Resource Scheduling Method for Equipment Maintenance Based on Dynamic Pricing Model in Cloud Manufacturing
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Related Works
1.3. Contributions
1.4. Paper Organization
2. Problem Formulation
2.1. Problem Formulation with the Extended E-CARGO Model
2.2. Dynamic Pricing Model
2.3. Benefit Evaluation Model for Platform and User
2.4. Resource Allocation Model Based on Platform and User Satisfaction
3. Resource Scheduling Process Based on a Genetic Algorithm
3.1. Genetic Algorithm Flow
3.2. Detailed Design of the Genetic Algorithm
- Traverse x = 1 for the allele crossover.
- If x > lj, the crossing ends; otherwise, go to step 3.
- If , this indicates that s1 does not use this number, and the x position of s1 is directly assigned as hj2x. If , this indicates that s1 has used the number, and the x position of s1 randomly selects a number from NHs1 for assignment.
- Update the sets Hs1 and NHs1.
- If , this indicates that s2 does not use this number, and the x position of s2 is directly assigned as hj1x. If , this indicates that s2 has used this number, and the x position of s2 randomly selects a number from NHs2 for assignment.
- Update the sets Hs2 and NHs2.
- x + 1, go to step 2.
4. Experimental Evaluation and Performance Analysis
4.1. Experiment Scenario
4.2. Concerning the Benefit of the Cloud Manufacturing Platform
4.3. Concerning Users’ Demands and Satisfaction
4.4. Concerning Both Users’ Demands and Cloud Manufacturing Platform Benefits
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rakic, S.; Medic, N.; Leoste, J.; Vuckovic, T.; Marjanovic, U. Development and future trends of digital product-service systems: A bibliometric analysis approach. Appl. Syst. Innov. 2023, 6, 89. [Google Scholar] [CrossRef]
- Haghnegahdar, L.; Joshi, S.S.; Dahotre, N.B. From IoT-based cloud manufacturing approach to intelligent additive manufacturing: Industrial Internet of Things-an overview. Int. J. Adv. Manuf. Technol. 2022, 119, 1461–1478. [Google Scholar] [CrossRef]
- Bastos, T.; Salvadorinhoa, J.; Teixeira, L. UpSkill@Mgmt 4.0-a digital tool for competence management: Conceptual model and a prototype. Int. J. Ind. Eng. Manag. 2022, 4, 225–238. [Google Scholar] [CrossRef]
- Zhen, C.; Zhan, D.; Zhao, X.; Hai, W. Multitask oriented virtual resource integration and optimal scheduling in cloud manufacturing. J. Appl. Math. 2014, 2014, 369350. [Google Scholar]
- Laili, Y.J.; Lin, S.; Tang, D.Y. Multi-phase integrated scheduling of hybrid tasks in cloud manufacturing environment. Robot. Comput. Integr. Manuf. 2020, 61, 101850. [Google Scholar] [CrossRef]
- Liu, Y.G.; Zhang, L.; Wang, L.; Zhong, R.Y. Workload-based multi-task scheduling in cloud manufacturing. Robot. Comput. Integr. Manuf. 2017, 45, 3–20. [Google Scholar] [CrossRef]
- Li, F.; Liao, T.W.; Zhang, L. Two-level multi-task scheduling in a cloud manufacturing environment. Robot. Comput. Integr. Manuf. 2019, 56, 127–139. [Google Scholar] [CrossRef]
- Yin, L.; Luo, J.; Luo, H. Tasks Scheduling and Resource Allocation in Fog Computing Based on Containers for Smart Manufacturing. IEEE Trans. Ind. Inform. 2018, 14, 4712–4721. [Google Scholar] [CrossRef]
- Biplob, P.; Muzaffar, R. Zero-trust model for smart manufacturing industry. Appl. Sci. 2023, 13, 221. [Google Scholar]
- Alice Elizabeth, M.; Khumbulani, M. Blockchain-based cloud manufacturing SCM system for collaborative enterprise manufacturing: A case study of transport manufacturing. Appl. Sci. 2022, 12, 8664. [Google Scholar]
- Yang, D.; Liu, Q.; Li, J.; Jia, Y. Multi-objective optimization of service selection and scheduling in cloud manufacturing considering environmental sustainability. Sustainability 2020, 12, 7733. [Google Scholar] [CrossRef]
