals as selective pesticides for the integrated pest management in vegetables: A review. Agric. Rev. 2022, 43, 239–242. [Google Scholar] [CrossRef]
- Srivastava, R.P. Neem and pest Management. In International Book; Distributing Company: Lucknow, India, 2001; 620p. [Google Scholar]
- Amin, A.R.H.; Bayoumi, A.E.D.; Dimetry, N.Z.; Youssef, D.A. Efficiency of Nano-formulations of neem and peppermint oils on the bionomics and enzymatic activities of Agrotis ipsilon larvae (Lepidoptera: Noctuidae). J. Nat. Resour. Ecol. Manag. 2019, 4, 102–111. [Google Scholar]
- Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.B.; et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes—A review. Ind. Crop. Prod. 2021, 171, 113892. [Google Scholar] [CrossRef]
- Peace, K.; Bakaloudis, D.E.; Callaghan, A.; Holloway, G.J. Essential oils: A potential addition to integrated pest management strategies against adult varied carpet beetle, Anthrenus verbasci, in natural science collections. Bull. Insectol. 2022, 75, 247–252. [Google Scholar]
- Plata-Rueda, A.; Santos, M.H.D.; Serrão, J.E.; Martínez, L.C. Chemical composition and insecticidal properties of Origanum vulgare (Lamiaceae) essential oil against the stored product beetle, Sitophilus granarius. Agronomy 2022, 12, 2204. [Google Scholar] [CrossRef]
- Merlimau, M. Essential oil from Piperaceae as a potential for biopesticide agents: A review. Food Res. 2020, 4, 1–10. [Google Scholar]
- Danna, C.; Malaspina, P.; Cornara, L.; Smeriglio, A.; Trombetta, D.; De Feo, V.; Vanin, S. Eucalyptus essential oils in pest control: A review of chemical composition and applications against insects and mites. Crop Prot. 2023; 106319, in press. [Google Scholar] [CrossRef]
- Casas, J.L.; Sagarduy-Cabrera, A.; López Santos-Olmo, M.; Marcos-García, M.Á. Essential Oils from Selected Mediterranean Aromatic Plants—Characterization and Biological Activity as Aphid Biopesticides. Life 2023, 13, 1621. [Google Scholar] [CrossRef] [PubMed]
- Werrie, P.Y. Essential Oils as Potential Botanical Insecticide against Rosy Apple Aphid (Dysaphis plantaginea P.) by Trunk Injection. Ph.D. Dissertation, University of Liège—Gembloux Agro-Bio Tech, Gembloux, Belgium, 2022. [Google Scholar]
- El-Minshawy, A.M.; Abdelgaleil, S.A.; Gadelhak, G.G.; AL-Eryan, M.A.; Rabab, R.A. Effects of monoterpenes on mortality, growth, fecundity, and ovarian development of Bactrocera zonata (Saunders) (Diptera: Tephritidae). Environ. Sci. Pollut. R. 2018, 25, 15671–15679. [Google Scholar] [CrossRef] [PubMed]
- Zeni, V.; Benelli, G.; Campolo, O.; Giunti, G.; Palmeri, V.; Maggi, F.; Rizzo, R.; Lo Verde, G.; Lucchi, A.; Canale, A. Toxics or lures? Biological and behavioural effects of plant essential oils on tephritidae fruit flies. Molecules 2021, 26, 5898. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.; Lu, Y. Toxicity of Some Essential Oils Constituents against Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Insects 2022, 13, 954. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, R.; Caruso, T.; Caleca, V. Control of Bactrocera oleae (Rossi) in organic olive orchards: Use of clays and spinosad-based bait. In Proceedings of the 8th Meeting, Florence, Italy, 9–12 October 2023; Dionyssios, P., Patrizia, S., Antonio, B., Marzia, C.R., Eds.; IOBC/WPRS Bulletins: Florence, Italy, 2019; Volume 141, pp. 67–70. [Google Scholar]
- Giunti, G.; Laudani, F.; Lo Presti, E.; Bacchi, M.; Palmeri, V.; Campolo, O. Contact toxicity and ovideterrent activity of three essential oil-based nano-emulsions against the olive fruit fly Bactrocera oleae. Horticulturae 2022, 8, 240. [Google Scholar] [CrossRef]
- Durán Aguirre, C.E.; Pratissoli, D.; Carvalho, J.R.D.; Pacheco Damascena, A.; Araujo Junior, L.M.D.; Bolsoni Zago, H. Actividad insecticida de aceites esenciales sobre Helicoverpa armígera (Hübner) (Lepidoptera: Noctuidae). Idesia 2020, 38, 59–64. [Google Scholar] [CrossRef]
