A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability
Abstract
:1. Introduction
2. Research Objective and Methodology
- What are the limitations of the existing standard IFC schema that the extension studies attempted to address?
- What are the main approaches used to extend the IFC schema with respect to their respective purposes?
- What are the main approaches used to implement and validate the IFC extensions?
- What are the research gaps, insights, and their implications for future research?
3. Evolution, Architecture, and Implementation of the IFC Schema
3.1. Evolution of the IFC Schema
3.2. Core Architecture
- (1)
- Domain layer:
- (2)
- Shared/Interoperability layer:
- (3)
- Core layer:
- (4)
- Resource layer:
3.3. Inheritance and Objectified Relations
3.4. IDM and MVD for Software Implementation
4. Limitations and Extension Approaches for the IFC Schema
4.1. Limitations of the IFC Schema
- (1)
- Limited coverage:
- (2)
- Lagging behind regional practices and evolving technologies:
- (3)
- Selective implementation of the schema in IFC-compliant software:
- (4)
- Incomplete implementation of domain information needs:
4.2. Approaches for IFC Schema Extension
- (1)
- Entity extensions:
- (2)
- Property extensions:
- (1)
- IfcClassification:
- (2)
- Linkage with the bSDD and OTL:
- (3)
- Linked Data Approach:
5. Evaluation of IFC Schema Extension Cases
5.1. Overview of Extension Cases
5.2. Analysis of Extension Cases via Domains and Sectors
5.3. Analysis of Extension Cases by Product and Process Representations
5.3.1. Detailed Analysis of Extension Approaches in the Architecture Domain
- (1)
- Product-oriented representations:
- -
- Using entity and property extensions.
- (2)
- Process-oriented representations:
- -
- Using entity and property extensions.
- -
- Using property extensions (exclusively).
5.3.2. Detailed Analysis of Extension Approaches in the Infrastructure Domain
- (1)
- Product-oriented representations:
- -
- Using entity and property extensions.
- (2)
- Process-oriented extensions:
- -
- Using entity and property extensions.
- -
- Using property extensions (exclusively).
Extension Approach | Sector | Product- Oriented | Number of Cases | Process Oriented | Number of Cases | Total |
---|---|---|---|---|---|---|
Entity + Property | Tunnel | [57,58,59,60,61,62,63,64] | 8 | [65,66,67] | 3 | 11 |
Bridge | [68,69,70] | 3 | [30,72,73,74,75,76,77] | 7 | 10 | |
Road | [78,79,80] | 3 | [74,81,82] | 3 | 6 | |
Rail | [84,86,87] | 3 | [76,77,85,88] | 3 | 6 | |
Other | [18,19,92,93,96] | 5 | [14,89,90,94,95] | 5 | 10 | |
Property only | Tunnel | - | - | - | - | - |
Bridge | - | - | [71] | 1 | 1 | |
Road | - | - | [83] | 1 | 1 | |
Rail | - | - | - | - | - | |
Other | - | - | [91] | 1 | 1 | |
Total | - | 22 | - | 24 | 46 |
5.3.3. Extension Trends Comparison between Architecture and Infrastructure Domain
5.4. Detailed Analysis of Extension Implementation and Validation Approaches
5.4.1. Analysis of Implementation Approaches
5.4.2. Analysis of Validation Approaches
6. Discussion
6.1. Summary of the Results and Suggestions for Future Work
6.1.1. Main IFC Extension Areas Developed and Extension Approaches Used
6.1.2. Trends Identified through Timeline Analyses
6.1.3. Main Approaches Used for IFC Extensions and Validation
6.1.4. Research Gaps, Implications, and Future Steps
6.2. Future Initiatives for the IFC
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.; Cha, H.; Kim, K.; Shin, D. Development of BIM-based construction document information database structure through the link to the BIM model and construction document information. Korean J. Constr. Eng. Manag. 2015, 16, 43. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254. [Google Scholar] [CrossRef]
- Lee, J.; Moon, H.; Kang, L. Application of blockchain technology to verify reliability of life cycle BIM model for civil engineering project. Korean J. Constr. Eng. Manag. 2021, 22, 116–124. [Google Scholar] [CrossRef]
- Go, H.; Hyun, J.; Lee, J.; Ahn, J. Development of a quantitative risk assessment model by BIM-based risk factor extraction—Focusing on falling accidents. Korean J. Constr. Eng. Manag. 2022, 23, 15–25. [Google Scholar] [CrossRef]
- Criminale, A.; Langar, S. Challenges with BIM implementation: A review of literature. In Proceedings of the 53rd ASC Annual International Conference Proceedings, Fort Lauderdale, FL, USA; 2017; pp. 329–335. [Google Scholar]
- Song, J.; Lee, S.; Yu, J. Comparative analysis of BIM acceptance factors between korea and china. Korean J. Constr. Eng. Manag. 2021, 22, 3–14. [Google Scholar] [CrossRef]
- Kwon, Y.; Ha, D.; Kim, J.; Seo, J.; Shim, H. A study on the improvement of 3D slope modeling for BIM designing site construction. Korean J. Constr. Eng. Manag. 2021, 22, 29–40. [Google Scholar] [CrossRef]
- Ha, D.; Yu, Y.; Choi, J.; Kim, S.; Koo, B. Integrating a Machine learning-based space classification model with an automated interior finishing system in BIM models. Korean J. Constr. Eng. Manag. 2023, 24, 60–73. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.; Yu, Y.; Koo, B. Development of graph based deep learning methods for enhancing the semantic integrity of spaces in BIM models. Korean J. Constr. Eng. Manag. 2022, 23, 45–55. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, J.; Hwang, J.; Kang, H.; Kang, L. Method of deriving activity relationship and location information from BIM model for construction schedule management. Korean J. Constr. Eng. Manag. 2022, 23, 33–44. [Google Scholar]
- ISO 16739-1:201; Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries. ISO: Geneva, Switzerland, 2018.
