Assessing the Viability of Laser-Activated Dental Bleaching Compared to Conventional In-Office Bleaching Methods: A Systematic Review of Clinical and In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
- Is laser-activated dental bleaching a favorable alternative compared to conventional in-office bleaching?
- Which laser wavelengths, parameters, and gel concentrations are applied during these applications? An evaluation of both clinical and in vitro studies will be performed to explore this.
2.1.1. PICOS Questions for Clinical Studies [51]
- Participant (P): adult patients who underwent vital tooth bleaching treatment.
- Intervention (I): laser-activated in-office bleaching procedures.
- Control (C): conventional in-office bleaching and/or at-home bleaching or different active substance concentrations.
- Outcome (O): color change or intensity of sensitivity after dental bleaching.
- Study Type (S): clinical studies.
2.1.2. PICOS Questions for In Vitro Studies
- Participant (P): extracted human teeth.
- Intervention (I): laser-activated bleaching procedures.
- Control (C): conventional bleaching or different active substance concentrations.
- Outcome (O): color change, morphology, tooth demineralization or micro-hardness changes, pulp/gel temperature changes.
- Study Type (S): in vitro studies.
2.2. Search Strategy
- Pubmed n = 259.
- Cochrane n = 85.
- Scopus n = 238.
- Science Direct n = 204.
- Google Scholar n = 215.
- Articles in English language.
- Laser activation by wavelengths in the range of 445–980 nm.
- Clinical studies on vital teeth of adult patients.
- In vitro studies using human teeth.
- Control group; conventional non-activated in-office bleaching.
- At least 10 patients/samples per group.
- Sufficient protocol description.
- Review papers or systematic reviews.
- Conference papers.
- Book chapters.
- Editorials.
- Short notes.
- Articles in press.
- Language other than English.
- Experimental studies not focused on teeth.
- No conventional bleaching control group.
- No laser applied as activation medium.
- Laser applied out of wavelength range 445–980 nm.
- Non-vital teeth/internal bleaching.
- Animal studies.
- Incomplete parameters described.
- Case series/pilot studies/less than 10 samples.
- Use of bovine teeth.
- Studies not retrievable.
- Clinical studies: 19.
- In vitro studies: 20.
2.3. Data Extraction
- Origin.
- Number of patients in test/control groups.
- Randomization/blinding.
- Aim of study/examination method.
- Gel parameters: H2O2 concentration/gel layer thickness/gel contact time.
- Laser wavelength applied.
- Laser application parameters.
- Fluence (originally noted or calculated).
- Outcome (Statistical significance).
- Origin.
- Number of samples in test/control groups.
- Randomization.
- Aim of study/examination method.
- Gel parameters: H2O2 concentration/gel layer thickness/gel contact time.
- Laser wavelength applied.
- Laser application parameters.
- Fluence (originally noted or calculated).
- Temperature increase (ΔΤ).
- Outcome (statistical significance).
2.4. Quality Assessment
- Randomization.
- Sample size calculation and required sample number included.
- Control group treated with conventional non-activated bleaching method available.
- Blinding.
- Parameters of bleaching gels appropriately described.
- Parameters of laser use appropriately described, and associated calculations correct.
- Power meter for calibration of the laser used.
- Numerical results available (statistics).
- Outcome data complete.
- Correct interpretation of data acquired.
- Randomization.
- Sample size calculation and required sample number included.
- Control group treated with conventional non-activated bleaching method available.
- Standardization of the samples.
- Parameters of bleaching gels appropriately described.
- Parameters of laser use appropriately described, and associated calculations correct.
- Power meter for calibration of the laser used.
- Numerical results available (statistics).
- Outcome data complete.
- Correct interpretation of data acquired.
- High risk: 0–4.
- Moderate risk: 5–7.
- Low risk: 8–10.
2.5. Strategy for Data Analysis
- Analysis of aims of studies and respective evaluation methods.
- Outcome assessment.
- Evaluation of gel and laser application protocols from the studies showing a positive outcome.
- Analysis of aims of studies and respective evaluation methods.
- Outcome assessment.
- Evaluation of gel and laser application protocols from the studies showing a positive outcome.
2.6. Statistical Analysis
- +1 (Test Group More Effective than Control Group for Study).
- 0 (No Difference Observed Between Test and Control Groups for Study).
- −1 (Control Group More Effective than Test Group for Study).
- Test Group minus Control Group difference in median H2O2 doses or levels.
- Test Group minus Control Group difference in gel contact times.
- Fluence.
2.6.1. Clinical Studies
2.6.2. In Vitro Studies
3. Results
3.1. Primary Outcomes
3.2. Data Presentation
3.3. Quality Assessment Presentation
3.3.1. Clinical Studies
- Low risk of bias in 16/19 of the articles (84.2%):
- Moderate risk of bias in 3/19 of the articles (15.8%):
3.3.2. In Vitro Studies
- Low risk of bias in 18/20 of the articles (90%):
- Moderate risk of bias in 2/20 of the articles (10%):
3.4. Data Analysis
3.4.1. Clinical Studies
- Color change: 13/16 studies used an objective (spectrophotometric) method.
- Sensitivity: 14/14 used a Visual Analogue rating Scale (VAS).
- Temperature on enamel: 1/1 used a thermocouple.
- DNA Damage Biomarkers: 1/1 applied a biochemical examination (GCF, saliva, serum).
- Proteolytic and ROS activities in dentin-pulp complex: 1/1 applied a spectrofluorometric evaluation.
3.4.2. In Vitro Studies
- Color change: 7/10 studies used an objective (spectrophotometric) method.
- Mineral content: 2/2 applied energy dispersive X-ray spectrometry (EDX) and Scanning Electron Microscopy (SEM).
- Adhesion: 1/1 used SEM.
- Microhardness: 1/3 used Vickers and 2/3 Knoop hardness method.
- Chemical stability of dentin: 1/1 used confocal microscopy and Raman spectroscopy.
- Morphology of dentin: 1/2 used confocal microscopy and Raman spectroscopy, while 1/2 used SEM.
- Microroughness: 2/2 used a profilometer.
- Permeability: 1/1 used a staining technique.
- HP penetration: 1/1 used a spectrophotometer to monitor this.
- Pulp ΔΤ: 4/4 used a thermocouple connected to a digital thermometer and data logger.
- Gel ΔΤ: 1/1 used a thermocouple connected to a digital thermometer and data logger.
- H2O2 concentration, high (30–38% (w/v)) is preferably applied.
- Gel thickness 1 to 2 mm.
- Contact time: 4.5–30 min, mainly 15–20 min.
- Spot size/handpiece: 200 μm fiber up to 4 cm2/quadrant; large spot sizes/single-tooth or quadrant handpieces were preferably applied.
- Irradiation time per cycle: 15–180 s, predominantly 30 s.
- Fluence per cycle: 22.5–90 J/cm2, mainly 45–70 J/cm2.
- Irradiation cycles: mostly 3.
3.5. Statistical Analysis
3.5.1. Clinical Studies
3.5.2. In Vitro Studies
4. Discussion
- Limitations of the Study:
4.1. Diffusion of Hydrogen Peroxide
4.2. Pulp Response to Dental Bleaching
4.3. Pulp Temperature Dynamics and Fluence Considerations in Dental Bleaching Procedures
4.4. Clinical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Moor, R.J.G.; Verheyen, J.; Verheyen, P.; Diachuk, A.; Meire, M.A.; De Coster, P.J.; De Bruyne, M.; Keulemans, F. Laser teeth bleaching: Evaluation of eventual side effects on enamel and the pulp and the efficiency in vitro and in vivo. Sci. World J. 2015, 2015, 835405. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.N.L.; Ribeiro, I.S.; Grisotto, M.A.; Fernandes, E.S.; Hass, V.; de Jesus Tavarez, R.R.; Pinto, S.C.S.; Lima, D.M.; Loguercio, A.D.; Bandeca, M.C. Evaluation of several clinical parameters after bleaching with hydrogen peroxide at different concentrations: A randomized clinical trial. J. Dent. 2018, 68, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Laino, L.; De Stefano, R.; D’Amico, C.; Bocchieri, S.; Amoroso, G.; Isola, G.; Cervino, G. Dental Whitening Gels: Strengths and Weaknesses of an Increasingly Used Method. Gels 2019, 5, 35. [Google Scholar] [CrossRef]
- De Moor, R.J.G.; Verheyen, J.; Diachuk, A.; Verheyen, P.; Meire, M.A.; De Coster, P.J.; Keulemans, F.; De Bruyne, M.; Walsh, L.J. Insight in the chemistry of laser-activated dental bleaching. Sci. World J. 2015, 2015, 650492. [Google Scholar] [CrossRef]
- Kwon, S.R.; Wertz, P.W.; Li, Y.; Chan, D.C.N. Penetration pattern of rhodamine dyes into enamel and dentin: Confocal laser microscopy observation. Int. J. Cosmet. Sci. 2012, 34, 97–101. [Google Scholar] [CrossRef]