- Ramadan, E.A. The efficiency of some plant extracts against Agrotis ipsilon (Lepidoptera: Noctuidae) regarding to their activity on vital biochemical parameters. GSC Biol. Pharm. Sci. 2020, 12, 240–248. [Google Scholar] [CrossRef]
- Dongiovanni, C.; Di Carolo, M.; Fumarola, G.; Tauro, D.; Altamura, G.; Cavalieri, V. Evaluation of insecticides for the control of juveniles of Philaenus spumarius L.; 2015–2017. Arthropod Manag. Tests 2018, 43, tsy073. [Google Scholar] [CrossRef]
- Domenico, C.D.; Ganassi, S.; Delfine, S.; Pistillo, M.; Germinara, G.S.; Cristofaro, A.D. Biological activities of some essential oils towards Philaenus spumarius adults. In Proceedings of the IOBC/WPRS Working Group. “Integrated Protection of Olive Crops”; IOBC/WPRS Bulletins: Florence, Italy, 2019; Volume 141, pp. 88–90. [Google Scholar]
- Ganassi, S.; Cascone, P.; Domenico, C.D.; Pistillo, M.; Formisano, G.; Giorgini, M.; Grazioso, P.; Germinara, G.S.; de Cristofaro, A.; Guerrieri, E. Electrophysiological and behavioural response of Philaenus spumarius to essential oils and aromatic plants. Sci. Rep. 2020, 10, 3114. [Google Scholar] [CrossRef]
- Anastasaki, E.; Psoma, A.; Partsinevelos, G.; Papachristos, D.; Milonas, P. Electrophysiological responses of Philaenus spumarius and Neophilaenus campestris females to plant volatiles. Phytochemistry 2021, 189, 112848. [Google Scholar] [CrossRef]
- Greff, B.; Sáhó, A.; Lakatos, E.; Varga, L. Biocontrol Activity of Aromatic and Medicinal Plants and Their Bioactive Components against Soil-Borne Pathogens. Plants 2023, 12, 706. [Google Scholar] [CrossRef]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Maggi, M.D.; Ruffnengo, S.R.; Gende, L.B.; Sarlo, E.G.; Eguaras, M.J.; Bailac, P.N.; Ponzi, M.I. Laboratory evaluations of Syzygium aromaticum (L.) Merr. et Perry essential oil against Varroa Destr. J. Essent. Oil Res. 2010, 22, 119–122. [Google Scholar] [CrossRef]
- Habashy, M.G.; Abou El Atta, D.A.; Saleh, F.M. Efficacy of selected plant-derived oils against Tetranychid Mite (Tetranychus urticae) (Acari: Tetranychidae), in laboratory and semi field conditions. Int. J. Zool. Stud. 2023, 8, 47–52. [Google Scholar]
- Ziaee, M.; Hamzavi, F. A review of plant essential oils as a component of integrated pest management in stored products protection. In Proceedings of the International Conference on Green Agro-Industry (ICGAI), Yogyakarta, Indonesia, 11–14 November 2013; p. 394. [Google Scholar]
- Lu, J.; Wu, S. Bioactivity of essential oil from Ailanthus altissima bark against 4 major stored-grain insects. Afr. J. Microbiol. Res. 2010, 4, 154–157. [Google Scholar]
- Abrol, D.; Gupta, D.; Sharma, I. Evaluation of insecticides, biopesticides and clay for the management of fruit fly, Bactrocera spp. infesting bottle gourd. J. Entomol. Zool. Stud. 2019, 7, 311–314. [Google Scholar]
- Nair, P.P. A Unique Perspective in Precision of Nano-biotechnology for Sustainable Agricultural Fields. In Bio-Manufactured Nanomaterials: Perspectives and Promotion; Springer International Publishing: Cham, Switzerland, 2021; pp. 299–320. [Google Scholar]
- Kumar, B.A.; Niralwad, K.S.; Roghini, R.; Geethalakshmi, V. Sustainable solutions: Biotechnology’s role in environmental conservation. Eur. Chem. Bull. 2023, 12, 287–294. [Google Scholar]
- Das, S.; Ray, M.K.; Panday, D.; Mishra, P.K. Role of biotechnology in creating sustainable agriculture. PLOS Sustain. Transform. 2023, 2, e0000069. [Google Scholar] [CrossRef]
- Regulation (EC) No 1107/2009. Health and Food Safety Directorate General. European Commission. Standing Committee on Plants, Animals, Food and Feed Section Phytopharmaceuticals—Pesticide Residues 13–14 February 2023. Available online: https://food.ec.europa.eu/system/files/2023-03/sc_phyto_20230213_ppr_sum_1.pdf (accessed on 20 August 2023).
