ENN: Hierarchical Image Classification Ensemble Neural Network for Large-Scale Automated Detection of Potential Design Infringement
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Model Architecture
- First, the ENN receives an image and performs augmentation, including input size adjustment and normalization.
- The ENN outputs a distributed weighted output through a distributed backbone neural network.
- The ENN concatenates the distributed weighted outputs of the individual sub-neural networks and converts them into Rosen’s tensor to be passed to the master layer.
- With Rosen’s tensor as input, the ENN computes the order similarity coefficient for each backbone model
- The ENN multiplies the weighted input tensor and the similarity coefficient tensor to output the final closeness of an input image to every design right.
3.1.1. The Distributed Backbone Model
3.1.2. The Ensemble DNN Model
4. Experiments
4.1. Experiment Setup and Implementation
- UP-DETR [15] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
- ResNet [12] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
- WideResNet [32] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
- Yolo [13] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
- EfficientNet [33] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.10.0), and Torchvision (v0.11.0)
4.2. Data Collection and Augmentation
4.3. Comparison of Training and Inference Speed
4.4. Comparison of Distributed Backbone Models
4.5. Hyperparameter Tuning
4.6. Comparison with a Single Network Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ENN | Ensemble neural network |
DNN | Deep neural network |
References
- Organisation for Economic Co-operation and Development; Kazimierczak,, M. Trade in Counterfeit and Pirated Goods: Mapping the Economic impact; OECD Publishing: Berlin, Germany, 2016. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Kang, M.; Lee, W.; Hwang, K.; Yoon, Y. Vision transformer for detecting critical situations and extracting functional scenario for automated vehicle safety assessment. Sustainability 2022, 14, 9680. [Google Scholar] [CrossRef]
- Hwang, H.; Oh, J.; Lee, K.H.; Cha, J.H.; Choi, E.; Yoon, Y.; Hwang, J.H. Synergistic approach to quantifying information on a crack-based network in loess/water material composites using deep learning and network science. Comput. Mater. Sci. 2019, 166, 240–250. [Google Scholar] [CrossRef]
- Hwang, H.; Choi, S.M.; Oh, J.; Bae, S.M.; Lee, J.H.; Ahn, J.P.; Lee, J.O.; An, K.S.; Yoon, Y.; Hwang, J.H. Integrated application of semantic segmentation-assisted deep learning to quantitative multi-phased microstructural analysis in composite materials: Case study of cathode composite materials of solid oxide fuel cells. J. Power Sources 2020, 471, 228458. [Google Scholar] [CrossRef]
- Kumar, S.N.; Singal, G.; Sirikonda, S.; Nethravathi, R. A novel approach for detection of counterfeit Indian currency notes using deep convolutional neural network. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Coimbatore, India, 22–23 January 2020; IOP Publishing: Bristol, UK, 2020; Volume 981, p. 022018. [Google Scholar]
- Lee, S.H.; Lee, H.Y. Counterfeit bill detection algorithm using deep learning. Int. J. Appl. Eng. Res 2018, 13, 304–310. [Google Scholar]
- Daoud, E.; Vu, D.; Nguyen, H.; Gaedke, M. Enhancing fake product detection using deep learning object detection models. IADIS Int. J. Comput. Sci. Inf. Syst. 2020, 15, 13–24. [Google Scholar] [CrossRef]
- Hawkins, J. A tHousand Brains: A New Theory of Intelligence; Hachette: London, UK, 2021. [Google Scholar]
- Mountcastle, V.B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 1957, 20, 408–434. [Google Scholar] [CrossRef]
- Wimmer, H.; Yoon, V.Y. Counterfeit product detection: Bridging the gap between design science and behavioral science in information systems research. Decis. Support Syst. 2017, 104, 1–12. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229. [Google Scholar]