- Kwon, S.R.; Wertz, P.W. Review of the mechanism of tooth whitening. J. Esthet. Restor. Dent. 2015, 27, 240–257. [Google Scholar] [CrossRef]
- Grazioli, G.; Valente, L.L.; Isolan, C.P.; Pinheiro, H.A.; Duarte, C.G.; Münchow, E.A. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels. Arch. Oral Biol. 2018, 87, 157–162. [Google Scholar] [CrossRef]
- Maran, B.M.; Burey, A.; de Paris Matos, T.; Loguercio, A.D.; Reis, A. In-office dental bleaching with light vs. without light: A systematic review and meta-analysis. J. Dent. 2018, 70, 1–13. [Google Scholar] [CrossRef]
- Dias, S.; Casqueiro, L.; Pereira, R.; Silveira, J.; Mata, A.; Marques, D. Hydrogen Peroxide Diffusion through Dental Tissues—In Vitro Study. Materials 2023, 16, 5552. [Google Scholar] [CrossRef]
- Eimar, H.; Siciliano, R.; Abdallah, M.N.; Nader, S.A.; Amin, W.M.; Martinez, P.P.; Celemin, A.; Cerruti, M.; Tamimi, F. Hydrogen peroxide whitens teeth by oxidizing the organic structure. J. Dent. 2012, 40, e25–e33. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.R.; Oyoyo, U.; Li, Y. Effect of light activation on tooth whitening efficacy and hydrogen peroxide penetration: An in vitro study. J. Dent. 2013, 41, e39–e45. [Google Scholar] [CrossRef] [PubMed]
- De Moor, R.; Vanderstricht, K. The Use of the KTP Laser, an Added Value for Tooth Bleaching. J. Oral Laser Appl. 2009, 9, 219–226. [Google Scholar]
- Briso, A.L.F.; Cintra, L.T.A.; de Oliveira Gallinari, M.; Sivieri-Araújo, G.; Lemos, C.A.A.; Terayama, A.M.; Benetti, F.; de Castilho Jacinto, R. Influence of different types of light on the response of the pulp tissue in dental bleaching: A systematic review. Clin. Oral Investig. 2017, 22, 1825–1837. [Google Scholar] [CrossRef]
- Batista, G.R.; Barcellos, D.C.; Borges, A.B.; Torres, C.R.G. Analysis of the Pulp Chamber Temperature of Teeth Submitted to Light Activation with and without Bleaching Gel. World J. Dent. 2011, 2, 23–27. [Google Scholar] [CrossRef]
- Anagnostaki, E.; Mylona, V.; Kosma, K.; Parker, S.; Chala, M.; Cronshaw, M.; Dimitriou, V.; Tatarakis, M.; Papadogiannis, N.; Lynch, E.; et al. A spectrophotometric study on light attenuation properties of dental bleaching gels: Potential relevance to irradiation parameters. Dent. J. 2020, 8, 137. [Google Scholar] [CrossRef]
- Chen, J.H.; Xu, J.W.; Shing, C.X. Decomposition rate of hydrogen peroxide bleaching agents under various chemical and physical conditions. J. Prosthet. Dent. 1993, 69, 46–48. [Google Scholar] [CrossRef]
- Young, N.; Fairley, P.; Mohan, V.; Jumeaux, C. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening. J. Dent. 2012, 40, e11–e16. [Google Scholar] [CrossRef]
- Caviedes-Bucheli, J.; Ariza-García, G.; Restrepo-Méndez, S.; Ríos-Osorio, N.; Lombana, N.; Muñoz, H.R. The Effect of Tooth Bleaching on Substance P Expression in Human Dental Pulp. J. Endod. 2008, 34, 1462–1465. [Google Scholar] [CrossRef]
- Dantas, C.M.G.; Vivan, C.L.; Ferreira, L.S.; de Freitas, P.M.; Marques, M.M. In vitro effect of low intensity laser on the cytotoxicity produced by substances released by bleaching gel. Braz. Oral Res. 2010, 24, 460–466. [Google Scholar] [CrossRef]
- Cavalli, V.; Kury, M.; Melo, P.B.G.; Carneiro, R.V.T.S.M.; Esteban Florez, F.L. Current Status and Future Perspectives of In-office Tooth Bleaching. Front. Dent. Med. 2022, 3, 1–5. [Google Scholar] [CrossRef]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Del Mar Perez, M. Color difference thresholds in dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Maran, B.M.; Hanzen, T.A.; de Paula, A.M.; Perdigão, J.; Reis, A. Randomized clinical trials of dental bleaching—Compliance with the CONSORT Statement: A systematic review. Braz. Oral Res. 2017, 31, 100–132. [Google Scholar] [CrossRef]
- Schwabacher, W.B.; Goodkind, R.J. Three-dimensional color coordinates of natural teeth compared with three shade guides. J. Prosthet. Dent. 1990, 64, 425–431. [Google Scholar] [CrossRef]
- Khurana, R.; Tredwin, C.J.; Weisbloom, M.; Moles, D.R. A clinical evaluation of the individual repeatability of three commercially available colour measuring devices. Br. Dent. J. 2007, 203, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Greenwall, L. Safety issues of tooth whitening using peroxide-based materials. Br. Dent. J. 2013, 215, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ubaldini, A.L.M.; Baesso, M.L.; Medina Neto, A.; Sato, F.; Bento, A.C.; Pascotto, R.C. Hydrogen peroxide diffusion dynamics in dental tissues. J. Dent. Res. 2013, 92, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.G.; Basso, F.G.; Hebling, J.; De Souza Costa, C.A. Concentrations of and application protocols for hydrogen peroxide bleaching gels: Effects on pulp cell viability and whitening efficacy. J. Dent. 2014, 42, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Perchyonok, V.T.; Grobler, S.R. Tooth-bleaching: Mechanism, Biological Aspects and Antioxidants. Int. J. Dent. Oral Health 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Markowitz, K. Pretty painful: Why does tooth bleaching hurt? Med. Hypotheses 2010, 74, 835–840. [Google Scholar] [CrossRef]
- Eriksson, A.R.; Albrektsson, T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J. Prosthet. Dent. 1983, 50, 101–107. [Google Scholar] [CrossRef]
- Klaric, E.; Rakic, M.; Sever, I.; Tarle, Z. Temperature rise during experimental light-activated bleaching. Lasers Med. Sci. 2015, 30, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.; Celik, G.; Usumez, A. Temperature rise in pulp and gel during laser-activated bleaching: In vitro. Lasers Med. Sci. 2015, 30, 577–582. [Google Scholar] [CrossRef]
- Kabbach, W.; Zezell, D.M.; Bandeca, M.C.; Pereira, T.M.; Andrade, M.F. An in vitro thermal analysis during different light-activated hydrogen peroxide bleaching. Laser Phys. 2010, 20, 1833–1837. [Google Scholar] [CrossRef]
- Tano, E.; Otsuki, M.; Kato, J.; Sadr, A.; Ikeda, M.; Tagami, J. Effects of 405 nm diode laser on titanium oxide bleaching activation. Photomed. Laser Surg. 2012, 30, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Colares, V.L.P.; Lima, S.N.L.; Sousa, N.C.F.; Araújo, M.C.; Pereira, D.M.S.; Mendes, S.J.F.; Teixeira, S.A.; Monteiro, C.d.A.; Bandeca, M.C.; Siqueira, W.L.; et al. Hydrogen peroxide-based products alter inflammatory and tissue damage-related proteins in the gingival crevicular fluid of healthy volunteers: A randomized trial. Sci. Rep. 2019, 9, 3457. [Google Scholar] [CrossRef] [PubMed]
- Lucier, R.N.; Etienne, O.; Ferreira, S.; Garlick, J.A.; Kugel, G.; Egles, C. Soft-Tissue Alterations Following Exposure to Tooth-Whitening Agents. J. Periodontol. 2013, 84, 513–519. [Google Scholar] [CrossRef]
- Loiola, A.B.A.; Souza-Gabriel, A.E.; Scatolin, R.S.; Corona, S.A.M. Impact of hydrogen peroxide activated by lighting-emitting diode/laser system on enamel color and microhardness: An in situ design. Contemp. Clin. Dent. 2016, 7, 312–316. [Google Scholar] [CrossRef]
- Goldberg, M.; Grootveld, M.; Lynch, E. Undesirable and adverse effects of tooth-whitening products: A review. Clin. Oral Investig. 2010, 14, 1–10. [Google Scholar] [CrossRef]
- Hegde, V.; Sathe, S.; Bawa, R. Element analysis of enamel surface before and after bleaching using three modes of activation. J. Dent. Lasers 2012, 6, 57. [Google Scholar] [CrossRef]
- Attin, T.; Schmidlin, P.R.; Wegehaupt, F.; Wiegand, A. Influence of study design on the impact of bleaching agents on dental enamel microhardness: A review. Dent. Mater. 2009, 25, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Zeczkowski, M.; Tenuta, L.M.A.; Ambrosano, G.M.B.; Aguiar, F.H.B.; Lima, D.A.N.L. Effect of different storage conditions on the physical properties of bleached enamel: An in vitro vs. in situ study. J. Dent. 2015, 43, 1154–1161. [Google Scholar] [CrossRef]
- Zanolla, J.; Marques, A.B.C.; da Costa, D.C.; de Souza, A.S.; Coutinho, M. Influence of tooth bleaching on dental enamel microhardness: A systematic review and meta-analysis. Aust. Dent. J. 2017, 62, 276–282. [Google Scholar] [CrossRef]
- Altınışık, H.; Akgül, S.; Nezir, M.; Özcan, S.; Özyurt, E. The Effect of In-Office Bleaching with Different Concentrations of Hydrogen Peroxide on Enamel Color, Roughness, and Color Stability. Materials 2023, 16, 1389. [Google Scholar] [CrossRef] [PubMed]
- Wetter, N.U.; Branco, E.P.; Deana, A.M.; Pelino, J.E.P. Color differences of canines and incisors in a comparative long-term clinical trial of three bleaching systems. Lasers Med. Sci. 2009, 24, 941–947. [Google Scholar] [CrossRef]