- EPA Pesticides. United States Environmental Protection Agency. Are Bt Crops Safe? Available online: https://www.epa.gov/sites/default/files/2015-08/documents/are_bt_crops_safe.pdf (accessed on 20 August 2023).
- Regulation (EC) No 396/2005. Health and Food Safety Directorate General. European Commission. Standing Committee on Plants, Animals, Food and Feed Section Phytopharmaceuticals—Pesticide Residues 22–23 November 2021. Available online: https://food.ec.europa.eu/system/files/2021-12/sc_phyto_20211122_ppr_sum_0.pdf (accessed on 20 August 2023).
- EPA—Fact Sheet for Bacillus thuringiensis. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-006400_24-Mar-98.pdf (accessed on 20 August 2023).
- Directive 2001/18/EC. Document 32023R1004. Commission Implementing Regulation (EU) 2023/1004 of 23 May 2023 Renewing the Approval of the Active Substance Bacillus thuringiensis subsp. Kurstaki SA-11 in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) No 540/2011 (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R1004 (accessed on 20 August 2023).
- EPA. PIP Regulation. Overview of Plant Incorporated Protectants. Available online: https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/overview-plant-incorporated-protectants#regulation (accessed on 20 August 2023).
- Eski, A.; Demirbağ, Z.; Demir, İ. Microencapsulation of an indigenous isolate of Bacillus thuringiensis by spray drying. J. Microencapsul. 2019, 36, 1–9. [Google Scholar] [CrossRef]
- De Oliveira, J.L.; Fraceto, L.F.; Bravo, A.; Polanczyk, R.A. Encapsulation strategies for Bacillus thuringiensis: From now to the future. J. Agric. Food Chem. 2021, 69, 4564–4577. [Google Scholar] [CrossRef]
- Poulin, B.; Lefebvre, G.; Hilaire, S.; Després, L. Long-term persistence and recycling of Bacillus thuringiensis israelensis spores in wetlands sprayed for mosquito control. Ecotox. Environ. Safe 2022, 243, 114004. [Google Scholar] [CrossRef] [PubMed]
- Pola, S.; Kesharwani, A.K.; Singh, J.; Singh, D.; Kalia, V.K. Endophytic ability of indigenous Bacillus thuringiensis strain VKK-BB2: New horizons for the development of novel insect pest-resistant crops. Egypt. J. Biol. Pest. Co. 2022, 32, 8. [Google Scholar] [CrossRef]
- Kumar, M.; Mehta, C.R.; Bhargav, V.K.; Tripathi, M.K.; Agrawal, K.N.; Babu, V.B. Effect of Spray Operating Parameters on Viability of Bacillus thuringiensis Based Biopesticide under Laboratory Condition. Agric. Res. 2023, 12, 189–196. [Google Scholar] [CrossRef]
- Kumar, M.; Mehta, C.R.; Agrawal, K.N.; Tripathi, M.K. Optimization of operating parameters for spraying microbial (Bacillus thuringiensis and Beauveria bassiana) based bio-pesticide solutions for foliar application. Int. J. Pest. Manag. 2023, 1–13. [Google Scholar] [CrossRef]
- Fuentealba, A.; Pelletier-Beaulieu, É.; Dupont, A.; Hébert, C.; Berthiaume, R.; Bauce, É. Optimizing Bacillus thuringiensis (Btk) Aerial Spray Prescriptions in Mixed Balsam Fir-White Spruce Stands against the Eastern Spruce Budworm. Forests 2023, 14, 1289. [Google Scholar] [CrossRef]
- Cherif, A.; Ettoumi, B.; Raddadi, N.; Daffonchio, D.; Boudabous, A. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can. J. Microbiol. 2007, 53, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Punina, N.V.; Zotov, V.S.; Parkhomenko, A.L.; Parkhomenko, T.U.; Topunov, A.F. Genetic diversity of Bacillus thuringiensis from different geo-ecological regions of Ukraine by analyzing the 16S rRNA and gyrB genes and by AP-PCR and saAFLP. Acta Nat. 2013, 5, 90–100. [Google Scholar] [CrossRef]
