An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Magnetized Zeolite
2.3. Microstructure and Crystalline Phase Characterization
2.4. Simulated Leaching Experiment
3. Results
3.1. Microstructure and Phase Property of the Anthracite, Modified Zeolite, and Magnetized Zeolite
3.2. Crystalline Structure of Anthracite, Modified Zeolite and Magnetized Zeolite
3.3. Magnetic Property of the As-Synthesized Magnetized Zeolite
3.4. Cs+ Adsorption Efficiency and Magnetized Zeolite Recovery Efficiency
4. Conclusions
- (1)
- The synthesis of the highly efficient magnetized zeolite adsorbent from anthracite is industrially feasible, and the yields ranged from 18 to 53%. The zeolite demonstrated high surface porosity and crystallinity, with tunable particle sizes.
- (2)
- The magnetized zeolite had saturation magnetic strengths of 12.055, 5.8257, and 10.722 emu g−1, which decreased with increasing particle sizes, and the magnetite content was 12% to 15%. The zeolite exhibited robust thermal stability at 75 °C.
- (3)
- The Cs+ removal rate from the simulated soil was as high as 92.82%, with a waste reduction ratio of 1.823 and a product recovery rate of 96.36%; there was no secondary waste generated, and the decontamination cost was low.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prăvălie, R. Nuclear Weapons Tests and Environmental Consequences: A Global Perspective. AMBIO 2014, 43, 729–744. [Google Scholar] [CrossRef]
- Gunten, H.R.; Benes, P. Speciation of Radionuclides in the Environment; 94-03; Paul Scherrer Institut: Villigen, Switzerland, 1994. [Google Scholar]
- Zelenina, D.; Kuzmenkova, N.; Sobolev, D.; Boldyrev, K.; Namsaraev, Z.; Artemiev, G.; Samylina, O.; Popova, N.; Safonov, A. Biogeochemical Factors of Cs, Sr, U, Pu Immobilization in Bottom Sediments of the Upa River, Located in the Zone of Chernobyl Accident. Biology 2022, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Environment Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience; Radiological Assessment Reports Series; IAEA: Vienna, Austria, 2006.
- Yasunari, T.J.; Stohl, A.; Hayano, R.S.; Burkhart, J.F.; Eckhardt, S.; Yasunari, T. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. USA 2011, 108, 19530–19534. [Google Scholar] [CrossRef] [PubMed]
- Ojavan, M.I.; Lee, W.E. A Introduction to Nuclear Waste Immobilization; Elsevier: Amsterdam, The Netherlands, 2005; Chapter 11; pp. 645–655. [Google Scholar]
- Ha, M.; Ju, Y.-S.; Lee, W.J.; Hwang, S.-S.; Yoo, S.-C.; Choi, K.-H.; Burm, E.; Lee, J.; Lee, Y.-K.; Im, S. Cesium-137 Contaminated Roads and Health Problems in Residents: An Epidemiological Investigation in Seoul, 2011. J. Korean Med. Sci. 2018, 33, e58. [Google Scholar] [CrossRef]
- Lui, J.; Chen, W.-H.; Tsang, D.C.; You, S. A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renew. Sustain. Energy Rev. 2020, 134, 110365. [Google Scholar] [CrossRef]
- IAEA. Strategies And practices in the Remediation of Radioactive Contamination in Agriculture; IAEA: Vienna, Austria, 2016.
- Zhang, M.; Wang, X.; Yang, L.; Chu, Y. Research on Progress in Combined Remediation Technologies of Heavy Metal Polluted Sediment. Int. J. Environ. Res. Public Health 2019, 16, 5098. [Google Scholar] [CrossRef]
- USEPA. Technologuy Screening Guide for Radioactively Contaminated Sites; Technical Report; EPA 402-R-96-017; USEPA: Washington, DC, USA, 1996.