- Zanin, F. Recent Advances in Dental Bleaching with Laser and LEDs. Photomed. Laser Surg. 2016, 34, 135–136. [Google Scholar] [CrossRef]
- Tekce, A.U.; Yazici, A.R. Clinical comparison of diode laser- and LED-activated tooth bleaching: 9-month follow-up. Lasers Med. Sci. 2022, 37, 3237–3247. [Google Scholar] [CrossRef]
- Mayer-Santos, E.; Maravic, T.; Comba, A.; Freitas, P.M.; Marinho, G.B.; Mazzitelli, C.; Mancuso, E.; Scotti, N.; Florenzano, F.; Breschi, L.; et al. The Influence of Different Bleaching Protocols on Dentinal Enzymatic Activity: An In Vitro Study. Molecules 2022, 27, 1684. [Google Scholar] [CrossRef]
- Parker, S.; Cronshaw, M.; Grootveld, M.; George, R.; Anagnostaki, E.; Mylona, V.; Chala, M.; Walsh, L. The influence of delivery power losses and full operating parametry on the effectiveness of diode visible–near infra-red (445–1064 nm) laser therapy in dentistry—A multi-centre investigation. Lasers Med. Sci. 2022, 37, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.; Cronshaw, M.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Current concepts of laser–oral tissue interaction. Dent. J. 2020, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of PICO as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2019; pp. 205–228. [Google Scholar] [CrossRef]
- Gurgan, S.; Cakir, F.Y.; Yazici, E. Different light-activated in-office bleaching systems: A clinical evaluation. Lasers Med. Sci. 2010, 25, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, O.; Wirsching, M.; Wokewitz, M.; Hahn, P. Three-month evaluation of vital tooth bleaching using light units-a randomized clinical study. Oper. Dent. 2013, 38, 21–32. [Google Scholar] [CrossRef]
- Ahrari, F.; Akbari, M.; Mohammadipour, H.S.; Fallahrastegar, A.; Sekandari, S. The efficacy and complications of several bleaching techniques in patients after fixed orthodontic therapy. A randomized clinical trial. Swiss Dent. J. 2020, 130, 493–501. [Google Scholar]
- Surmelioglu, D.; Usumez, A. Effectiveness of Different Laser-Assisted In-Office Bleaching Techniques: 1-Year Follow-Up. Photobiomodulation Photomed. Laser Surg. 2020, 38, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Sürmelioğlu, D.; Gündoğar, H.; Taysi, S.; Bağiş, Y.H. Effect of different bleaching techniques on DNA damage biomarkers in serum, saliva, and GCF. Hum. Exp. Toxicol. 2021, 40, 1332–1341. [Google Scholar] [CrossRef]
- Oz, O.P.; Demirkol, N. Effectiveness of in-office bleaching treatment with different activation techniques on tooth color changes and sensitivity: A randomized clinical trial. Am. J. Dent. 2021, 34, 23–30. [Google Scholar]
- de Freitas, P.M.; Menezes, A.N.; da Mota, A.C.C.; Simões, A.; Mendes, F.M.; Lago, A.D.N.; Ferreira, L.S.; Ramos-Oliveira, T.M. Does the hybrid light source (LED/laser) influence temperature variation on the enamel surface during 35% hydrogen peroxide bleaching? A randomized clinical trial. Quintessence Int. 2016, 47, 61–73. [Google Scholar] [CrossRef]
- Kossatz, S.; Dalanhol, A.P.; Cunha, T.; Loguercio, A.; Reis, A. Effect of light activation on tooth sensitivity after in-office bleaching. Oper. Dent. 2011, 36, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Mena-Serrano, A.P.; Garcia, E.; Luque-Martinez, I.; Grande, R.H.M.; Loguercio, A.D.; Reis, A. A single-blind randomized trial about the effect of hydrogen peroxide concentration on light-activated bleaching. Oper. Dent. 2016, 41, 455–464. [Google Scholar] [CrossRef]
- Mondelli, R.F.L.; Francisconi, A.C.; de Almeida, C.M.; Ishikiriama, S.K. Comparative clinical study of the effectiveness of different dental bleaching methods—Two year follow-up. J. Appl. Oral Sci. 2012, 20, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, R.F.L.; Rizzante, F.A.P.; Rosa, E.R.; Borges, A.F.S.; Furuse, A.Y.; Bombonatti, J.F.S. Effectiveness of LED/Laser irradiation on in-office dental bleaching after three years. Oper. Dent. 2018, 43, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Moncada, G.; Sepúlveda, D.; Elphick, K.; Contente, M.; Estay, J.; Bahamondes, V.; Fernandez, E.; Oliveira, O.B.; Martin, J. Effects of light activation, agent concentration, and tooth thickness on dental sensitivity after bleaching. Oper. Dent. 2013, 38, 467–476. [Google Scholar] [CrossRef]
- Bortolatto, J.F.; Pretel, H.; Floros, M.C.; Luizzi, A.C.C.; Dantas, A.A.R.; Fernandez, E.; Moncada, G.; de Oliveira, O.B. Low Concentration H2O2/TiO_N in Office Bleaching: A Randomized Clinical Trial. J. Dent. Res. 2014, 93, 66S–71S. [Google Scholar] [CrossRef]
- Karaarslan, E.S.; Özmen, Z.C.; Aytac, F.; Bicakci, A.A.; Buldur, M.; Aydogan, L.; Hologlu, F.; Özkocak, B.B.C. Evaluation of biochemical changes in dental tissues after different office bleaching methods. Hum. Exp. Toxicol. 2019, 38, 389–397. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, L.C.A.G.; Costa, C.A.S.; Riehl, H.; dos Santos, P.H.; Sundfeld, R.H.; Briso, A.L.F. Occurrence of sensitivity during at-home and in-office tooth bleaching therapies with or without use of light sources. Acta Odontol. Latinoam. 2012, 25, 3–8. [Google Scholar]
- De Almeida, L.C.A.G.; Riehl, H.; Dos Santos, P.H.; Sundfeld, M.L.M.M.; Briso, A.L.F. Clinical evaluation of the effectiveness of different bleaching therapies in vital teeth. Int. J. Periodontics Restor. Dent. 2012, 32, 302–309. [Google Scholar] [CrossRef]
- Mondelli, R.F.L.; de Almeida, C.M.; Rizzante, F.A.P.; Sanches Borges, A.F.; Ishikiriama, S.K.; Bombonatti, J.F.S. The effects of hybrid light activation and enamel acid etching on the effectiveness, stability and sensitivity after a single session in-office bleaching: A 12-month clinical trial. Photodiagnosis Photodyn. Ther. 2018, 24, 22–26. [Google Scholar] [CrossRef]
- Bortolatto, J.F.; Pretel, H.; Neto, C.S.; Andrade, M.F.; Moncada, G.; Oliveira, O.B. Effects of LED-laser hybrid light on bleaching effectiveness and tooth sensitivity: A randomized clinical study. Laser Phys. Lett. 2013, 10, 85601. [Google Scholar] [CrossRef]
- Bersezio, C.; Martín, J.; Angel, P.; Bottner, J.; Godoy, I.; Avalos, F.; Fernández, E. Teeth whitening with 6% hydrogen peroxide and its impact on quality of life: 2 years of follow-up. Odontology 2019, 107, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Navit, S.; Khan, S.A.; Sharma, A.; Jabeen, S.; Grover, N.; Alia, S. Effect of diode laser office bleaching on mineral content and surface topography of enamel surface: An SEM study. Int. J. Clin. Pediatr. Dent. 2020, 13, 481–485. [Google Scholar] [CrossRef]
- Cevval Ozkocak, B.B.; Aytac Bal, F. Effect of diode laser-assisted bleaching on the bond strength of different adhesive systems to enamel: Interfacial SEM analysis. Microsc. Res. Technol. 2021, 84, 1542–1552. [Google Scholar] [CrossRef]
- Saeedi, R.; Ranjbar Omrani, L.; Abbasi, M.; Chiniforush, N.; Kargar, M. Effect of Three Wavelengths of Diode Laser on the Efficacy of Bleaching of Stained Teeth. Front. Dent. 2019, 16, 458–464. [Google Scholar] [CrossRef]
- Saberi, S.; Rouzsaz, M.; Shafie, F.; Einizadeh, S.; Kharazifard, M.J.; Shahabi, S. The effect of laser-activated bleaching with 445 nm and 915 nm diode lasers on enamel micro-hardness; an in vitro study. Photodiagnosis Photodyn. Ther. 2020, 31, 101952. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Z.; Li, L.; Zhang, K.; Liu, Q. In vitro evaluation of the effectiveness of bleaching agents activated by KTP and Nd:YAG laser. Photodiagnosis Photodyn. Ther. 2020, 31, 101900. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Pordel, E.; Chiniforush, N.; Firuzjaee, S.G.; Omrani, L.R. Hydrogen peroxide penetration into the pulp chamber during conventional in-office bleaching and diode laser-assisted bleaching with three different wavelengths. Laser Ther. 2019, 28, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, S.; Assadian, H.; Nahavandi, A.M.; Nokhbatolfoghahaei, H. Comparison of tooth color change after bleaching with conventional and different light-activated methods. J. Lasers Med. Sci. 2018, 9, 27–31. [Google Scholar] [CrossRef]
- Lopes, F.C.; Roperto, R.; Akkus, A.; Akkus, O.; Palma-Dibb, R.G.; de Sousa-Neto, M.D. Effect of laser activated bleaching on the chemical stability and morphology of intracoronal dentin. Arch. Oral Biol. 2018, 86, 40–45. [Google Scholar] [CrossRef]
- Ashnagar, S.; Monzavi, A.; Abbasi, M.; Aghajani, M.; Chiniforush, N. Evaluation of the effect of different laser activated bleaching methods on enamel susceptibility to caries; An in vitro model. J. Lasers Med. Sci. 2017, 8, S62–S67. [Google Scholar] [CrossRef]
