Cementing Quality Prediction in the Shunbei Block Based on Genetic Algorithm and Support Vector Regression
Abstract
:1. Introduction
2. Background
2.1. Analysis of Cementing Quality Influencing Factors
2.2. Relevant Works
2.3. SVM Algorithm
3. Data and Methods
3.1. Datasets
3.2. Data Preprocessing
3.3. Model Training
3.4. Model Optimization
3.4.1. Grid Search Method to Optimize the Support Vector Regression Model
3.4.2. Bayesian Optimization Algorithm for the Support Vector Regression Model
3.4.3. Genetic Algorithm Optimization for the Support Vector Regression Model
3.5. Analysis of Cementing Quality Prediction Results
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gottschling, J.C. HZ Marcellus Well Cementing in Appalachia; Society of Petroleum Engineers: Richardson, TX, USA, 2009. [Google Scholar] [CrossRef]
- Ravi, K.; Weber, L. Drill-Cutting Removal in a Horizontal Wellbore for Cementing; Society of Petroleum Engineers: Richardson, TX, USA, 1996. [Google Scholar] [CrossRef]
- Zhao, M.; Ren, J.; Ji, L.; Fu, C.; Li, J.; Zhou, M. Parameter selection of support vector machines and genetic algorithm based on change area search. Neural Comput. Appl. 2012, 21, 1–8. [Google Scholar] [CrossRef]
- Chun, Z.; Ting, W.T.; Chi, A.; Dan, Y.J. The Study and Application of Gray-Orthogonal Wavelet Network Forecasting Mode on Cementing Quality. In Proceedings of the 2010 International Conference on E-Business and E-Government, Guangzhou, China, 7–9 May 2010; pp. 5327–5330. [Google Scholar] [CrossRef]
- Saleh Nezhad, M.; Akbarizadeh, G.; Seifi Kavian, Y.; Salehi-Moorkani, R. Automatic Interpretation of Oil and Gas Well Cement Evaluation Logs Using Fuzzy Convolutional Neural Networks. SPE Drill. Complet. 2023, 38, 535–545. [Google Scholar] [CrossRef]
- Viggen, E.M.; Singstad, B.J.; Time, E.; Mishra, S.; Berg, E. Assisted Cement Log Interpretation Using Machine Learning. SPE Drill. Complet. 2023, 38, 220–234. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Z.; Song, X.; Zhu, Z.; Yang, D.; Liu, M. A Novel Cementing Quality Evaluation Method Based on Convolutional Neural Network. Appl. Sci. 2022, 12, 10997. [Google Scholar] [CrossRef]
- de Souza, L.P.B.; Ferreira, G.R.B.; Camerini, I.G.; de Magalhães Correia, T.; de Castro Ribeiro, M.G.; Hidalgo, J.A.S.; de São João, B.L.D.; Llerena, R.W.A.; Kubrusly, A.C.; Ayala, H.V.H.; et al. Machine learning-based cement integrity evaluation with a through-tubing logging experimental setup. Geoenergy Sci. Eng. 2023, 227, 211882. [Google Scholar] [CrossRef]
- Kinoshita, T.; Izuhara, W.; Valero, H.-P.; Blyth, M. Feasibility and Challenge of Quantitative Cement Evaluation with LWD Sonic. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar] [CrossRef]
- Pistre, V.; Kinoshita, T.; Blyth, M.; Saenz, E. Attenuation-Based Quantitative Cement Bond Index with LWD Sonic: A Novel Approach Applicable to all Casing and Cement Cases. In Proceedings of the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, 27–29 October 2014. [Google Scholar] [CrossRef]
- Sun, Z. Research on Cementing Quality Evaluation and Statistical Analysis Technology of Daqing Adjustment Well Sub-Block; Daqing Petroleum Institute: Daqing, China, 2009. [Google Scholar]
- Xie, J.X.; Cheng, C.T.; Chau, K.W.; Pei, Y.Z. A hybrid adaptive timedelay neural network model for multi-step-ahead prediction of sunspot activity. Int. J. Environ. Pollut. 2006, 28, 364–381. [Google Scholar] [CrossRef]