- Buelt, J.L.; Farthworth, R.K. In-Situ Vitrification of Soils Containing Various Metals; Technical Report; PNL-SA-17242; CONF-900210-35; Taylor & Francis: Abingdon, UK, 1990. [Google Scholar]
- Mazer, J.J.; Rosine, S.D.; No, J.J. Vitrification of Low-Level Radioactive Mixed Waste at Argonne National Laboratory; Waste Management; ANL--CMT/CP-85710; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Sidhu, R. Extraction Chromatographic Separation of Sr, Pu and Am in Environmental Samples. Ph.D. Dissertation, University of Oslo, Oslo, Norway, 2004. [Google Scholar]
- Sear, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N. Correlation of Radioactive Waste Treatment Costs and the Environmental Impact of Waste Effluents in the Nuclear Fuel Cycle-Conversion of Yellow Cake to Uranium Hexafluoride; Technical Report; ORNL/TM-8602; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1983. [Google Scholar]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar]
- Li, Z.; He, Y.; Sonne, C.; Lam, S.S.; Kirkham, M.B.; Bolan, N.; Rinklebe, J.; Chen, X.; Peng, W. A strategy for bioremediation of nuclear contaminants in the environment. Environ. Pollut. 2023, 319, 120964. [Google Scholar] [CrossRef]
- Sasaki, H.; Shirato, S.; Tahara, T.; Sato, K.; Takenaka, H. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune. Microbes Environ. 2013, 28, 466–469. [Google Scholar] [CrossRef]
- Wang, L.; Gao, H.; Wang, M.; Xue, J. Remediation of petroleum-contaminated soil by ball milling and reuse as heavy metal adsorbent. J. Hazard. Mater. 2022, 424, 127305. [Google Scholar] [CrossRef]
- Win, H.H.; Aye, T.T.; Naing, K.M.; Wynn, N. Preparation and characterization of high silica molecular sieve from rice husk. J. Myan. Acad. Arts Sci. 2008, 6, 141–152. [Google Scholar]
- Vasconcelos, A.A.; Len, T.; Oliveira, A.d.N.d.; da Costa, A.A.F.; Souza, A.R.d.S.; da Costa, C.E.F.; Luque, R.; Filho, G.N.d.R.; Noronha, R.C.R.; Nascimento, L.A.S.D. Zeolites: A Theoretical and Practical Approach with Uses in (Bio)Chemical Processes. Appl. Sci. 2023, 13, 1897. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, characterization and application of Fe-zeolite: A review. Appl. Catal. A Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
- Yıldız, B.; Erten, H.N.; Kış, M. The sorption behavior of Cs + ion on clay minerals and zeolite in radioactive waste management: Sorption kinetics and thermodynamics. J. Radioanal. Nucl. Chem. 2011, 288, 475–483. [Google Scholar] [CrossRef]
- Chen, X.; Srubar, W.V. Sulfuric acid improves the reactivity of zeolites via dealumination. Constr. Build. Mater. 2020, 264, 120648. [Google Scholar] [CrossRef]
- Walton, K.S.; Snurr, R.Q. Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks. J. Am. Chem. Soc. 2007, 129, 8552–8556. [Google Scholar] [CrossRef]
- Fajaroh, F.; Santoso, A.; Wardani, R.K. Performance of Activated Natural Zeolite/Cu as a catalyst on Degradation of Glycerol into Ethanol Assisted by Ultrasonic. In Proceedings of the 2017 International Conference on Mathematics, Science, and Education, Malang, Indonesia, 29–30 August 2017; Volume 1093. [Google Scholar]
- Szymaszek-Wawryca, A.; Díaz, U.; Samojeden, B.; Motak, M. Synthesis, Characterization, and NH3-SCR Catalytic Performance of Fe-Modified MCM-36 Intercalated with Various Pillars. Molecules 2023, 28, 4960. [Google Scholar] [CrossRef] [PubMed]
- Moafor, S.N.; Tsobnang, P.K.; Oyedotun, K.O.; Fomekong, R.L.; Kabongo, G.L.; Lebohang, M.; Lambi, J.N.; Jewella, L.L. Effect of SiO2/Al2O3 ratio on the electrochemical performance of amorphous zeolite loaded with cobalt oxide grown via steam-assisted crystallization method. RSC Adv. 2023, 31, 21393–21402. [Google Scholar] [CrossRef]