- Dai, Z.; Cai, B.; Lin, Y.; Chen, J. Up-detr: Unsupervised pre-training for object detection with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1601–1610. [Google Scholar]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Yousefnezhad, M.; Hamidzadeh, J.; Aliannejadi, M. Ensemble classification for intrusion detection via feature extraction based on deep Learning. Soft Comput. 2021, 25, 12667–12683. [Google Scholar] [CrossRef]
- Ahn, H.; Son, S.; Kim, H.; Lee, S.; Chung, Y.; Park, D. EnsemblePigDet: Ensemble Deep Learning for Accurate Pig Detection. Appl. Sci. 2021, 11, 5577. [Google Scholar] [CrossRef]
- Usman, S.M.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 2021, 136, 104710. [Google Scholar]
- Parhami, B. Voting algorithms. IEEE Trans. Reliab. 1994, 43, 617–629. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the ICML, Bari, Italy, 3–6 July 1996; Citeseer: Raleigh, NC, USA, 1996; Volume 96, pp. 148–156. [Google Scholar]
- Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking ensemble learning for short-term electricity consumption forecasting. Energies 2018, 11, 949. [Google Scholar] [CrossRef]
- Sikora, R. A modified stacking ensemble machine learning algorithm using genetic algorithms. In Handbook of Research on Organizational Transformations Through Big Data Analytics; IGi Global: Hershey, PA, USA, 2015; pp. 43–53. [Google Scholar]
- Qi, Q.; Wang, Z.; Xu, Y.; Fang, Y.; Wang, C. Enhancing Phishing Email Detection through Ensemble Learning and Undersampling. Appl. Sci. 2023, 13, 8756. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Han, Z.; Pham, B.T. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658. [Google Scholar] [CrossRef]
- Rosen, B.E. Ensemble learning using decorrelated neural networks. Connect. Sci. 1996, 8, 373–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Hittawe, M.M.; Katterbauer, K.; Marsala, A.F.; Knio, O.M.; Hoteit, I. Joint seismic and electromagnetic inversion for reservoir mapping using a deep learning aided feature-oriented approach. In SEG Technical Program Expanded Abstracts 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 2186–2190. [Google Scholar]
- Alizadeh, S.M.S.; Bagherzadeh, A.; Bahmani, S.; Nikzad, A.; Aminzadehsarikhanbeglou, E.; Yu, S.T. Retrograde gas condensate reservoirs: Reliable estimation of dew point pressure by the hybrid neuro-fuzzy connectionist paradigm. J. Energy Resour. Technol. 2022, 144, 063007. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Fukushima, K.; Miyake, S.; Ito, T. Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. 1983, SMC-13, 826–834. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR: Cambridge, MA, USA, 2019; pp. 6105–6114. [Google Scholar]
- Van Dyk, D.A.; Meng, X.L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Konar, J.; Khandelwal, P.; Tripathi, R. Comparison of various learning rate scheduling techniques on convolutional neural network. In Proceedings of the 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 22–23 February 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning. Univ. Toronto Tech. Rep. 2012, 6, 307. [Google Scholar]
- Cherry, J.M.; Adler, C.; Ball, C.; Chervitz, S.A.; Dwight, S.S.; Hester, E.T.; Jia, Y.; Juvik, G.; Roe, T.; Schroeder, M.; et al. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998, 26, 73–79. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Hinton, G. The forward-forward algorithm: Some preliminary investigations. arXiv 2022, arXiv:2212.13345. [Google Scholar]
Registration Number | Product Type | International Classification | Models Applied |
---|---|---|---|