- Akbaripour, H.; Houshmand, M.; van Woensel, T.; Mutlu, N. Cloud manufacturing service selection optimization and scheduling with transportation considerations: Mixed-integer programming models. Int. J. Adv. Manuf. Technol. 2018, 95, 43–70. [Google Scholar] [CrossRef]
- Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Service load balancing, task scheduling and transportation optimisation in cloud manufacturing by applying queuing system. Enterp. Inf. Syst. 2019, 13, 865–894. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Wang, Y. Robustness optimization of cloud manufacturing process under various resource substitution strategies. Appl. Sci. 2023, 13, 7418. [Google Scholar] [CrossRef]
- Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Cloud manufacturing: Challenges, recent advances, open research issues, and future trends. Int. J. Adv. Manuf. Technol. 2019, 102, 3613–3639. [Google Scholar] [CrossRef]
- Vahedi-Nouri, B.; Tavakkoli-Moghaddam, R.; Hanzálek, Z.; Arbabi, H.; Rohaninejad, M. Incorporating order acceptance, pricing and equity considerations in the scheduling of cloud manufacturing systems: Matheuristic methods. Int. J. Prod. Res. 2021, 59, 2009–2027. [Google Scholar] [CrossRef]
- Pan, X.; Ma, J.; Zhao, D. Study on pricing behaviour and capacity allocation of cloud manufacturing service platform. Clust. Comput. 2019, 22, S14701–S14707. [Google Scholar] [CrossRef]
- Moghaddam, S.; Akbaripour, H.; Houshmand, M. Integrated forward and reverse logistics in cloud manufacturing: An agent-based multi-layer architecture and optimization via genetic algorithm. Prod. Eng. 2021, 15, 801–819. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, X.; Liu, X.; Xie, X.; Song, T. An approach to dynamically assigning cloud resource considering user demand and benefit of cloud platform. Computing 2020, 102, 1817–1842. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, M. Role-based collaboration and its kernel mechanisms. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2006, 36, 578–589. [Google Scholar]
- Zhu, H. Maximizing Group performance while minimizing budget. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 633–645. [Google Scholar] [CrossRef]
- Lu, F.; Hu, X.; Zhao, B.; Jiang, X.; Liu, D.; Lai, J.; Wang, Z. Review of the research progress in combat simulation software. Appl. Sci. 2023, 13, 5571. [Google Scholar] [CrossRef]
- Dayoub, N.; Stashevskiy, A.; Elroba, S.M.; Elshahate, M.R. Application of fuzzy theory in project scheduling. J. Phys. Conf. Ser. 2020, 1687, 012011. [Google Scholar] [CrossRef]
- Singh, S.K.; Abolghasemi, V.; Anisi, M.H. Fuzzy logic with deep learning for detection of skin cancer. Appl. Sci. 2023, 13, 8927. [Google Scholar] [CrossRef]
- Argoneto, P.; Renna, P. Supporting capacity sharing in the cloud manufacturing environment based on game theory and fuzzy logic. Enterp. Inf. Syst. 2016, 10, 193–210. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Tao, F.; Ren, L.; Liu, Y.; Zhang, Z. A modeling and description method of multidimensional information for manufacturing capability in cloud manufacturing system. Int. J. Adv. Manuf. Technol. 2013, 69, 961–975. [Google Scholar] [CrossRef]
- Li, B.; Yang, Y.; Su, J.; Liang, Z.; Wang, S. Two-sided matching decision-making model with hesitant fuzzy preference information for configuring cloud manufacturing tasks and resources. J. Intell. Manuf. 2020, 31, 2033–2047. [Google Scholar] [CrossRef]
- Hu, K.; Jin, J.; Zheng, F.; Weng, L.; Ding, Y. Overview of behavior recognition based on deep learning. Artif. Intell. Rev. 2022, 56, 1833–1865. [Google Scholar] [CrossRef]