- Kuizumi, M.; Roy, R. Zeolite studies I Synthesis and stability of the calcium zeolites. J. Geol. 1960, 68, 41–53. [Google Scholar] [CrossRef]
- Murrieta-Rico, F.N.; Antúnez-García, J.; Yocupicio-Gaxiola, R.I.; Zamora, J.; Serrato, A.R.; Petranovskii, V. One-Pot Synthesis of Iron-Modified Zeolite X and Characterization of the Obtained Materials. Catalysts 2023, 13, 1159. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, X.; He, N.; Liu, J.; Xin, Q.; Guo, H. Operando Dual Beam FTIR Study of Hydroxyl Groups and Zn Species over Defective HZSM-5 Zeolite Supported Zinc Catalysts. Catalysts 2019, 9, 100. [Google Scholar] [CrossRef]
- Ryu, G.U.; Khalid, H.R.; Lee, N.; Wang, Z.; Lee, H.K. The Effects of NaOH Concentration on the Hydrothermal Synthesis of a Hydroxyapatite–Zeolite Composite Using Blast Furnace Slag. Minerals 2020, 11, 21. [Google Scholar] [CrossRef]
- Yang, H.-M.; Jeon, H.; Lee, Y.; Choi, M. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium. Chemosphere 2022, 299, 134309. [Google Scholar] [CrossRef]
- Navlani-García, M.; Miguel-García, I.; Berenguer-Murcia, Á.; Lozano-Castelló, D.; Cazorla-Amorós, D.; Yamashita, H. Pd/zeolite-based catalysts for the preferential CO oxidation reaction: Ion-exchange, Si/Al and structure effect. Catal. Sci. Technol. 2016, 6, 2623. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023, 13, 3505–3519. [Google Scholar] [CrossRef]
- Sawai, H.; Rahman, I.M.; Lu, C.; Begum, Z.A.; Saito, M.; Hasegawa, H. Extractive decontamination of cesium-containing soil using a biodegradable aminopolycarboxylate chelator. Microchem. J. 2017, 134, 230–236. [Google Scholar] [CrossRef]
- Song, H.; Nam, K. Development of a potassium-based soil washing solution using response surface methodology for efficient removal of cesium contamination in soil. Chemosphere 2023, 332, 138854. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, H.; Zhai, J.; Sun, L.; Zhao, Y.; Yu, H. Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil. Chem. Eng. J. 2014, 246, 10–19. [Google Scholar] [CrossRef]
- Yin, X.; Horiuchi, N.; Utsunomiya, S.; Ochiai, A.; Takahashi, H.; Inaba, Y.; Wang, X.; Ohnuki, T.; Takeshita, K. Effective and efficient desorption of Cs from hydrothermal-treated clay minerals for the decontamination of Fukushima radioactive soil. Chem. Eng. J. 2018, 333, 392–401. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, S.-M.; Yoon, I.-H.; Yang, H.-M.; Kim, I. Novel two-step process for remediation of Cs-contaminated soil assisted by magnetic composites. Chem. Eng. J. 2021, 424, 130554. [Google Scholar] [CrossRef]
- Leybros, A.; Grandjean, A.; Segond, N.; Messalier, M.; Boutin, O. Cesium removal from contaminated sand by supercritical CO2 extraction. J. Environ. Chem. Eng. 2016, 4, 1076–1080. [Google Scholar] [CrossRef]
- Kim, G.N.; Kim, S.S.; Kim, G.H.; Park, H.M.; Kim, W.S.; Park, U.R.; Kwon, H.J.; Ryu, O.H.; Moon, J.K. The removal of Cs-137 from soil using washing-electrokinetic decontamination equipment. In Proceedings of the Transactions of Korean Nuclear Society Autumn Meeting, Gyeongju, Republic of Korea, 25–26 October 2012; pp. 25–26. [Google Scholar]
- Fuhrmann, M.; Lasat, M.M.; Ebbs, S.D.; Kochian, L.V.; Cornish, J. Uptake of Cesium-137 and Strontium-90 from Contaminated Soil by Three Plant Species; Application to Phytoremediation. J. Environ. Qual. 2002, 31, 904–909. [Google Scholar] [PubMed]
- Honda, M.; Shimoyama, I.; Kogure, T.; Baba, Y.; Suzuki, S.; Yaita, T. Proposed Cesium-free Mineralization Method for Soil Decontamination: Demonstration of Cesium Removal from Weathered Biotite. ACS Omega 2017, 2, 8678–8681. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | K2O | TiO2 | Na2O | MgO | CaO | P2O5 | Cl |
---|---|---|---|---|---|---|---|---|---|
57.550 | 29.830 | 3.920 | 2.260 | 0.858 | 1.880 | 1.430 | 1.460 | 0.183 | 0.003 |