3008346600000 | Wireless Earphones | 14-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009240880000 | Earphones | 14-01 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3011022290000 | Earphones | 14-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3010963450000 | Smartwatch | 10-02 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009682050000 | Auxiliary Battery for Charging Electronic Devices | 13-02 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009953020000 | Charger for Electronic Devices | 13-02 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009911250000 | Nail Clippers | 28-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3005785260000 | Nail Polishing File | 28-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009277950000 | Hairdressing Scissors | 28-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3008580740000 | Toner Cartridge | 14-02 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3010820300000 | Hair Styler | 28-03 | (1,11)A, (1,21)I, (1,42)M, (1,84)O |
3009462960000 | Nail Cleaning Tool Case | 03-01 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3010448610000 | Skin Care Machine | 24-01 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3009901080000 | Eyeliner Container | 28-02 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3009727970000 | Hair Dryer | 28-03 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3009201910000 | Lipstick | 28-02 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3008635170000 | Hair Dryer | 28-03 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3006924410000 | Front Bumper Cover for Car | 12-16 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3005781700000 | Cartridge for Printer Developer | 14-02 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3009950260000 | Nail Clippers | 28-03 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3005904250000 | Packaging Container | 09-01 | (1,10)B, (1,21)I, (1,42)M, (1,84)O |
3007711150000 | Humidifier | 23-04 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3008140280000 | Spray Container for Cosmetic Packaging | 09-01 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3005222300000 | Cosmetic Containers | 09-01 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3006924390000 | Car Radiator Grill | 12-16 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3010336170000 | Fan | 23-04 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3006037400000 | Hair Dryer | 28-03 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3009746650000 | Spray Container for Packaging | 09-01 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3010424520002 | Portable Vacuum Cleaner | 15-05 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3009508860000 | Skin Care Machine | 28-03 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3005872160000 | Nail Clippers | 28-03 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3010277880000 | Portable Air Purifier | 23-04 | (1,11)C, (1,21)J, (1,42)M, (1,84)O |
3006394680000 | Front Fog Lamp for Car | 26-06 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3010353420000 | Stylus Pen | 14-99 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3008337320000 | Car Head Lamp | 26-06 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3008337300000 | Automotive Rear Combination Lamp | 26-06 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3008486220000 | Front Bumper Cover for Car | 12-16 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3008486270000 | Car Radiator Grill | 12-16 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3008433850000 | Car Wheel | 12-16 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3009369070000 | Cell Phone Protection Case | 03-01 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3009505900000 | Infant Head Protector | 02-99 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3006471740000 | Heat Therapy Device | 24-01 | (1,10)D, (1,21)J, (1,42)M, (1,84)O |
3020200055040 | Wireless Earphones | 14-03 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3008488090000 | Infant Head Protector | 02-99 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3007512050000 | Animal Toys | 21-01 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3007827830000 | Vacuum Cleaner | 15-05 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3010328940000 | Hairdressing Scissors | 28-03 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3006880340000 | Car Head Lamp | 26-06 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3006314510000 | Developer for Printer | 14-02 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3005792510000 | Hair Dryer | 28-03 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