- Liu, L.; Li, B.; Zlatanova, S.; van Oosterom, P. Indoor navigation supported by the Industry Foundation Classes (IFC): A survey. Autom. Constr. 2021, 121, 103436. [Google Scholar] [CrossRef]
- Vanlande, R.; Nicolle, C.; Cruz, C. IFC and building lifecycle management. Autom. Constr. 2008, 18, 70–78. [Google Scholar] [CrossRef]
- Theiler, M.; Smarsly, K. IFC Monitor–An IFC schema extension for modeling structural health monitoring systems. Adv. Eng. Inform. 2018, 37, 54–65. [Google Scholar] [CrossRef]
- Amor, R. Analysis of the evolving IFC schema. In Proceedings of the 32nd CIB W78 Conference 2015, Eindhoven, The Netherlands, 26–29 October 2015; pp. 39–48. [Google Scholar]
- Al-Sadoon, N.; Scherer, R. IFC semantic extension for dynamic fire safety evacuation simulation. In Proceedings of the 38th CIB W78 Conference 2021, Luxembourg, 11–15 October 2021; pp. 11–15. [Google Scholar]
- Borrmann, A.; Muhic, S.; Hyvärinen, J.; Chipman, T.; Jaud, S.; Castaing, C.; Dumoulin, C.; Liebich, T.; Mol, L. The IFC-Bridge project–Extending the IFC standard to enable high-quality exchange of bridge information models. In Proceedings of the EC3 Conference, Chania, Greece, 10–12 July 2019; Volume 1, pp. 377–386. [Google Scholar]
- Beetz, J.; Van Den Braak, W.; Botter, R.; Zlatanova, S.; De Laat, R. Interoperable data models for infrastructural artefacts–a novel IFC extension method using RDF vocabularies exemplified with quay wall structures for harbors. In eWork and eBusiness in Architecture, Engineering and Construction. Proceedings of the 10th European Conference on Product and Process Modelling, ECPPM 2014, Vienna, Austria, 17–19 September 2014; Taylor and Francis Ltd.: London, UK, 2014; pp. 135–140. [Google Scholar]
- Söbke, H.; Peralta, P.; Smarsly, K.; Armbruster, M. An IFC schema extension for BIM-based description of wastewater treatment plants. Autom. Constr. 2021, 129, 103777. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, J.; Dib, H. BIM interoperability for structure analysis. Constr. Res. Congr. 2018, 2018, 470–479. [Google Scholar] [CrossRef]
- Laakso, M.; Kiviniemi, A. The IFC standard: A review of history, development, and standardization, information technology. ITcon 2012, 17, 134–161. Available online: https://www.itcon.org/2012/9 (accessed on 1 July 2023).
- Golabchi, A.; Kamat, V. Evaluation of industry foundation classes for practical building information modeling interoperability. In Proceedings of the International Symposium on Automation and Robotics in Construction, Montreal, QC, Canada, 11–15 August 2013; Volume 30, pp. 1–10. [Google Scholar]
- Bradley, A.; Li, H.; Lark, R.; Dunn, S. BIM for infrastructure: An overall review and constructor perspective. Autom. Constr. 2016, 71, 139–152. [Google Scholar] [CrossRef]
- Borrmann, A.; Beetz, J.; Koch, C.; Liebich, T.; Muhic, S. Industry foundation classes: A standardized data model for the vendor-neutral exchange of digital building models. In Building Information Modeling: Technology Foundations and Industry Practice; Springer: Berlin/Heidelberg, Germany, 2018; pp. 81–126. [Google Scholar] [CrossRef]
- Liebich, T. IFC4—The new buildingSMART standard. In IC Meeting; bSI Publications: Helsinki, Finland, 2013; pp. 1–25. [Google Scholar]
- ISO 10303-242:2022; Industrial Automation Systems and Integration-Product Data Representation and Exchange. ISO: Geneva, Switzerland, 2022.