- Kiomars, N.; Azarpour, P.; Mirzaei, M.; Kamangar, S.S.H.; Kharazifard, M.J.; Chiniforush, N. Evaluation of the Diode laser (810nm, 980 nm) on color change of teeth after external bleaching. Laser Ther. 2016, 25, 267–272. [Google Scholar] [CrossRef]
- Mirzaie, M.; Yassini, E.; Ganji, S.; Moradi, Z.; Chiniforush, N. A comparative study of enamel surface roughness after bleaching with diode laser and Nd:YAG laser. J. Lasers Med. Sci. 2016, 7, 197–200. [Google Scholar] [CrossRef]
- Bhutani, N.; Venigalla, B.S.; Patil, J.P.; Singh, T.V.; Jyotsna, S.V.; Jain, A. Evaluation of bleaching efficacy of 37.5% hydrogen peroxide on human teeth using different modes of activations: An in vitro study. J. Conserv. Dent. 2016, 19, 259–263. [Google Scholar] [CrossRef]
- Al-Karadaghi, T.S.; Al-Saedi, A.A.; Al-Maliky, M.A.; Mahmood, A.S. The effect of bleaching gel and (940 nm and 980 nm) diode lasers photoactivation on intrapulpal temperature and teeth whitening efficiency. Aust. Endod. J. 2016, 42, 112–118. [Google Scholar] [CrossRef]
- Nguyen, C.; Augros, C.; Rocca, J.P.; Lagori, G.; Fornaini, C. KTP and Er:YAG laser dental bleaching comparison: A spectrophotometric, thermal and morphologic analysis. Lasers Med. Sci. 2015, 30, 2157–2164. [Google Scholar] [CrossRef]
- Bennett, Z.Y.; Walsh, L.J. Efficacy of LED versus KTP laser activation of photodynamic bleaching of tetracycline-stained dentine. Lasers Med. Sci. 2015, 30, 1823–1828. [Google Scholar] [CrossRef]
- Parreiras, S.O.; Vianna, P.; Kossatz, S.; Loguercio, A.D.; Reis, A. Effects of light activated in-office bleaching on permeability, microhardness, and mineral content of enamel. Oper. Dent. 2014, 39, E225–E230. [Google Scholar] [CrossRef] [PubMed]
- Anaraki, S.N.; Shahabi, S.; Chiniforush, N.; Nokhbatolfoghahaei, H.; Assadian, H.; Yousefi, B. Evaluation of the effects of conventional versus laser bleaching techniques on enamel microroughness. Lasers Med. Sci. 2015, 30, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Hahn, P.; Schondelmaier, N.; Wolkewitz, M.; Altenburger, M.J.; Polydorou, O. Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: An in vitro study. Odontology 2013, 101, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.R.G.; Barcellos, D.C.; Batista, G.R.; Borges, A.B.; Cassiano, K.V.; Pucci, C.R. Assessment of the effectiveness of light-emitting diode and diode laser hybrid light sources to intensify dental bleaching treatment. Acta Odontol. Scand. 2011, 69, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ozyilmaz, O.Y.; Yavuz, T.; Sari, T.; Aykent, F.; Ozturk, A.N. Temperature rises during tooth bleaching with different light-curing units. J. Adhes. Sci. Technol. 2015, 29, 1572–1580. [Google Scholar] [CrossRef]
- Maran, B.M.; Ziegelmann, P.K.; Burey, A.; de Paris Matos, T.; Loguercio, A.D.; Reis, A. Different light-activation systems associated with dental bleaching: A systematic review and a network meta-analysis. Clin. Oral Investig. 2019, 23, 1499–1512. [Google Scholar] [CrossRef]
- He, L.B.; Shao, M.Y.; Tan, K.; Xu, X.; Li, J.Y. The effects of light on bleaching and tooth sensitivity during in-office vital bleaching: A systematic review and meta-analysis. J. Dent. 2012, 40, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Maran, B.M.; Matos, T.d.P.; de Castro, A.D.S.; Vochikovski, L.; Amadori, A.L.; Loguercio, A.D.; Reis, A.; Berger, S.B. In-office bleaching with low/medium vs. high concentrate hydrogen peroxide: A systematic review and meta-analysis. J. Dent. 2020, 103, 103499. [Google Scholar] [CrossRef]
- SoutoMaior, J.R.; De Moraes, S.L.D.; Lemos, C.A.A.; Do E Vasconcelos, B.C.; Montes, M.A.J.R.; Pellizzer, E.P. Effectiveness of light sources on in-office dental bleaching: A systematic review and meta-analyses. Oper. Dent. 2019, 44, E105–E117. [Google Scholar] [CrossRef] [PubMed]
- Hanks, C.T.; Fat, J.C.; Corcoran, J.F.; Wataha, J.C. Cytotoxicity and Dentin Permeability of Carbamide Peroxide and Hydrogen Peroxide Vital Bleaching Materials, in vitro. J. Dent. Res. 1993, 72, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Trindade, F.Z.; Ribeiro, A.P.D.; Sacono, N.T.; Oliveira, C.F.; Lessa, F.C.R.; Hebling, J.; Costa, C.A.S. Trans-enamel and trans-dentinal cytotoxic effects of a 35% H 2O2 bleaching gel on cultured odontoblast cell lines after consecutive applications. Int. Endod. J. 2009, 42, 516–524. [Google Scholar] [CrossRef]
- Lima, A.F.; Ribeiro, A.P.; Basso, F.G.; Bagnato, V.S.; Hebling, J.; Marchi, G.M.; de Souza Costa, C.A. Effect of low-level laser therapy on odontoblast-like cells exposed to bleaching agent. Lasers Med. Sci. 2014, 29, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.F.; Marques, M.R.; Soares, D.G.; Hebling, J.; Marchi, G.M.; de Souza Costa, C.A. Antioxidant therapy enhances pulpal healing in bleached teeth. Restor. Dent. Endod. 2016, 41, 44. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Costa, C.A.S.; Soares, D.G.S.; Dos Santos, P.H.; Cintra, L.T.A.; Briso, A.L.F. Effect of different light sources and enamel preconditioning on color change, H2O2 penetration, and cytotoxicity in bleached teeth. Oper. Dent. 2016, 41, 83–92. [Google Scholar] [CrossRef]
- Vildosola, P.; Vera, F.; Ramirez, J.; Rencoret, J.; Pretel, H.; Oliveira, O.B.; Tonetto, M.; Martin, J.; Fernandez, E. Comparison of effectiveness and sensitivity using two in-office bleaching protocols for a 6% hydrogen peroxide gel in a randomized clinical trial. Oper. Dent. 2017, 42, 244–252. [Google Scholar] [CrossRef]
- Vildósola, P.; Bottner, J.; Avalos, F.; Godoy, I.; Martín, J.; Fernández, E. Teeth bleaching with low concentrations of hydrogen peroxide (6%) and catalyzed by LED blue (450 ± 10 nm) and laser infrared (808 ± 10 nm) light for in-office treatment: Randomized clinical trial 1-year follow-up. J. Esthet. Restor. Dent. 2017, 29, 339–345. [Google Scholar] [CrossRef]
- Bersezio, C.; Pardo, C.; Miranda, S.; Medeiros Maran, B.; Jorquera, G.; Rosa da Silva, A.; Tonetto Rodrigues, M.; Fernández, E. Evaluation of the effectiveness in teeth whitening of a single session with 6% hydrogen peroxide Laser/LED system. Photodiagnosis Photodyn. Ther. 2021, 36, 102532. [Google Scholar] [CrossRef]
- De Geus, J.L.; Wambier, L.M.; Kossatz, S.; Loguercio, A.D.; Reis, A. At-home vs. in-office bleaching: A systematic review and meta-analysis. Oper. Dent. 2016, 41, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Zach, L.; Cohen, G. Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. 1965, 19, 515–530. [Google Scholar] [CrossRef]
- Lau, X.E.; Liu, X.; Chua, H.; Wang, W.J.; Dias, M.; Choi, J.J.E. Heat generated during dental treatments affecting intrapulpal temperature: A review. Clin. Oral Investig. 2023, 27, 2277–2297. [Google Scholar] [CrossRef] [PubMed]
- Kreisler, M.; Al-Haj, H.; D’Hoedt, B. Intrapulpal temperature changes during root surface irradiation with an 809-nm GaAlAs laser. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 93, 730–735. [Google Scholar] [CrossRef]
- Murphy, M.J.; Torstensson, P.A. Thermal relaxation times: An outdated concept in photothermal treatments. Lasers Med. Sci. 2014, 29, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Maddalone, M.; Citterio, C.; Pellegatta, A.; Gagliani, M.; Karanxha, L.; Del Fabbro, M. Cone-beam computed tomography accuracy in pulp chamber size evaluation: An ex vivo study. Aust. Endod. J. 2020, 46, 88–93. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Arany, P. Feeling the Heat: Evolutionary and Microbial Basis for the Analgesic Mechanisms of Photobiomodulation Therapy. Photobiomodulation Photomed. Laser Surg. 2019, 37, 517–526. [Google Scholar] [CrossRef]
- He, W.; Frueh, J.; Shao, J.; Gai, M.; Hu, N.; He, Q. Guidable GNR-Fe3O4-PEM@SiO2 composite particles containing near infrared active nanocalorifiers for laser assisted tissue welding. Colloids Surf. A Physicochem. Eng. Asp. 2016, 511, 73–81. [Google Scholar] [CrossRef]
- Al-Karadaghi, T.S.; Gutknecht, N.; Jawad, H.A.; Vanweersch, L.; Franzen, R. Evaluation of Temperature Elevation During Root Canal Treatment with Dual Wavelength Laser: 2780 nm Er,Cr:YSGG and 940 nm Diode. Photomed. Laser Surg. 2015, 33, 460–466. [Google Scholar] [CrossRef] [PubMed]
Citation [Ref.] | Type of Study/nr of Patients Test/Control | Aim | Gel/Layer Thickness/Contact Time | Laser Wavelength (nm)/Manufacturer | Parameters | Fluence (J/cm2) | Outcome |
---|---|---|---|---|---|---|---|
Gurgan, S. [53] | 40 patients 4 groups (n = 10) (a) Conventional OpB (non-activated) (b) LW10 + 810 (c) RemeWhite + PAC (d) By-White + LED | Evaluation of the efficiency of in-office bleaching systems with different light sources for color change, tooth sensitivity, and gingival irritations | (a) 38% HP Opalescence Boost (45 min) (b) 37% HP Laserwhite10 (16 min) (c) RemeWhite 35% HP (60 min) (d) By-White 38% HP (40 min) All 1 mm layer | 810 (Biolase Lasersmile) | 10 W 15 s 2.8 cm2 (quadrant handpiece) | 46 | Laser group: statistically higher ΔE values and significantly lower tooth and gingival sensitivity scores |