Registration Number | Product Type | International Classification | Models Applied |
---|---|---|---|
3009137110000 | Robotic Vacuum | 15-05 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3005633730000 | Nail Clippers | 28-03 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3006880350000 | Automotive Rear Combination Lamp | 26-06 | (1,11)E, (1,21)K, (1,42)N, (1,84)O |
3007892610000 | Hair Dryer | 28-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3004925580000 | Hair Dryer | 28-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3009277940000 | Hairdressing Scissors | 28-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3009664240000 | Infant Head Protector | 02-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3010776320000 | Cheering Equipment | 21-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3007488730000 | Nail Clippers | 28-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3006812870000 | Doll | 21-01 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3005777720000 | Electric Hair Straightener | 28-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3008380770000 | General Beauty Scissors | 08-03 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3006813180000 | Hair Brush | 04-02 | (1,10)F, (1,21)K, (1,42)N, (1,84)O |
3007298000000 | Electric Hair Straightener | 28-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3009442540000 | Nail Clippers with Magnifying Glass Attached | 28-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3010468310000 | Head Guard | 02-99 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3007845090000 | Stationery Scissors | 08-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3006955750000 | Doll | 21-01 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3008976800000 | Cheering Tool | 21-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3009317560000 | Doll | 21-01 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3011212930000 | Cheering Tool | 21-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3008380780000 | Beauty Thinning Scissors | 08-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3009052330000 | Hair Dryer | 28-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3011182010000 | Infant Head Protection | 02-03 | (1,11)G, (1,21)L, (1,42)N, (1,84)O |
3005633760000 | Nail Clippers | 28-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3010696720000 | Cheering Equipment | 21-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3007449670000 | Hair Brush | 04-02 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3010123750000 | Nail Clippers | 28-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3011236760000 | Cheering Light Stick | 21-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3009505920000 | Infant Head Protector | 02-99 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3005480740000 | Hand Puppet | 21-01 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3011211790000 | Cheering Tool | 21-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3008039980000 | Hair Styler | 28-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
3007797260000 | Cheering Glow Stick | 21-03 | (1,10)H, (1,21)L, (1,42)N, (1,84)O |
Number of Design Rights | 10 | 11 | 14 | 21 | 42 | 84 |
Average Train Time per Epoch (min) | 3.0 | 3.5 | 4.5 | 6.75 | 15.25 | 29.5 |
Inference Stages | Backbone | Ensemble |
Average time (ms) | 35 | 0.021 |
Model | UP-DETR | Yolo | EfficientNet | ResNet | WideResNet | |||||
---|---|---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(1,11) A | 99.868 | 100.000 | 96.443 | 97.958 | 99.868 | 100.000 | 99.671 | 100.000 | 98.090 | 99.868 |
(1,10) B | 100.000 | 100.000 | 95.072 | 97.681 | 99.710 | 100.000 | 99.783 | 100.000 | 99.348 | 100.000 |