- Subbanna, A.R.N.S.; Khan, M.S.; Srivastava, R.M.; Mishra, P.K.; Babu, B.K.; Venkateswarlu, V. Interspecies diversity of Bacillus thuringiensis isolates native from North Western Indian Himalayas. J. Environ. Biol. 2018, 39, 306–313. [Google Scholar] [CrossRef]
- Machado, D.H.B.; Livramento, K.G.D.; Máximo, W.P.F.; Negri, B.F.; Paiva, L.V.; Valicente, F.H. Molecular characterization of Bacillus thuringiensis strains to control Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) population. Rev. Bras. Entomol. 2020, 64, e201947. [Google Scholar] [CrossRef]
- Baranek, J.; Pluskota, M.; Rusin, M.; Konecka, E.; Kaznowski, A.; Wiland-Szymańska, J. Insecticidal activity of Bacillus thuringiensis strains isolated from tropical greenhouses towards Cydia pomonella and Spodoptera exigua larvae. BioControl 2023, 68, 39–48. [Google Scholar] [CrossRef]
- Orr, D. Biological Control and Integrated Pest Management. In Integrated Pest Management: Innovation-Development Process; Peshin, R., Dhawan, A.K., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 207–239. [Google Scholar] [CrossRef]
- Deng, S.Q.; Zou, W.H.; Li, D.L.; Chen, J.T.; Huang, Q.; Zhou, L.J.; Tian, X.X.; Chen, Y.J.; Peng, H.J. Expression of Bacillus thuringiensis toxin Cyt2Ba in the entomopathogenic fungus Beauveria bassiana increases its virulence towards Aedes mosquitoes. PLoS Negl. Trop. Dis. 2019, 13, e0007590. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef]
- Zeng, S.; Lin, Z.; Yu, X.; Zhang, J.; Zou, Z. Expressing Parasitoid Venom Protein VRF1 in an Entomopathogen Beauveria bassiana Enhances Virulence toward Cotton Bollworm Helicoverpa armigera. Appl. Environ. Microbiol. 2023, 89, e00705-23. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.Q.; Chen, J.T.; Li, W.W.; Chen, M.; Peng, H.J. Application of the scorpion neurotoxin AaIT against insect pests. Int. J. Mol. Sci. 2019, 20, 3467. [Google Scholar] [CrossRef]
- Yadav, A.; Reddy, D.C.; Chaudhary, M.; Chand, A.; Batham, P. Role of Genetically Engineering in Insect Pest Management. In Recent Trends in Insect Pest Management; Raju, S.V.S., Ed.; AkiNik Publications: Delhi, India, 2020; Volume 2, pp. 131–143. [Google Scholar]
- Hoy, M.A. Transgenic arthropods for pest management programs: Risks and realities. Exp. Appl. Acarol. 2000, 24, 463–495. [Google Scholar] [CrossRef] [PubMed]
- Hendrichs, J.; Robinson, A. Sterile insect technique. In Encyclopedia of Insects; Academic Press: Cambridge, MA, USA, 2009; pp. 953–957. [Google Scholar]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Taylor & Francis: Abingdon, UK, 2021; p. 1216. [Google Scholar]
- Huvenne, H.; Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review. J. Insect Physiol. 2010, 56, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mateos Fernández, R.; Petek, M.; Gerasymenko, I.; Juteršek, M.; Baebler, Š.; Kallam, K.; Moreno Giménez, E.; Gondolf, J.; Nordmann, A.; Gruden, K.; et al. Insect pest management in the age of synthetic biology. Plant Biotechnol. J. 2022, 20, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Ren, B.; Zeng, B.; Shen, J. Improving RNAi efficiency for pest control in crop species. BioTechniques 2020, 68, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Adeyinka, O.S.; Riaz, S.; Toufiq, N.; Yousaf, I.; Bhatti, M.U.; Batcho, A.; Olajide, A.A.; Nasir, I.A.; Tabassum, B. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol. Biol. Rep. 2020, 47, 6309–6319. [Google Scholar] [CrossRef]
- He, L.; Huang, Y.; Tang, X. RNAi-based pest control: Production, application and the fate of dsRNA. Front. Bioeng. Biotechnol. 2022, 10, 1080576. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, O.; Sweet, J.; Dzhambazova, T.; Urru, I.; Smagghe, G.; Kostov, K.; Arpaia, S. Implementation of RNAi-based arthropod pest control: Environmental risks, potential for resistance and regulatory considerations. J. Pest. Sci. 2022, 95, 1–15. [Google Scholar] [CrossRef]