Polydorou, O. [54] | 60 patients 3 groups (n = 20) (a) 38% HP conventional (non-activated) (b) 38% HP + halogen (c) 38% HP + 980 | Evaluation of color stability of vital bleaching using a halogen unit, laser, or only chemical activation up to three months after treatment | 38% HP Opalescence Boost (Ultradent) Thickness not mentioned 4 × 15 min (including 4 × 30 s activation for laser group and 4 × 8 min for halogen group) | 980 (Kavo Gentleray) | 6 W 30 s kavo 5 mm diameter handpiece 0.33 cm2 spot Single-tooth handpiece | 180 | Immediate result: laser-group sign less than other groups, while halogen sign better After 3 months: no difference between groups 4/20 patients from the laser group had to discontinue due to sensitivity and were evaluated at the point they stopped |
Ahrari, F. [55] | 60 patients 4 groups (n = 15) (a) 20% CP home bleaching 14 days (b) 34% HP + 810 (c) 34% HP + PAC (d) 34% HP conventional in-office (non-activated) | Evaluation of the efficacy and complications of bleaching methods in patients with discolored teeth after orthodontic treatment | 34% HP Laserwhite10 (Biolase) (20 min) 34% HP Everbrite (40 min) 38% HP Opalescence Boost (40 min) All 1 mm layer 20% CP home bleaching (4 h × 14 days) | 810 (Gigaa) | 3 W 30 s per tooth 400 μm fiber 1 mm distance scanning movements of approximately 5 mm/s Single-tooth bare-fiber | 88 | Tooth color ΔΕ: no difference 1 w after Tooth sensitivity: significantly higher in conventional compared to laser group. In other groups no difference Satisfaction scores: no significant difference |
Surmelioglu, D. [56] | 45 patients 3 groups (n = 15) (a) 38% HP conventional (OpB) (non-activated) (b) 35% HP + 980 (c) 35% HP + Er,Cr:YSGG | To compare the effectiveness, color stability, and postoperative sensitivity after conventional, diode-activated, or Er,Cr:YSGG-laser-activated bleaching | 35% HP WhitenessHP Blue (980—2 × 15 min) (Erbium 20 min) 38% HP Opalescence Boost (2 × 20 min) All 2 mm layer | 980 (Gigaa Cheese) | 7 W 12 s 5.85 cm2 spot 5 mm distance (quadrant handpiece) | 14.3 | ΔΕ: no significant intergroup differences Sensitivity: diode 980 nm sign higher at 24 h and 1 week |
Sürmelioğlu, D. [57] | 48 patients 3 groups (n = 16) (a) Ozone bleaching (b) 38% HP conventional (c) 38% HP + 980 | To determine the oxidative DNA damage biomarker levels in serum, saliva, and gingival crevicular fluid (GCF) by measuring 8-hydroxy-20-deoxyguanosine (8-OHdG) after different bleaching methods | 38% HP Opalescence Boost (Ultradent) 1 mm thickness Conventional (45 min) Laser-activated (30 min) Ozone (60 min) | 980 (Gigaa Cheese) | 7 W 12 s 5.85 cm2 spot 5 mm distance (quadrant handpiece) | 14.3 | Biomarkers in blood and serum: no difference Biomarkers in GCF: sign higher in order Conventional > laser > ozone Color outcome: no difference |
Oz, O.P. [58] | 80 patients 4 groups (n = 20) (a) Nd:YAG + 38% HP (b) 810 + 38% HP (c) LED + 38% HP (d) Conventional 38% HP | To investigate the effectiveness of different light activation methods on color change duration and tooth sensitivity | 38% HP Opalescence Boost (Ultradent) 1 mm thickness All groups 3 × 15 min contact time | 810 (Gigaa Cheese) | 4 W 18 s 5.85 cm2 spot 1 cm distance (quadrant handpiece) | 12.5 | Tooth color: no difference (except 6 months after where conventional sign less rebound) Sensitivity: no difference |
de Freitas, P.M. [59] | 22 patients 1 group split-mouth (n = 22) Hemiarches: 35% HP conventional vs. 35% HP + 810-470 hybrid | Influences of hybrid light source (LED/laser) on temperature of enamel surfaces during 35% (HP) bleaching, Effectiveness, and tooth sensitivity | 35% HP Lase Peroxide Sensy (DMC) Conventional (3 × 15 min) Hybrid (3 × 8 min) All 1–2 mm layer | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 60 s × 300 mW/cm2 simultaneously 470 nm 60 s × 300 mW/cm2 (Full-arch applicator) | 18 18 | Effectiveness or sensitivity: no difference Temperature on gel/enamel: sign higher for LED/laser (approx 4 °C) |
Kossatz, S. [60] | 30 patients 2 groups (n = 15) (a) 35% HP + 810-470 hybrid (b) 35% HP conventional | Evaluation of bleaching effectiveness (BE) and tooth sensitivity (TS) during in-office bleaching with LED/laser activation vs. conventional non-activated in-office bleaching | 35% HP Whiteness HP Maxx (FGM Dental) 1 mm layer 3 × 15 min both groups | 810-470 (Whitening Lase Light Plus, DMC) | 810 nm diode 60 s × 200 mW/cm2 simultaneously 470 nm 60 s × 350 mW/cm2 (Full-arch applicator) | 12 21 | Color change: sign faster for LED/laser group after first session, no difference after the second Sensitivity: no difference immediately after, but persisting sign longer for the LED/laser group |
Mena-Serrano, A.P. [61] | 76 patients 4 groups (n = 19) (a) 35% HP conventional (b) 35% HP + 810-470 hybrid (c) 20% HP conventional (d) 20% HP + 810-470 hybrid | Comparison of bleaching efficacy and tooth sensitivity of two hydrogen peroxide concentrations (20% and 35%) used for in-office bleaching associated or not with light activation | 35% HP Whiteness HP Maxx (FGM Dental) 20% HP Whiteness HP (FGM Dental) All 1 mm layer 3 × 15 min for all groups | 810-470 (Whitening Lase Light Plus, DMC) | 810 nm diode 60 s × 200 mW/cm2 simultaneously 470 nm 60 s × 350 mW/cm2 (Full-arch applicator) | 12 21 | Color change and sensitivity: no difference |
Mondelli, R.F. [62] | 48 patients 5 groups (n = 16) split-mouth design (a) 35% HP + 810-470 hybrid (b) 35% HP conventional (c) 38% HP + 810-470 hybrid (d) 38% HP conventional (e) 15% CP home-bleaching | Evaluation of tooth sensitivity, ΔE and bleaching maintenance after 2 years, and comparison of effectiveness of at-home and in-office bleaching techniques, with and without activation with hybrid LED/laser light | 35% HP Lase Peroxide Sensy (DMC) 38% HP Opalescence Boost (Ultradent) Hybrid (3 × 11 min) Conventional (3 × 15 min) All 1 mm layer | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 180 s × 200 mW/cm2 simultaneously 470 nm 180 s × 350 mW/cm2 (Full-arch applicator) | 36 63 | ΔΕ: no differences between LED/laser and conventional groups. Home-bleaching group sign better Sensitivity: no differences |
Mondelli, R.F.L. [63] | 20 patients 4 groups (n = 10) split-mouth (a) 35% HP conventional (b) 35% HP + 810-470 hybrid (c) 25% HP conventional (d) 25% HP + 810-470 hybrid | Evaluation of effectiveness of a hybrid light (HL) source on the color change, stability, and tooth sensitivity in patients submitted to different in-office bleaching (25 and 35%) | 35% H2O2 Lase Peroxide Sensy (DMC) 25% HP Lase Peroxide Sensy II or Whiteness (DMC) Conventional (3 × 15 min) Hybrid (3 × 7.5 min) All 1–2 mm layer | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 120 s × 200 mW/cm2 simultaneously 470 nm 120 s × 350 mW/cm2 (Full-arch applicator) | 24 42 | ΔΕ: no differences Sensitivity: sign lower in LED/laser groups |
Moncada, G. [64] | 87 patients 3 groups (a) 15% HP with TiO_N + 810-470 hybrid (n = 25) (b) 35% HP (LPS) + 810-470 hybrid (n = 27) (c) 35% HP (WGO) conventional (n = 35) | To determine the relationship among tooth sensitivity, light activation, and agent concentration and to correlate dental sensitivity with tooth thickness in the application of three different bleaching systems | 35% HP Lase Peroxide Sensy (DMC) (30 min) 15% HP with TiO_N (45 min) 35% HP White Gold Office (Dentsply) (45 min) All 1–2 mm layer | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 60 s × 450 mW/cm2 simultaneously 470 nm 60 s × 300 mW/cm2 (Full-arch applicator) | 27 18 | Sensitivity: no difference and no effect of tooth thickness |
Bortolatto, J.F. [65] | 40 patients 2 groups (a) 15% HP with TiO_N + 810-470 hybrid (n = 12) (b) 35% HP Conventional (n = 13) | Compare the efficacy and tooth sensitivity of LED/laser activated 15% H2O2 gel with TiO_N (HP15) vs. conventional 35% H2O2 (HP35) | 15% HP with TiO_N Lase Peroxide Light (DMC) 3 × 16 min 35% HP Lase Peroxide Sensy DMC) 3 × 15 min All 1–2 mm layer | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 60 s × 300 mW/cm2 simultaneously 470 nm 60 s × 300 mW/cm2 (Full-arch applicator) | 18 18 | Color ΔΕ: LED/laser group sign better Sensitivity: LED/laser group sign less |