- Hu, K.; Ding, Y.; Jin, J.; Xia, M.; Huang, H. Multiple attention mechanism graph convolution HAR model based on coordination theory. Sensors 2022, 22, 5259. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Xu, Q.; Wang, X.; Zhang, R.; Huang, L. Study of the influence of aspect ratios on hydrodynamic performance of a symmetrical elliptic otter board. Symmetry 2022, 14, 1566. [Google Scholar] [CrossRef]
- Sayed, O.R.; Aly, A.A.; Zhang, S. Intuitionistic fuzzy topology based on intuitionistic fuzzy logic. Symmetry 2022, 14, 1613. [Google Scholar] [CrossRef]
- Sajadi, S.M.; Alizadeh, A.; Zandieh, M.; Tavan, F. Robust and stable flexible job shop scheduling with random machine breakdowns: Multi-objectives genetic algorithm approach. Int. J. Math. Oper. Res. 2019, 14, 268–289. [Google Scholar] [CrossRef]
- Hou, J.; Du, J.; Chen, Z. Time-optimal Trajectory planning for the manipulator based on improved non-dominated sorting genetic algorithm II. Appl. Sci. 2023, 13, 6757. [Google Scholar] [CrossRef]
- Snauwaert, J.; Vanhoucke, M. A new algorithm for resource-constrained project scheduling with breadth and depth of skills. Eur. J. Oper. Res. 2021, 292, 43–59. [Google Scholar] [CrossRef]
- Li, Y.X.; Yao, X.F. Cloud manufacturing service composition and formal verification based on extended process calculus. Adv. Mech. Eng. 2018, 10, 6. [Google Scholar] [CrossRef]
- Mauricio, C.V.; Alejandro, Á.; Eduardo, V.P.; Luis, E.V. Technological Acceptance of Industry 4.0 by Students from Rural Areas. Electronics 2022, 11, 2109. [Google Scholar]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, 141–161. [Google Scholar] [CrossRef]
Parameter | POP | MAX | CR | MR |
---|---|---|---|---|
Value | 100 | 150 | 0.75 | 0.1 |
Parameter | τ | wt | wc | kt | kp |
---|---|---|---|---|---|
No. 1 | 1 | 0.9 | 0.1 | 0.5 | 0.5 |
No. 2 | 1 | 0.7 | 0.3 | 0.5 | 0.5 |
No. 3 | 1 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 4 | 1 | 0.3 | 0.7 | 0.5 | 0.5 |
No. 5 | 1 | 0.1 | 0.9 | 0.5 | 0.5 |
Parameter | τ | wt | wc | kt | kp |
---|---|---|---|---|---|
No. 6 | 0 | 0.5 | 0.5 | 0.9 | 0.1 |
No. 7 | 0 | 0.5 | 0.5 | 0.7 | 0.3 |
No. 8 | 0 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 9 | 0 | 0.5 | 0.5 | 0.3 | 0.7 |
No. 10 | 0 | 0.5 | 0.5 | 0.1 | 0.9 |
Parameter | τ | wt | wc | kt | kp |
---|---|---|---|---|---|
No. 11 | 0.1 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 12 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 13 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 14 | 0.7 | 0.5 | 0.5 | 0.5 | 0.5 |
No. 15 | 0.9 | 0.5 | 0.5 | 0.5 | 0.5 |
Parameter | aft | bft | afc | bfc | at | bt | ap | bp |
---|---|---|---|---|---|---|---|---|
No. 16 | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 7 |
No. 17 | 4 | 9 | 4 | 9 | 2 | 7 | 2 | 7 |
No. 18 | 1 | 5 | 1 | 5 | 2 | 7 | 2 | 7 |
No. 19 | 2 | 7 | 2 | 7 | 4 | 9 | 4 | 9 |
No. 20 | 2 | 7 | 2 | 7 | 1 | 5 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhou, X.; Xia, Q.; Peng, L. Resource Scheduling Method for Equipment Maintenance Based on Dynamic Pricing Model in Cloud Manufacturing. Appl. Sci. 2023, 13, 12483. https://doi.org/10.3390/app132212483
Wu Y, Zhou X, Xia Q, Peng L. Resource Scheduling Method for Equipment Maintenance Based on Dynamic Pricing Model in Cloud Manufacturing. Applied Sciences. 2023; 13(22):12483. https://doi.org/10.3390/app132212483
Chicago/Turabian StyleWu, Ying, Xianzhong Zhou, Qingfeng Xia, and Lisha Peng. 2023. "Resource Scheduling Method for Equipment Maintenance Based on Dynamic Pricing Model in Cloud Manufacturing" Applied Sciences 13, no. 22: 12483. https://doi.org/10.3390/app132212483
APA StyleWu, Y., Zhou, X., Xia, Q., & Peng, L. (2023). Resource Scheduling Method for Equipment Maintenance Based on Dynamic Pricing Model in Cloud Manufacturing. Applied Sciences, 13(22), 12483. https://doi.org/10.3390/app132212483