- Hatami, S.; Ghaderi-Ardakani, A.; Niknejad-Khomami, M.; Karimi-Malekabadi, F.; Rasaei, M.R.; Mohammadi, A.H. On the prediction of CO2 corrosion in petroleum industry. J. Supercrit. Fluids 2016, 117, 108–112. [Google Scholar] [CrossRef]
- Asefa, T.; Kemblowski, M.; McKee, M.; Khalil, A. Multi-time scale stream flow predictions: The support vector machines approach. J. Hydrol. 2006, 318, 7–16. [Google Scholar] [CrossRef]
- Voleti, D.K.; Reddicharla, N.; Guntupalli, S. Smart Way for Consistent Cement Bond Evaluation and Reducing Human Bias Using Machine Learning. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 11 September 2020. [Google Scholar]
- Ni, H.M.; Yi, Z.; Li, P.C.; Tong, X. Application of BP Network Based on PSO Algorithm in Cementing Quality Prediction. Adv. Mater. Res. 2014, 926–930, 4433–4436. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statical Leaming Theory; John Wiley & Sons lnc.: New York, NY, USA, 1998. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory. Encycl. Ences Learn. 1998, 41, 3185. [Google Scholar]
- Vapnik, V.N.; Kotz, S. Estimation of Dependences Based on Empirical Data; Springer: New York, NY, USA, 2006. [Google Scholar]
- Thissen, U.; van Brakel, R.; de Weijer, A.; Melssen, W.; Buydens, L. Using support vector machines for time series prediction. Chemom. Intell. Lab. Syst. 2003, 69, 35–49. [Google Scholar] [CrossRef]
- Schölkopf, B.; Bartlett, P.; Smola, A.; Williamson, R. Support Vector Regression with Automatic Accuracy Control. In ICANN 98. ICANN 1998. Perspectives in Neural Computing; Niklasson, L., Bodén, M., Ziemke, T., Eds.; Springer: London, UK, 1998. [Google Scholar] [CrossRef]
- Jakkula, V. Tutorial on support vector machine (svm). Sch. EECS Wash. State Univ. 2006, 37, 3. [Google Scholar]
- Chauchard, F.; Svensson, J.; Axelsson, J.; Andersson-Engels, S.; Roussel, S. Localization of embedded inclusions using detection of fluorescence: Feasibility study based on simulation data, LS-SVM modeling and EPO pre-processing. Chemom. Intell. Lab. Syst. 2008, 91, 34–42. [Google Scholar] [CrossRef]
- Verwaeren, J.; Van der Weeën, P.; De Baets, B. A search grid for parameter optimization as a byproduct of model sensitivity analysis. Appl. Math. Comput. 2015, 261, 8–27. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Yorke-Smith, N. A Novel Evidence-Based Bayesian Similarity Measure for Recommender Systems. ACM Trans. Web 2016, 10, 1–30. [Google Scholar] [CrossRef]
- Anishya, F.; Suresh Kumar, M. A novel approach for travel package recommendation using Bayesian approach. In Proceedings of the 2015 International Conference on Computing and Communications Technologies (ICCCT), Chennai, India, 26–27 February 2015; pp. 296–301. [Google Scholar] [CrossRef]
- Pourbasheer, E.; Aalizadeh, R.; Ganjali, M.R.; Norouzi, P. QSAR study of α1β4 integrin inhibitors by GA-MLR and GA-SVM methods. Struct. Chem. 2014, 25, 355–370. [Google Scholar] [CrossRef]
- Chen, P.-W.; Wang, J.-Y.; Lee, H.-M. Model selection of SVMs using GA approach. In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, 25–29 July 2004; Volume 3, pp. 2035–2040. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 4, 2951–2959. [Google Scholar]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2015, 104, 148–175. [Google Scholar] [CrossRef]
- Frenzel, J.F. Genetic algorithms. IEEE Potentials 1993, 12, 21–24. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine; Addison-Wesley: Boston, MA, USA, 1989; pp. 232–237. [Google Scholar]