Karaarslan, E.S. [66] | 10 patients 4 groups (n = 10 premolars) Split mouth (a) 38% HP + 940 (b) 35%HP + halogen (c) 35% HP conventional (d) negative control | To compare the potential effects of the three different bleaching methods on proteolytic activities (cathepsin B, MMPs) and ROS designation responses of the human premolar dentin–pulp complex | 38% HP Laserwhite20 (Biolase) Thickness n/a (2 × 9 min) 35% HP Whiteness HP Maxx (FGM Dental) Thickness n/a Halogen: (4 × 30 s, interval 3 min between activations) Total 15 min Conventional: Total 15 min | 940 (Biolase EzLase) | 7 W 30 s 2.8 cm2 (Quadrant) | 70 | Cathepsin B and MMP: no differences in dentin, pulp, and between dentin and pulp ROS in dentin: sign higher in laser and halogen group ROS in pulp: no differences Total ROS in dentin sign higher than in pulp |
De Almeida, L.C.A.G. [67] | 40 patients 4 groups (n = 10) (a) 10% CP home-bleaching (b) 35% HP conventional (c) 35%HP + halogen (d) 35% HP + 810-470 hybrid | Comparison of the effect of CP (at-home) and HP (in-office) bleaching gels, with or without halogen light or LED/laser irradiation on the occurrence, duration, intensity, and location of tooth sensitivity | 35% HP (Whiteness HP, FGM, Brazil) Thickness n/a 3 × 10 min (three sessions-once per week) 10% CP (Whiteness Perfect, FGM, Brazil 4 h per day/21 days | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 180 s × 200 mW/cm2 simultaneously 470 nm 180 s × 120 mW/cm2 (Full-arch applicator) | 36 21 | Duration of sensitivity and pain intensity: sign lower in home bleaching. No differences in other groups. |
De Almeida, L.C.A.G. [68] | 40 patients 4 groups (n = 10) (a) 10% CP home-bleaching (b) 35% HP conventional (c) 35%HP + halogen (d) 35% HP + 810-470 hybrid | To compare the effectiveness and color stability of at-home and in-office bleaching techniques and to evaluate whether the use of light sources can alter bleaching results | 35% HP (Whiteness HP, FGM, Brazil) Thickness n/a 3 × 10 min (three sessions-once per week) 10% CP (Whiteness Perfect, FGM, Brazil) 4 h per day/21 days | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 180 s × 200 mW/cm2 simultaneously 470 nm 180 s × 120 mW/cm2 (Full-arch applicator) | 36 21 | Color change: no differences Color stability: no differences after 6 months For clinically sign color changes: >1 week home bleaching or 30 min session of in-office bleaching with 35% HP |
Mondelli, R.F.L. [69] | 34 patients 4 groups (n = 17) Split mouth (a) Acid-etched 35% HP + 810-470 hybrid (b) non-etched 35% HP + 810-470 hybrid (c) Acid-etched 35% HP conventional (d) Non-etched 35% HP conventional | Evaluation of the efficiency of a HL, with and without prior enamel acid etching, assessing the gel application time, degree of color change, sensitivity, and treatment stability up to 12 months | 35% HP (Lase Peroxide Sensy, DMC, Brazil) Layer 1 mm LED/laser 3 × 8 min Conventional 3 × 15 min | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 180 s × 200 mW/cm2 simultaneously 470 nm 180 s × 350 mW/cm2 (Full-arch applicator) | 36 63 | Contact time: sign less with the order: acid-etched LED/laser <non-etched LED/laser < conventional groups. ΔΕ and sensitivity: no differences |
Bortolatto, J.F. [70] | 40 patients 2 groups (n = 20) (a) 35% HP conventional (b) 35% HP + 810-470 hybrid | Evaluation of LED/laser irradiation on the efficiency and tooth sensitivity of in-office bleaching treatment | 35% HP (Lase Peroxide Sensy, DMC, Brazil) Thickness n/a LED/laser 4 × 8 min Conventional 3 × 15 min Three sessions-once per week | 810-470 (Hybrid light, Whitening Lase II, DMC) | 810 nm diode 60 × 300 mW/cm2 simultaneously 470 nm 60 s × 300 mW/cm2 (Full-arch applicator) | 18 18 | Luminosity (ΔL) and color change (ΔΕ): no differences Sensitivity: sign lower for LED/laser |
Bersezio, C. [71] | 31 patients 2 groups (n = 31) Split-mouth (a) 6% HP with TiO_N + 810-470 hybrid (b) 35% HP conventional | Evaluation of the longevity and effects on QoL of hybrid-light activated 6% hydrogen peroxide with titanium dioxide nanoparticles compared with non-activated 35% H2O2 | 6% HP with TiO_N (Lase Peroxide Light, DMC, Brazil) Thickness n/a 2 × 12 min 35% HP (Lase Peroxide, DMC, Brazil) Thickness n/a 2 × 12 min Three sessions-once per week | 810-470 (Hybrid light, Whitening Lase Plus, DMC) | 810 nm diode 60 s × 300 mW/cm2 simultaneously 470 nm 60 s × 300 mW/cm2 (Full-arch applicator) | 18 18 | Color outcome and longevity: no differences up to 24 months |
Citation [Ref.] | Number of Samples Test/Control | Aim | Gel/Layer Thickness/Contact Time | Laser Wavelength (nm) | Parameters | Fluence (J/cm2) | Temperature ΔΤ (°C) | Outcome |
---|---|---|---|---|---|---|---|---|
Suresh, S. [72] | 40 human tooth slices Groups: (a) 5 samples negative control (b) 5 samples positive control (Acid etching) (c) 10 conventional (d) 10 LED-activated (e) 10 laser-activated | Effect on mineral content and surface topography by EDX and SEM | 35% HP Laserwhite20 Layer n/a (17 min) 35% HP PolaOffice (24 min) 37.5% HP PolaOffice+ (24 min) | 940 | 7 W 30 s 2.8 cm2 Quadrant handpiece | 70 | Not tested/not within the aim | SEM: mild surface alterations seen in group d (LED) and group e (laser). Group c (non-act) partial removal of aprismatic layer with shallow erosions. Mineral content: calcium significantly higher in laser group phosphorus similar |
Cevval Ozkocak, B.B. [73] | 180 human incisors 18 groups (n = 10 per group) Control (conventional) Laser-activated Each subgroup with three different adhesive procedures and two different waiting times (immediate/7d) | Effect on shear-bond strength of different adhesive systems to enamel and SEM examination of adhesive enamel interface microscope | 35% HP Laserwhite20 Layer 2 mm (16 min) 38% HP Opalescence Boost (40 min) | 940 | 7 W 30 s 2.8 cm2 Quadrant handpiece | 70 | Not tested/not within the aim | SEM: morphological surface changes more pronounced after chemical-activated bleaching. Immediate adhesion: Both bleaching groups with all three agents tested significantly less SBS than control (laser > chem). 7d adhesion: both bleaching groups with all three agents tested significantly better than immediate, but significantly less SBS than control (no significance between laser/chem) |
Saeedi, R. [74] | 40 human incisors 4 groups (n = 10) (a) 10 LW20/810 nm (b) 10 LW20/940 nm (c) 10 LW20/980 nm (d) 10 non-activated Opalescence boost (conventional control) | Efficacy of laser bleaching with three different wavelengths compared to conventional bleaching | 35% HP Laserwhite20 Layer 1 mm Contact 10.5 min 38% HP Opalescence Boost (20 min) | 810 940 980 | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/not within the aim | No statistically significant difference of ΔΕ between groups |
Saberi, S. [75] | 65 human third molars 5 groups (n = 13) (a) OPB 915 nm 1.5 w (b) OPB 915 nm 2.5 w (c) OPB 445 nm 1 w (d) OPB 445 nm 1.5 w (e) OPB non-activated (control) | Effect of 445/915 nm and different parameters on enamel micro-hardness (Vickers) compared to non-activated bleaching | 38% HP Opalescence Boost Layer n/a Contact time: laser groups 18.5 min non-activated control 20 min | 445 915 | 445 nm: 1 W 30 s 8 mm tip 1 mm distance 445 nm and 915 nm 1.5 W 30 s 8 mm tip 1 mm distance 915 nm 2.5 W 30 s 8 mm tip 1 mm distance Single-tooth handpiece | 55 84 139 | Not tested/not within the aim | 915 nm activation significantly reduces the micro-hardness of the enamel (p = 0.000) No significant difference between control and 445 nm groups |
Gao, Y. [76] | 30 human incisors + 30 premolars 6 groups (n = 10 (5 + 5)) (a) 10 BEyond (b) 10 OpBoost (c) 10 KTP + BE (d) 10 KTP + OPB (e) 10 Nd:YAG + BE (f) 10 Nd:YAG + OPB | Thermal elevation and bleaching efficacy of gel alone or gel irradiated by KTP/Nd:YAG laser | 38% HP Opalescence boost 2 mm layer Contact time 15 min 35% HP Beyond 2 mm layer Contact time 15 min | 532 1064 | 800 mW 5 mm tip 180 s 4.2 w/cm2 Single-tooth handpiece | 84 | 5.13 KTP + OPB 3.71 KTP + BE | KTP + OPB temp sign higher than other All other groups similar Nd:YAG no sign diff to conventional KTP + OPB sign higher ΔΕ |
Abbasi, M. [77] | 50 human incisors 5 groups (n = 10) (a) 10 LW20/810 (b) 10 LW20/940 (c) 10 LW20/980 (d) 10 non-activated OPB (e) 10 untreated | Quantification of HP penetration into pulp chamber during laser vs. conventional bleaching | 35% HP Laserwhite20 Layer 2 mm Contact time laser groups 8.5 min 38% HP Opalescence Boost Non-activated control 15 min | 810 940 980 | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/ not within the aim | No sign. difference of HP into pulp chamber between groups. 980-activated significantly higher HP penetration than 810 nm |