- Baltzegar, J.; Cavin Barnes, J.; Elsensohn, J.E.; Gutzmann, N.; Jones, M.S.; King, S.; Sudweeks, J. Anticipating complexity in the deployment of gene drive insects in agriculture. J. Responsible Innov. 2018, 5, S81–S97. [Google Scholar] [CrossRef]
- Delrio, G. Integrated control in olive groves. In Biological Control and Integrated Crop Protection: Towards Environmentally Safer Agriculture: Proceedings of an International Conference, Veldhoven, The Netherlands, 8–13 September 1991; IOBC-WPRS Bulletins: Florence, Italy, 1992; pp. 67–76. [Google Scholar]
- Behelgardy, M.F.; Motamed, N.; Jazii, F.R. Expression of the P5CS gene in transgenic versus nontransgenic olive (Olea europaea) under salinity stress. World Appl. Sci. J. 2012, 18, 580–583. [Google Scholar]
- Chiappetta, A.; Muto, A.; Bruno, L.; Woloszynska, M.; Lijsebettens, M.V.; Bitonti, M.B. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front. Plant Sci. 2015, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Celletti, S.; Cristofori, V.; Astolfi, S.; Ruggiero, B.; Rugini, E. Olive (Olea europaea L.) plants transgenic for tobacco osmotin gene are less sensitive to in vitro-induced drought stress. Acta Physiol. Plant 2017, 39, 229. [Google Scholar]
- Loconsole, G.; Oriana, P.; Boscia, D.; Altamura, G.; Djelouah, K.; Elbeaino, T.; Frasheri, D.; Lorusso, D.; Palmisano, F.; Pollastro, P.; et al. Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J. Plant Pathol. 2014, 96, 7–14. [Google Scholar]
- D’onghia, A.M.; Santoro, F.; Minutillo, S.A.; Frasheri, D.; Gallo, M.; Gualano, S.; Giuseppe, C.; Valentini, F. Optimisation of sampling and testing for asymptomatic olive trees infected by Xylella fastidiosa in Apulia region, Italy. Phytopathol. Mediterr. 2022, 61, 439–449. [Google Scholar] [CrossRef]
- Ant, T.; Koukidou, M.; Rempoulakis, P.; Gong, H.F.; Economopoulos, A.; Vontas, J.; Alphey, L. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 2012, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Estes, A.M.; Nestel, D.; Belcari, A.; Jessup, A.; Rempoulakis, P.; Economopoulos, A.P. A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J. Appl. Entomol. 2012, 136, 1–16. [Google Scholar] [CrossRef]
- Vreysen, M.J.B.; Abd-Alla, A.M.M.; Bourtzis, K.; Bouyer, J.; Caceres, C.; de Beer, C.; Oliveira Carvalho, D.; Maiga, H.; Mamai, W.; Nikolouli, K.; et al. The insect pest control laboratory of the joint FAO/IAEA programme: Ten years (2010–2020) of research and development, achievements and challenges in support of the sterile insect technique. Insects 2021, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Tsoumani, K.T.; Belavilas-Trovas, A.; Gregoriou, M.E.; Mathiopoulos, K.D. Anosmic flies: What Orco silencing does to olive fruit flies. BMC Genet. 2020, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Legros, M.; Marshall, J.M.; Macfadyen, S.; Hayes, K.R.; Sheppard, A.; Barrett, L.G. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol. Appl. 2021, 14, 2162–2178. [Google Scholar] [CrossRef] [PubMed]
- Then, C.; Kawall, K.; Valenzuela, N. Spatiotemporal controllability and environmental risk assessment of genetically engineered gene drive organisms from the perspective of European Union genetically modified organism regulation. Integr. Environ. Assess. Manag. 2020, 16, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Augustinos, A.A.; Stratikopoulos, E.E.; Drosopoulos, E.; Kakani, E.G.; Mavragani-Tsipidou, P. Isolation and Characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-amplification in the Tephritidae family. BMC Genom. 2008, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Zygouridis, N.E.; Augustinos, A.A.; Zalom, F.G.; Mathiopoulos, K.D. Analysis of olive fly invasion in California based on microsatellite markers. Hered 2009, 102, 402–412. [Google Scholar] [CrossRef]