- Singh, K.; Miska, S.; Ozbayoglu, E.; Aydin, B.A. Using Supervised Machine Learning Algorithms to Predict Pressure Drop in Narrow Annulus. In Proceedings of the SPE/AAPG Eastern Regional Meeting, Pittsburgh, PA, USA, 7–11 October 2018. [Google Scholar] [CrossRef]
Number | Actual Cementing Quality/% | SVR Predicted Cementing Quality/% | Relative Error | RMSE | MRE | Time/s |
---|---|---|---|---|---|---|
14 | 13.37 | 13.92 | 0.0411 | 2.851 | 0.0980 | <1 |
16 | 19.34 | 20.49 | 0.0595 | |||
17 | 17.29 | 21.33 | 0.2337 | |||
20 | 22.31 | 22.54 | 0.0103 | |||
26 | 20.19 | 21.21 | 0.0505 | |||
42 | 28.34 | 23.69 | 0.1641 | |||
43 | 29.76 | 25.07 | 0.1576 | |||
44 | 21.39 | 22.76 | 0.0640 |
Penalty Coefficient C | Kernel Function Parameter g | Number | Actual/% | GS–SVR Prediction Cementing Quality /% | Relevant Error | RMSE | MRE | Time/s |
---|---|---|---|---|---|---|---|---|
25.1 | 0.13 | 14 | 13.37 | 13.65 | 0.0209 | 2.653 | 0.0846 | 44.8 |
16 | 19.34 | 20.60 | 0.0652 | |||||
17 | 17.29 | 21.32 | 0.2331 | |||||
20 | 22.31 | 22.57 | 0.0117 | |||||
26 | 20.19 | 20.19 | 0.0005 | |||||
42 | 28.34 | 24.48 | 0.1362 | |||||
43 | 29.76 | 25.04 | 0.1586 | |||||
44 | 21.39 | 22.47 | 0.0505 |
Penalty Parameter C | Kernel Function Parameter g | Number | Actual Cementing Quality /% | BOA–SVR Predicted Cementing Quality /% | Relevant Error | RMSE | MRE | Time/s |
---|---|---|---|---|---|---|---|---|
47.38 | 0.07635 | 14 | 13.37 | 13.52 | 0.0112 | 2.533 | 0.0800 | 19.8 |
16 | 19.34 | 20.51 | 0.0605 | |||||
17 | 17.29 | 21.21 | 0.2267 | |||||
20 | 22.31 | 22.49 | 0.0081 | |||||
26 | 20.19 | 20.24 | 0.0025 | |||||
42 | 28.34 | 24.83 | 0.1239 | |||||
43 | 29.76 | 25.18 | 0.1539 | |||||
44 | 21.39 | 22.53 | 0.0533 |
Penalty Parameter C | Kernel Function Parameter g | Number | Actual Cementing Quality /% | GA–SVR Predicted Cementing Quality /% | Relevant Error | RMSE | MRE | Time /s |
---|---|---|---|---|---|---|---|---|
85.08 | 0.0238 | 14 | 13.37 | 13.56 | 0.0142 | 2.318 | 0.0730 | 36.3 |
16 | 19.34 | 20.09 | 0.0388 | |||||
17 | 17.29 | 20.63 | 0.1932 | |||||
20 | 22.31 | 22.06 | 0.0112 | |||||
26 | 20.19 | 20.30 | 0.0054 | |||||
42 | 28.34 | 25.09 | 0.1148 | |||||
43 | 29.76 | 25.41 | 0.1462 | |||||
44 | 21.39 | 22.67 | 0.0598 |
Model | MRE | RMSE | Time |
---|---|---|---|
SVR | 0.0980 | 2.851 | <1 |
GS–SVR | 0.0846 | 2.653 | 44.8 |
BOA–SVR | 0.0800 | 2.533 | 19.8 |
GA–SVR | 0.0730 | 2.318 | 36.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zheng, S.; Han, J.; Bai, K. Cementing Quality Prediction in the Shunbei Block Based on Genetic Algorithm and Support Vector Regression. Appl. Sci. 2023, 13, 12382. https://doi.org/10.3390/app132212382
Wei J, Zheng S, Han J, Bai K. Cementing Quality Prediction in the Shunbei Block Based on Genetic Algorithm and Support Vector Regression. Applied Sciences. 2023; 13(22):12382. https://doi.org/10.3390/app132212382
Chicago/Turabian StyleWei, Juntao, Shuangjin Zheng, Jiafan Han, and Kai Bai. 2023. "Cementing Quality Prediction in the Shunbei Block Based on Genetic Algorithm and Support Vector Regression" Applied Sciences 13, no. 22: 12382. https://doi.org/10.3390/app132212382
APA StyleWei, J., Zheng, S., Han, J., & Bai, K. (2023). Cementing Quality Prediction in the Shunbei Block Based on Genetic Algorithm and Support Vector Regression. Applied Sciences, 13(22), 12382. https://doi.org/10.3390/app132212382