Shahabi, S. [78] | 70 human incisors 7 groups (n = 10) (a) 10 neg control (b) 10 conventional (c) 10 LED (d) 10 KTP (e) 10 Diode (810) (f) 10 Nd:YAG (g) 10 CO2 | Colorimetric evaluation | 38% HP Opalescence Boost 2 mm layer Control: 3 × 20 min Laser: 30 s × 4 1 min interval +3 min resting time after last irradiation = 8 min | 810 KTP Nd:YAG CO2 | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/not within the aim | KTP statistically significant difference Diode 810 and CO2 no sign. difference to conventional |
Lopes, F.C. [79] | 27 human maxillary canines’ dentine slabs (a) gel only (b) laser only (c) laser + gel | Morphology and chemical stability of intracoronal dentine | 35% HP Heydent 1.5 mm layer Control: 4 min Laser only (without gel) 30 s irradiation Laser + gel: 30 s irradiation + 4 min resting | 970 | 0.8 W average 200 μm fiber 2 cm distance 30 s Bare fiber | 90 | Not tested/not within the aim | Chemical stability: No difference Morphology: Laser + gel: sign increase of roughness compared to laser-only) HP-only: sign increased perimeter and area of tubules compared to Laser + HP Laser + HP improved dentin surface protection |
Ashnagar, S. [80] | 60 human third molars 4 groups (n = 15) (a) 15 conventional (b) 15 810 nm (c) 15 Nd:YAG (d) 15 neg control | Evaluation of bleaching methods on enamel susceptibility to caries development | 38% HP Opalescence boost Layer 1.5 mm Control: 3 × 20 min Laser: 30 s × 3 1 min interval +3 min resting time after last irradiation (total contact time 6.5 min) | 810 (1064 Nd:YAG) | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/not within the aim | Enamel microhardness: no difference Diagnodent value: significantly better in diode and conventional groups compared to neg control. |
Kiomars, N. [81] | 40 human premolars (a) 810 nm + JW (b) 980 + JW (c) 810 + LW20 (d) 980 + LW20 (e) conventional OPB | Effectiveness of diode laser during dental bleaching using different wavelengths | 35% HP Heydent white TiO2Gel (JW) Layer 2 mm 35% HP Laserwhite 20 Layer 2 mm Control: Opalescence boost 38% 3 × 20 min Laser-groups 30 s × 3 1 min interval +5 min resting time after last irradiation total 8.5 min | 810 980 | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/not within the aim | Laser had no effect. All techniques resulted in significant tooth whitening (ΔE > 3.3) Conventional group significantly higher ΔΕ (7.58) explained by the 3 × 20 application time |
Mirzaie, M. [82] | 75 human incisors 5 groups (n = 15) (a) 15 810 nm + JW (b) 15 Nd:YAG + JW (c) 15 810 + LW20 (d) 15 Nd:YAG + LW20 (e) 15 conventional Kimia-Gel | Evaluation of enamel micro-roughness | 35% HP Heydent White TiO2 gel (JW) 35% HP Laserwhite 20 35% Kimia-Gel Layer 1 mm 30 s + 1 min interval 30 s + 3 min resting time Total 5 min | 810 (1064 Nd:YAG) | 1.5 W 30 s 1 cm2 Single-tooth handpiece | 45 | Not tested/not within the aim | Both laser-activated groups significantly less microroughness than conventional control LW20 significantly lower microroughness than Heydent |
Bhutani, N. [83] | 30 human incisors 3 groups (n = 10) (a) 10 conventional PolaOfficePlus (b) 10 Light + PolaOfficePlus (c) 10 810 + PolaOfficePlus | Evaluation of the role of light and laser sources in the bleaching ability | 35% HP PolaOffice 2 mm layer Contact time Conventional and light activated 3 × 8 = 24 min Laser activated (6 × 30 + resting time 4 min) × 4 = 28 min | 810 | 7 w 30 s quadrant handpiece 2.8 cm2 area | 72 | Not tested/not within the aim | No significant difference between laser and conventional except at 2 weeks postbleaching |
Al-Karadaghi, T.S. [84] | 30 extracted human premolars 3 groups (n = 10) (a) 10 940 nm + LW20 (b) 10 980 nm + LW20 (c) 10 LW20 control | Whitening efficacy of 940 nm and 980 nm -activated bleaching by analyzing pulp chamber temperature and tooth color change | 35% HP Laserwhite 20 2 mm layer Laser activated (4 × 30 + resting time 2.5 min) Total contact time 20 min | 940 980 | 940 nm 7 W 30 s quadrant handpiece (2.9 cm2) 980 nm 7 W 30 s quadrant handpiece (4 cm2) | 43 72 | 2.63 2.99 | Pulp temp increase: No difference Laser-activated groups stat. significantly better than control in color change, but no difference between them |
Nguyen, C. [85] | 36 human incisors, canines and premolars 6 groups (n = 6) Additionally each tooth-half served as its own non-irradiated control (a) 35% HP vs. 35% HP + KTP (b) 35% HP vs. 35% HP + Er:YAG (c) 35% HP + KTP vs. 35% HP + Er:YAG (d) 6% HP vs. 6% HP + KTP (e) 6% HP vs. 6% HP + Er:YAG (f) 6% HP + KTP vs. 6% HP + Er:YAG | To compare gel temperature, color change and morphology, of 532 nm and 2940 nm with two different concentrations of HP (35% vs. 6%) | 35% HP PolaOffice with dark-violet stain to absorb KTP Thickness n/a All 35% groups 15 min All PolaOffice 6% groups 60 min | 532 | 1 W 30 s 8 mm spot Single-tooth handpiece | 58 | ΔΤ Gel KTP Er:YAG | ΔΕ 35% HP: Er: YAG vs. non-irradiated gel significant difference Other groups no difference ΔΕ 6%Gel: No significant difference between groups ΔΤ gel: Significantly higher for Er:YAG than KTP for both gels 6% and 35% ΔΤ-Gel KTP approximately 13.5 °C after 30 s irradiation for both gels |
Bennett, Z.Y. [86] | 160 human permanent tooth root slices 8 groups (n = 20) (a) control (b) 3LT light alone (c) Smartbleach gel alone (d) 3LT light and Smartbleach gel (e) KTP laser alone (f) KTP laser and Smartbleach gel (g) 3LT light and 3LT gel (h) 3LT gel alone | Effects of 532 KTP and 532 LED on tetracycline stains | 6% HP Rhodamine3LT 30% HP Smartbleach Rhodamine Thickness n/a Contact time: KTP (3 × 10 min) LED (30 min) | 532 | 1 W 30 s 6 mm spot 3 cycles Single-tooth handpiece | 50 | Not tested/not within the aim | Non-activated gels sign better than neg control KTP + Smartbleach significantly better than LED + SB KTP + Smartbleach significantly better than LED + 3LTgel |
Parreiras, S.O. [87] | 77 human premolars 3 groups (n = 17) (a) 17 conventional 35% HP (b) 17 35% HP + LED/laser (c) 17 negative control 10 conventional vs. 10 activated microhardness 6 samples conventional 6 LED/Laser activated 6 negative control SEM Edx Ca/P | Effect of bleaching on permeability, microhardness, and mineral content of enamel | 35% HP Whiteness HP Maxx Thickness n/a For all groups (3 × 15 min) × 2 | LED/laser 810 nm diode 470 nm LED | LED/laser 810 nm diode (60 s × 200 mW/cm2) simultaneously 470 nm (60 s × 350 mW/cm2) | 12 + 21 | No significant differences between groups in any of the evaluated effects | |
Anaraki, S.N. [88] | 15 intact human molars divided into halves = 30 samples 2 groups (n = 15) (a) 15 Conventional 38% HP (OpB) (b) 15 810 + 35% HP (Heydent) | Evaluation of the effects of in-office versus laser bleaching on enamel surface roughness | 35% HP Heydent Thickness 1 mm Contact time [(3 × 15 s) + 1 min interval] × 3 + 3 min resting total: 7:15 min 38% HP Opalescence Boost control Thickness 1 mm Contact time 2 × 10 min | 810 nm | 1.5 W 15 s 1 cm2 Single-tooth handpiece | 22.5 | Not tested/not within the aim | Laser group significantly less surface roughness |
Hahn, P. [89] | 80 human third molars 4 groups (n = 20) (a) Conventional control (b) Halogen + OpB (c) LED + OpB (d) 980 + OpB | Evaluation of color stability of bleaching activated by halogen, laser, LED or chemical activation up to 3 months after treatment | 38% HP Opalescence Thickness n/a Contact time 4 × 15 min all groups Halogen (8 min activation + 7 min resting) × 4 LED (40 s activation + 14:20 min resting) × 4 Laser (30 s activation + 14:30 min resting) × 4 | 980 nm | 6 W 30 s 8 mm single-tooth handpiece | 180 | Halogen 17.93 LED 2.31 laser 13.49 | Color change: no difference between groups (halogen > LED > laser > control without significance) Pulp temperature: Halogen > laser > LED |
Torres, C.R.G. [90] | 90 human premolars (180 halves) 8 test groups (n = 20) (a) Halogen (b) 470/795 (c) 470 LED (d) 470/830 (e) 470 LED (f) 530/795 (g) Negative control (n = 10) (h) Positive control (n = 10) | Effectiveness of color change of hybrid light-emitting diode (LED) and low-intensity infrared diode laser devices for activating dental bleaching and to verify the occurrence of a color regression with time | 35% HP Whiteness HP Maxx 2 mm layer 3 × 10 min | 470 795 470 830 530 795 | 470 nm 9 J/cm2 795 nm 10 J/cm2 470 nm 27 J/cm2 830 nm 44 J/cm2 530 nm 5.7 J/cm2 795 nm 6.8 J/cm2 | 0 10 27 44 | All light-activated groups, except green LED/laser (very low fluence, show significantly higher ΔE than the control group LED/laser and LED no difference | |