- Skouras, P.J.; Margaritopoulos, J.T.; Seraphides, N.A.; Ioannides, I.M.; Kakani, E.G.; Mathiopoulos, K.D.; Tsitsipis, J.A. Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. Pest. Manag. Sci. 2007, 63, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Pavlidi, N.; Kampouraki, A.; Tseliou, V.; Wybouw, N.; Dermauw, W.; Roditakis, E.; Nauen, R.; Van Leeuwen, T.; Vontas, J. Molecular characterization of pyrethroid resistance in the olive fruit fly Bactrocera oleae. Pestic. Biochem. Phys. 2018, 148, 1–7. [Google Scholar] [CrossRef]
- Nardi, F.; Carapelli, A.; Dallai, R.; Roderick, G.K.; Frati, F. Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol. Ecol. 2005, 14, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Matallanas, B.; Lantero, E.; M’Saad, M.; Callejas, C.; Ochando, M.D. Genetic polymorphism at the cytochrome oxidase I gene in Mediterranean populations of Batrocera oleae (Diptera: Tephritidae). J. Appl. Entomol. 2013, 137, 624–630. [Google Scholar] [CrossRef]
- Van Asch, B.; Pereira—Castro, I.; Rei, F.; Teixeira da Costa, L. Mitochondrial haplotypes revealed olive fly (Bactrocera oleae) population substructure in the Mediterranean. Genet 2012, 140, 181–187. [Google Scholar] [CrossRef]
- Dogaç, E.; Kandemir, I.; Taskin, V. The genetic polymorphisms and colonization process of olive fly populations in Turkey. PLoS ONE 2013, 8, e56067. [Google Scholar] [CrossRef]
- Van Asch, B.; Pereira—Castro, I.; Rei, F.; Teixeira da Costa, L. Marked genetic differentiation between western Iberian and Italic populations of olive fly: Southern France as intermediate area. PLoS ONE 2015, 10, e0126702. [Google Scholar] [CrossRef] [PubMed]
- Eti, C.N.; Dogac, E.; Gocmen Taskin, B.; Gokdere, G.; Taskin, V. Population structure and patterns of geographic differentiation of Bactrocera oleae (Diptera: Tephritidae) in Eastern Mediterranean Basin. Mitochondrial DNA Part A 2018, 29, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Lantero, E.; Matallanas, B.; Ochando, M.D.; Callejas, C. Vast Gene Flow among the Spanish Populations of the Pest Bactrocera oleae (Diptera, Tephritidae), Phylogeography of a Metapopulation to Be Controlled and Its Mediterranean Genetic Context. Insects 2022, 13, 642. [Google Scholar] [CrossRef] [PubMed]
- Rejili, M.; Fernandes, T.; Dinis, A.M.; Pereira, J.A.; Baptista, P.; Santos, S.A.P.; Lino-Neto, T. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull. Entomol. Res. 2016, 106, 695–699. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lantero, E.; Matallanas, B.; Callejas, C. Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools. Appl. Sci. 2023, 13, 12078. https://doi.org/10.3390/app132112078
Lantero E, Matallanas B, Callejas C. Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools. Applied Sciences. 2023; 13(21):12078. https://doi.org/10.3390/app132112078
Chicago/Turabian StyleLantero, Esther, Beatriz Matallanas, and Carmen Callejas. 2023. "Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools" Applied Sciences 13, no. 21: 12078. https://doi.org/10.3390/app132112078
APA StyleLantero, E., Matallanas, B., & Callejas, C. (2023). Current Status of the Main Olive Pests: Useful Integrated Pest Management Strategies and Genetic Tools. Applied Sciences, 13(21), 12078. https://doi.org/10.3390/app132112078