(1,11) C | 99.934 | 100.000 | 93.478 | 97.826 | 99.802 | 100.000 | 99.407 | 100.000 | 99.275 | 100.000 |
(1,10) D | 100.000 | 100.000 | 90.290 | 96.232 | 99.783 | 100.000 | 98.333 | 99.855 | 99.565 | 99.855 |
(1,11) E | 100.000 | 100.000 | 94.137 | 97.167 | 99.473 | 100.000 | 99.605 | 100.000 | 98.353 | 99.934 |
(1,10) F | 99.928 | 100.000 | 95.000 | 98.333 | 99.855 | 100.000 | 99.203 | 100.000 | 97.754 | 100.000 |
(1,11) G | 99.868 | 100.000 | 96.509 | 99.012 | 100.000 | 100.000 | 99.868 | 100.000 | 99.539 | 100.000 |
(1,10) H | 100.000 | 100.000 | 96.957 | 98.043 | 99.783 | 100.000 | 98.551 | 100.000 | 97.826 | 100.000 |
(1,21) I | 99.896 | 100.000 | 96.653 | 97.964 | 99.862 | 100.000 | 99.517 | 99.965 | 99.517 | 99.931 |
(1,21) J | 100.000 | 100.000 | 97.861 | 98.896 | 99.896 | 100.000 | 99.551 | 100.000 | 99.655 | 99.965 |
(1,21) K | 99.965 | 100.000 | 96.308 | 98.689 | 99.931 | 100.000 | 99.068 | 100.000 | 99.482 | 99.965 |
(1,21) L | 100.000 | 100.000 | 98.344 | 99.413 | 99.655 | 100.000 | 99.310 | 100.000 | 98.965 | 100.000 |
(1,42) M | 99.879 | 100.000 | 97.981 | 98.689 | 99.948 | 100.000 | 99.586 | 100.000 | 99.620 | 100.000 |
(1,42) N | 99.845 | 100.000 | 96.411 | 99.051 | 99.931 | 100.000 | 99.396 | 99.983 | 99.396 | 99.983 |
(1,84) O (Single) | 99.784 | 99.957 | 90.709 | 96.299 | 99.905 | 100.000 | 99.569 | 99.983 | 99.681 | 99.983 |
Model | 2048 | 1024 | 512 | 256 | ||||
---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.861 | 99.827 | 98.930 | 99.966 | 98.689 | 99.827 | 98.930 | 99.827 |
(3,32) ABC | 98.483 | 99.502 | 98.256 | 99.592 | 98.120 | 99.457 | 98.211 | 99.389 |
(4,42) ABCD | 98.585 | 99.500 | 98.344 | 99.362 | 98.568 | 99.431 | 98.413 | 99.465 |
(5,53) ABCDE | 97.963 | 99.330 | 98.154 | 99.289 | 98.031 | 99.180 | 97.744 | 99.180 |
(6,63) ABCDEF | 98.068 | 99.160 | 98.321 | 99.149 | 98.033 | 99.103 | 98.137 | 99.275 |
(7,74) ABCDEFG | 98.051 | 99.158 | 98.296 | 99.315 | 98.267 | 99.119 | 98.228 | 99.128 |
(8,84) ABCDEFGH | 98.361 | 99.163 | 98.318 | 99.198 | 98.137 | 99.129 | 98.102 | 99.180 |
Average | 98.339 | 99.377 | 98.374 | 99.410 | 98.264 | 99.321 | 98.252 | 99.349 |
Model | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.965 | 99.896 | 98.930 | 99.966 | 98.723 | 99.827 | 98.999 | 99.896 | 98.965 | 99.793 |
(3,32) ABC | 98.188 | 99.547 | 98.256 | 99.592 | 98.279 | 99.547 | 98.392 | 99.660 | 98.256 | 99.479 |
(4,42) ABCD | 98.551 | 99.517 | 98.344 | 99.362 | 98.620 | 99.517 | 98.447 | 99.500 | 98.326 | 99.413 |
(5,53) ABCDE | 97.935 | 99.221 | 98.154 | 99.289 | 97.935 | 99.262 | 98.113 | 99.439 | 98.195 | 99.330 |
(6,63) ABCDEF | 98.068 | 99.034 | 98.321 | 99.149 | 97.930 | 99.045 | 98.263 | 99.218 | 98.091 | 99.114 |
(7,74) ABCDEFG | 98.237 | 99.285 | 98.296 | 99.315 | 98.208 | 99.138 | 98.374 | 99.256 | 98.159 | 99.138 |
(8,84) ABCDEFGH | 98.206 | 99.111 | 98.318 | 99.198 | 98.456 | 99.172 | 98.275 | 99.249 | 98.068 | 99.189 |
Average | 98.307 | 99.373 | 98.374 | 99.410 | 98.307 | 99.358 | 98.409 | 99.460 | 98.294 | 99.351 |
Model | 0.05 | 0.01 | 0.005 | 0.001 | ||||
---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.689 | 99.827 | 98.689 | 99.793 | 98.999 | 99.896 | 98.758 | 99.827 |
(3,32) ABC | 97.917 | 99.774 | 97.962 | 99.592 | 98.392 | 99.660 | 98.053 | 99.457 |
(4,42) ABCD | 97.912 | 99.465 | 98.378 | 99.569 | 98.447 | 99.500 | 98.223 | 99.362 |
(5,53) ABCDE | 96.874 | 98.742 | 97.635 | 99.166 | 98.113 | 99.439 | 97.949 | 99.262 |
(6,63) ABCDEF | 97.239 | 99.275 | 98.022 | 99.137 | 98.263 | 99.218 | 98.079 | 99.160 |
(7,74) ABCDEFG | 97.131 | 99.158 | 98.149 | 99.266 | 98.374 | 99.256 | 98.306 | 99.275 |
(8,84) ABCDEFGH | 97.041 | 99.120 | 98.223 | 99.224 | 98.275 | 99.249 | 98.352 | 99.180 |
Average | 97.543 | 99.337 | 98.151 | 99.392 | 98.409 | 99.460 | 98.246 | 99.360 |
Model | AdamW | Adam | SGD | RMSprop | ||||
---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.999 | 99.896 | 98.792 | 99.896 | 98.413 | 99.758 | 95.169 | 99.965 |