Ozyilmaz, O.Y. [91] | 40 maxillary central incisors 4 groups (n = 10) (a) non-activated 35% HP control (b) LED + 35% HP (c) 980 + 35% HP (d) Nd:YAG + 35% HP | Evaluation of influence of light-activation by LED, Diode, Nd:YAG on the pulp temperature increases during bleaching with 35% HP. | 35% HP Whiteness HP Maxx 1 mm layer Activation time 20 s, total contact time 10 min control (15 min) | LED Diode 980 Nd:YAG | 980 nm 4 W 20 s 2 mm distance quadrant handpiece (5.85 cm2 spot size) | 17.7 | Control 0 ± 0 LED 3.2 ± 0.95 980 6.7 ± 1.18 Nd:YAG 10.7 ± 3.82 | The three experimental groups differed significantly from each other (p < 0.05). Diode 980 significantly higher temp elevation than LED and control. Higher than safety threshold |
Citation [Ref] | Randomization | Sample Size Calculation and Required Number Included | Conventional Control Group | Blinding | Parameters of Bleaching Gels Described Appropriately | Parameters of Laser Use Described Appropriately and Calculations Correct | Power Meter Used | Numerical Results Available (Statistics) | Outcome Data Complete | Correct Inter-pretation of Data | Total Score /10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Gurgan, S. [53] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Polydorou, O. [54] | yes | no | yes | no | yes | no | no | yes | yes | yes | 6 |
Ahrari, F. [55] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Surmelioglu, D. [56] | yes | yes | yes | no | yes | yes | no | yes | yes | yes | 8 |
Sürmelioğlu, D. [57] | no | yes | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Oz, O.P. [58] | yes | yes | yes | no | yes | yes | no | yes | yes | yes | 8 |
de Freitas, P.M. [59] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Kossatz, S. [60] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Mena-Serrano, A.P. [61] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Mondelli, R.F. [62] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Mondelli, R.F.L. [63] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Moncada, G. [64] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Bortolatto, J.F. [65] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Karaarslan, E.S. [66] | no | no | yes | no | yes | yes | no | yes | yes | yes | 6 |
De Almeida, L.C.A.G. [67] | yes | no | yes | no | yes | yes | no | yes | yes | yes | 7 |
De Almeida, L.C.A.G. [68] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Mondelli, R.F.L.; [69] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Bortolatto, J.F. [70] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Bersezio, C. [71] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Citation [ref] | Randomization | Sample Size Calculation and Required Number Included | Conventional Control Group | Standardization of Samples | Parameters of Bleaching Gels Described Appropriately | Parameters of Laser Use Described Appropriately and Calculations Correct | Power meter Used | Numerical Results Available (Statistics) | Outcome Data Complete | Correct Inter-Pretation of Data | Total Score /10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Suresh, S. [72] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Cevval Ozkocak, B.B. [73] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Saeedi, R. [74] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Saberi, S. [75] | yes | yes | yes | yes | yes | yes | no | yes | yes | yes | 9 |
Gao, Y. [76] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Abbasi, M. [77] | no | yes | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Shahabi, S. [78] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Lopes, F.C. [79] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Ashnagar, S. [80] | no | no | yes | yes | yes | yes | no | yes | yes | yes | 7 |
Kiomars, N. [81] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Mirzaie, M. [82] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Bhutani, N. [83] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Al-Karadaghi, T.S. [84] | yes | no | yes | yes | yes | yes | yes | yes | yes | no | 8 |
Nguyen, C. [85] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Bennett, Z.Y. [86] | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | 10 |
Parreiras, S.O. [87] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Anaraki, S.N. [88] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Hahn, P. [89] | yes | no | yes | yes | yes | no | no | yes | yes | yes | 7 |
Torres, C.R.G. [90] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Ozyilmaz, O.Y.; [91] | yes | no | yes | yes | yes | yes | no | yes | yes | yes | 8 |
Gel Thickness (mm) | Gel Contact Time (min) | Spot Size/Handpiece | Irradiation Time (s) per Cycle | Fluence (J/cm2) per Cycle | Irradiation Cycles | |
---|---|---|---|---|---|---|
810 nm + (34–38)% H2O2 [53,55] | 1 mm | 16 min | 2.8 cm2/quadrant | 15 | 46 | 8 |
1 mm | 20 min | 400 μm/single-tooth | 30 | 88 | 2 | |
Hybrid + (35–38)% H2O2 [59,60,63,69,70] | 1–2 mm | 24 min | Full arch | 60/60 | 18/18 | 3 |
1 mm | 45 min | Full arch | 60/60 | 12/21 | 3 | |
1–2 mm | 22.5 min | Full arch | 120/120 | 24/42 | 3 | |
1 mm | 24 min | Full arch | 180/180 | 36/63 | 3 | |
Unknown | 32 min | Full arch | 60/60 | 18/18 | 4 | |
Hybrid + 25% H2O2 [63] | 1–2 mm | 22.5 min | Full arch | 120/120 | 24/42 | 3 |
Hybrid + 15% H2O2 with TiO2_ [65] | 1–2 mm | 48 min | Full arch | 60/60 | 18/18 | 3 |
Gel Thickness (mm) | Gel Contact Time (min) | Spot Size/Handpiece | Irradiation Time (s) per Cycle | Fluence (J/cm2) per Cycle | Irradiation Cycles | |
---|---|---|---|---|---|---|
532 nm + (30–38)% [76,78,85,86] | 2 mm | 15 min | 5 mm/single tooth | 180 s | 84 | 1 |
2 mm | 8 min | 1 cm2/single tooth | 30 s | 45 | 3 | |
Unknown | 15 min | 8 mm/single tooth | 30 s | 58 | 3 | |
Unknown | 30 min | 6 mm/single tooth | 30 s | 50 | 3 | |
810 nm + (35–38)% [82,88] | 1 mm | 5 min | 1 cm2/single tooth | 30 s | 45 | 3 |
1 mm | 7.15 min | 1 cm2/single tooth | 15 s | 22.5 | 9 | |
940 nm + (35–38)% [72,84] | Unknown | 17 min | 2.8 cm2/quadrant | 30 s | 70 | 4 |
2 mm | 20 min | 2.9 cm2/quadrant | 30 s | 43 | 4 | |
970 nm + 35% [79] | 1.5 mm | 4.5 min | 200 μm fiber | 30 s | 90 | 1 |
980 nm + (35–38)% [84] | 2 mm | 20 min | 4 cm2/quadrant | 30 s | 72 | 4 |
LED/laser hybrid + 35% [90] | 2 mm | 30 min | Full arch | 60 s | 9/10 (470–795 nm) | 3 |
27/44 (470–830 nm) | 3 |
Reference | Wavelength (nm) | Bleaching Gel (Product Name) | Fluence (J/cm2) | Irradiation Time (Sec) | Pulp Temperature Increase (°C) |
---|---|---|---|---|---|
Gao [76] | 532 | Opalescence Boost | 84 | 20 | 5.13 |
532 | Beyond | 84 | 20 | 3.71 | |
Ozyilmaz [91] | 980 | Whiteness HP | 17.7 | 20 | 6.7 |
Hahn [89] | 980 | Opalescence Xtra Boost | 180 | 30 | 14.06 |
Al-Karadaghi [84] | 980 | Laserwhite 20 | 72 | 30 | 2.63 |
940 | Laserwhite 20 | 43 | 30 | 1.99 |
Parameter Examined | Color Change | Sensitivity |
---|---|---|
Gel concentration (median H2O2 dose grade) | p = 0.007 | ns |
Gel thickness | ns | ns |
Contact time (min) | p = 0.069 | ns |
Fluence | ns | ns |
Wavelength (nm) | ns | ns |
Handpiece type | ns | ns |
Parameter Examined | Color Change |
---|---|
Gel thickness | ns |
Contact time | ns |
Wavelength | ns |
Handpiece type | ns |
Fluence | ns |
Parameter Examined | Hard Tissue Alterations |
---|---|
Test group wavelength | ns |
Handpiece type | ns |
Gel thickness | ns |
Fluence test group | ns |
Difference in gel contact time | p = 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnostaki, E.; Mylona, V.; Parker, S.; Cronshaw, M.; Grootveld, M. Assessing the Viability of Laser-Activated Dental Bleaching Compared to Conventional In-Office Bleaching Methods: A Systematic Review of Clinical and In Vitro Studies. Appl. Sci. 2023, 13, 12459. https://doi.org/10.3390/app132212459
Anagnostaki E, Mylona V, Parker S, Cronshaw M, Grootveld M. Assessing the Viability of Laser-Activated Dental Bleaching Compared to Conventional In-Office Bleaching Methods: A Systematic Review of Clinical and In Vitro Studies. Applied Sciences. 2023; 13(22):12459. https://doi.org/10.3390/app132212459
Chicago/Turabian StyleAnagnostaki, Eugenia, Valina Mylona, Steven Parker, Mark Cronshaw, and Martin Grootveld. 2023. "Assessing the Viability of Laser-Activated Dental Bleaching Compared to Conventional In-Office Bleaching Methods: A Systematic Review of Clinical and In Vitro Studies" Applied Sciences 13, no. 22: 12459. https://doi.org/10.3390/app132212459
APA StyleAnagnostaki, E., Mylona, V., Parker, S., Cronshaw, M., & Grootveld, M. (2023). Assessing the Viability of Laser-Activated Dental Bleaching Compared to Conventional In-Office Bleaching Methods: A Systematic Review of Clinical and In Vitro Studies. Applied Sciences, 13(22), 12459. https://doi.org/10.3390/app132212459