V2O5 | SrO | ZrO2 | La2O3 | CeO2 | MnO | SO3 | Cr2O3 | WO3 | Co3O4 |
0.022 | 0.022 | 0.012 | 0.007 | 0.001 | 0.039 | 0.039 | 0.010 | 0.002 | 0.003 |
Nd2O3 | CuO | Sc2O3 | Rb2O | NiO | ZnO | Y2O3 | Ga2O3 | CeO2 | |
0.010 | 0.005 | 0.006 | 0.004 | 0.005 | 0.005 | 0.004 | 0.002 | 0.007 |
Sample No. (10 g) | SiO2/g | NaOH/g | H2O/g |
---|---|---|---|
FA-1-1 | 5.4 | 12.9 | 116.4 |
FA-1-2 | 5.2 | 12.6 | 113.6 |
FA-1-3 | 5.3 | 12.8 | 115.4 |
FA-1-4 | 5.3 | 12.7 | 114.7 |
FB-1-1 | 5.3 | 12.8 | 115.0 |
FB-1-2 | 5.2 | 12.5 | 112.2 |
FB-1-3 | 5.8 | 14.1 | 126.9 |
FB-1-4 | 5.5 | 13.3 | 120.1 |
Particle Size | Partition (%) |
---|---|
<160 mesh | 2.97 |
60~160 mesh | 13.99 |
2 mm~60 mesh | 32.82 |
>2 mm | 50.22 |
Sample Name | Specification | Specific Surface Area m2/g |
---|---|---|
Magnetic zeolite A | 1–3 mm | 109.443 |
Magnetic zeolite B | 60–80 mesh | 13.704 |
Magnetic zeolite C | 120 mesh | 16.754 |
Modified zeolite A (M-Z A) | 1–3 mm | 6.013 |
Modified zeolite B (M-Z B) | 60–80 mesh | 6.769 |
Modified zeolite C (M-Z C) | 120 mesh | 9.511 |
Alkaline Conc. | Silica | Mullite | |
---|---|---|---|
FA-1-1 | 6 mol/L | 37% | 63% |
FA-1-2 | 8 mol/L | 40% | 60% |
FA-1-3 | 10 mol/L | 37% | 63% |
FA-1-4 | 12 mol/L | 36% | 64% |
FB-1-1 | 6 mol/L | 12% | 88% |
FB-1-2 | 8 mol/L | 11% | 89% |
FB-1-3 | 10 mol/L | 11% | 89% |
FB-1-4 | 12 mol/L | 11% | 89% |
Zeolite | Magnetite | Silicon Dioxide | Cristobalite | Heulandite-Ca | Microcline | ||
---|---|---|---|---|---|---|---|
Magnetized A | 60–80 mesh | 18% | 15% | 13% | 10% | 20% | 24% |
Magnetized B | 1–3 mm | 53% | 12% | 16% | 19% | - | - |
Magnetized C | 120 mesh | 26% | 13% | 8% | 9% | 31% | 13% |
Modified A | 1–3 mm | 26% | - | 10% | 10% | 38% | 16% |
Modified B | 60–80 mesh | 42% | - | 12% | 14% | 21% | 12% |
Modified C | 120 mesh | 23% | - | 10% | 12% | 36% | 19% |
Sample Number | Si | Al | Fe | K | Ti | Na | Mg | Ca | Sr | Zr | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|
Magnetic zeolite A | 39.68 | 7.74 | 30.87 | 1.38 | 0.25 | 2.72 | 1.04 | 2.40 | 0.13 | 0.06 | 0.23 |
Magnetic zeolite B | 59.94 | 11.35 | 11.02 | 2.56 | 0.23 | 2.91 | 0.77 | 1.85 | 0.02 | 0.02 | 0.12 |
Magnetic zeolite C | 58.20 | 11.79 | 10.84 | 2.52 | 0.16 | 3.40 | 0.85 | 1.95 | 0.02 | 0.01 | 0.10 |
Modified zeolite A | 70.25 | 12.50 | 0.83 | 3.78 | 0.15 | 2.76 | 0.44 | 0.96 | 0.02 | 0.02 | 0.07 |
Modified zeolite B | 70.62 | 12.37 | 1.07 | 3.04 | 0.08 | 3.31 | 0.42 | 1.37 | 0.06 | 0.03 | 0.06 |
Modified zeolite C | 69.06 | 13.56 | 1.13 | 3.28 | 0.11 | 0.78 | 0.78 | 2.57 | 0.02 | 0.01 | 0.05 |
Sample No. | Size | Saturated Magnetization | Residual Magnetization | Rectangle Ratio | Coercive Force (Hc/G) |
---|---|---|---|---|---|
Ms (A∙m2/kg) | Mr (A∙m2/kg) | ||||
Magnetized zeolite A | 1–3 mm | 5.8257 | 0.40636 | 0.07 | 72.115 |
Magnetized zeolite B | 60–80 mesh | 10.722 | 0.68184 | 0.064 | 63.611 |
Magnetized zeolite C | 120 mesh | 12.055 | 0.82313 | 0.068 | 71.612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, X.; Gu, Y.; Zhang, S. An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite. Appl. Sci. 2023, 13, 12192. https://doi.org/10.3390/app132212192
Zhang Y, Zhu X, Gu Y, Zhang S. An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite. Applied Sciences. 2023; 13(22):12192. https://doi.org/10.3390/app132212192
Chicago/Turabian StyleZhang, Yi, Xinyan Zhu, Yu Gu, and Shengdong Zhang. 2023. "An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite" Applied Sciences 13, no. 22: 12192. https://doi.org/10.3390/app132212192
APA StyleZhang, Y., Zhu, X., Gu, Y., & Zhang, S. (2023). An Evaluation of Cesium Removal from Simulated Radioactive Contaminated Soil with a Magnetized Zeolite Derived from Anthracite. Applied Sciences, 13(22), 12192. https://doi.org/10.3390/app132212192