(3,32) ABC | 98.392 | 99.660 | 98.324 | 99.615 | 97.962 | 99.706 | 92.278 | 99.841 |
(4,42) ABCD | 98.447 | 99.500 | 98.671 | 99.465 | 98.447 | 99.655 | 85.059 | 99.638 |
(5,53) ABCDE | 98.113 | 99.439 | 98.141 | 99.330 | 97.676 | 99.398 | 80.476 | 99.316 |
(6,63) ABCDEF | 98.263 | 99.218 | 98.091 | 99.137 | 97.930 | 99.275 | 76.398 | 98.884 |
(7,74) ABCDEFG | 98.374 | 99.256 | 98.365 | 99.138 | 98.188 | 99.226 | 72.111 | 98.570 |
(8,84) ABCDEFGH | 98.275 | 99.249 | 98.378 | 99.146 | 98.240 | 99.180 | 69.117 | 97.559 |
Average | 98.409 | 99.460 | 98.395 | 99.390 | 98.122 | 99.457 | 81.515 | 99.111 |
Model | 4 | 5 | 6 | 7 | 8 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.930 | 99.896 | 99.034 | 99.862 | 98.999 | 99.896 | 98.896 | 99.655 | 98.896 | 99.827 |
(3,32) ABC | 98.370 | 99.502 | 98.370 | 99.592 | 98.392 | 99.660 | 98.211 | 99.298 | 98.211 | 99.434 |
(4,42) ABCD | 98.447 | 99.551 | 98.568 | 99.500 | 98.447 | 99.500 | 98.464 | 99.603 | 98.413 | 99.482 |
(5,53) ABCDE | 98.059 | 99.385 | 98.045 | 99.371 | 98.113 | 99.439 | 97.799 | 99.330 | 98.195 | 99.412 |
(6,63) ABCDEF | 98.447 | 99.195 | 98.114 | 99.126 | 98.263 | 99.218 | 98.022 | 99.195 | 98.298 | 99.264 |
(7,74) ABCDEFG | 97.993 | 99.128 | 98.159 | 99.266 | 98.374 | 99.256 | 98.208 | 99.187 | 98.296 | 99.226 |
(8,84) ABCDEFGH | 98.240 | 99.258 | 98.223 | 99.198 | 98.275 | 99.249 | 98.275 | 99.224 | 98.413 | 99.224 |
Average | 98.355 | 99.417 | 98.359 | 99.416 | 98.409 | 99.460 | 98.268 | 99.356 | 98.389 | 99.410 |
Model | UP-DETR | Yolo | EfficientNet | ResNet | WideResNet | |||||
---|---|---|---|---|---|---|---|---|---|---|
Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | Top-1 | Top-3 | |
(2,21) AB | 98.930 | 99.896 | 90.683 | 96.756 | 96.687 | 99.965 | 96.515 | 99.965 | 94.237 | 99.482 |
(3,32) ABC | 98.370 | 99.502 | 87.228 | 95.267 | 96.445 | 99.728 | 95.245 | 99.343 | 93.524 | 98.777 |
(4,42) ABCD | 98.447 | 99.551 | 84.972 | 93.099 | 96.377 | 99.551 | 94.910 | 98.982 | 93.841 | 98.602 |
(5,53) ABCDE | 98.059 | 99.385 | 83.443 | 92.508 | 94.750 | 99.152 | 94.217 | 98.728 | 92.931 | 98.496 |
(6,63) ABCDEF | 98.447 | 99.195 | 83.506 | 91.534 | 95.480 | 98.930 | 94.134 | 98.401 | 93.214 | 98.217 |
(7,74) ABCDEFG | 97.993 | 99.128 | 83.500 | 91.324 | 95.554 | 98.796 | 94.036 | 98.110 | 93.400 | 97.983 |
(8,84) ABCDEFGH | 98.275 | 99.249 | 83.791 | 91.442 | 95.980 | 98.896 | 94.229 | 98.137 | 93.599 | 97.800 |
(4,84) IJKL | 98.878 | 99.672 | 88.708 | 96.368 | 95.385 | 99.603 | 95.057 | 99.094 | 93.703 | 98.913 |
(2,84) MN | 98.404 | 99.189 | 93.444 | 98.490 | 96.946 | 99.965 | 96.912 | 99.784 | 96.006 | 99.862 |
(1,84) O | 99.784 | 99.957 | 90.709 | 96.299 | 99.905 | 100.000 | 99.569 | 99.983 | 99.681 | 99.983 |
Model | Precision | Recall | F1 Score |
---|---|---|---|
UP-DETR | 98.309 | 98.275 | 98.271 |
Yolo | 84.267 | 83.791 | 83.718 |
EfficientNet | 96.019 | 95.980 | 95.961 |
ResNet | 94.284 | 94.229 | 94.212 |
WideResNet | 93.690 | 93.599 | 93.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.J.; Jeong, S.H.; Yoon, Y. ENN: Hierarchical Image Classification Ensemble Neural Network for Large-Scale Automated Detection of Potential Design Infringement. Appl. Sci. 2023, 13, 12166. https://doi.org/10.3390/app132212166
Lee CJ, Jeong SH, Yoon Y. ENN: Hierarchical Image Classification Ensemble Neural Network for Large-Scale Automated Detection of Potential Design Infringement. Applied Sciences. 2023; 13(22):12166. https://doi.org/10.3390/app132212166
Chicago/Turabian StyleLee, Chan Jae, Seong Ho Jeong, and Young Yoon. 2023. "ENN: Hierarchical Image Classification Ensemble Neural Network for Large-Scale Automated Detection of Potential Design Infringement" Applied Sciences 13, no. 22: 12166. https://doi.org/10.3390/app132212166
APA StyleLee, C. J., Jeong, S. H., & Yoon, Y. (2023). ENN: Hierarchical Image Classification Ensemble Neural Network for Large-Scale Automated Detection of Potential Design Infringement. Applied Sciences, 13(22), 12166. https://doi.org/10.3390/app132212166