- IFC 4.3.2.0 (IFC4X3_ADD2) Development. Available online: https://ifc43-docs.standards.buildingsmart.org/IFC/RELEASE/IFC4x3/HTML/lexical/IfcRelationship.htm (accessed on 13 September 2023).
- Wix, J. Information Delivery Manual: Guide to Components and Development Methods. 2005. Available online: https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf (accessed on 13 September 2023).
- See, R.; Karlshøj, J.; Davis, D. An Integrated Process for Delivering IFC Based Data Exchange. 2012. Available online: https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf (accessed on 13 September 2023).
- Park, S.; Lee, S.; Almasi, A.; Song, J. Extended IFC-based strong form meshfree collocation analysis of a bridge structure. Autom. Constr. 2020, 119, 103364. [Google Scholar] [CrossRef]
- Won, J.; Kim, T.; Yu, J.; Choo, S. Development of the IFC Schema Extension Methodology for Integrated BIM. In Proceedings of the eCAADe 2022 Conference Proceedings, Ghent, Belgium, 13–16 September 2022; p. 339. [Google Scholar]
- Solihin, W.; Eastman, C.; Lee, Y.C. Toward robust and quantifiable automated IFC quality validation. Adv. Eng. Inform. 2015, 29, 739–756. [Google Scholar] [CrossRef]
- Jeong, Y.; Eastman, C.; Sacks, R.; Kaner, I. Benchmark tests for BIM data exchanges of precast concrete. Autom. Constr. 2009, 18, 469–484. [Google Scholar] [CrossRef]
- Weise, M.; Katranuschkov, P.; Liebich, T.; Scherer, R. Structural analysis extension of the IFC modelling framework. J. Inf. Technol. Constr. (ITcon) 2003, 8, 181–200. Available online: https://www.itcon.org/2003/14 (accessed on 1 July 2023).
- Eastman, C. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Son, S.; Lee, G.; Jung, J.; Kim, J.; Jeon, K. Automated generation of a model view definition from an information delivery manual using idmXSD and buildingSMART data dictionary. Adv. Eng. Inform. 2022, 54, 101731. [Google Scholar] [CrossRef]
- Borrman, A.; Amann, J.; Chipman, T.; Hyvarinen, J.; Liebich, T.; Muhic, S.; Mol, L.; Plume, J.; Scarponcini, P. IFC Infra Overall Architecture Project Documentation and Guidelines. 2017. Available online: https://www.buildingsmart.org/wp-content/uploads/2017/07/08_bSI_OverallArchitecure_Guidelines_final.pdf (accessed on 13 September 2023).
- Motamedi, A.; Soltani, M.M.; Setayeshgar, S.; Hammad, A. Extending IFC to incorporate information of RFID tags attached to building elements. Adv. Eng. Inform. 2016, 30, 39–53. [Google Scholar] [CrossRef]
- Petronijević, M.; Višnjevac, N.; Praščević, N.; Bajat, B. The extension of IFC for supporting 3D cadastre LADM geometry. ISPRS Int. J. Geo-Inf. 2021, 10, 297. [Google Scholar] [CrossRef]
- Pang, Y.; Miao, L.; Zhou, L.; Lv, G. An Indoor Space Model of Building Considering Multi-Type Segmentation. ISPRS Int. J. Geo-Inf. 2022, 11, 367. [Google Scholar] [CrossRef]
- Kim, T.; Won, J.; Hong, S.; Choo, S. Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis. J. KIBIM 2022, 12, 70–79. [Google Scholar] [CrossRef]
- Kim, I.; Seo, J. Development of IFC modeling extension for supporting drawing information exchange in the model-based construction environment. J. Comput. Civ. Eng. 2008, 22, 159–169. [Google Scholar] [CrossRef]
- Jaly-Zada, A.; Koch, C.; Tizani, W. IFC extension for design change management. In Proceedings of the 32nd CIB W78 Conference 2015, Eindhoven, The Netherlands, 26–29 October 2015; pp. 327–335. [Google Scholar]
- Krijnen, T.; Beetz, J. An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models. Adv. Eng. Inform. 2017, 33, 473–490. [Google Scholar] [CrossRef]
- Benjamin, S.; Christopher, R.; Carl, H. Feature modeling for configurable and adaptable modular buildings. Adv. Eng. Inform. 2022, 51, 101514. [Google Scholar] [CrossRef]
- Seo, J.; Kim, I. Development of IFC modeling extension for the exchange and sharing of design guideline information in the architectural design phase. Korean J. Comput. Des. Eng. 2008, 13, 352–361. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02317495 (accessed on 10 July 2023).
- Zhiliang, M.; Zhenhua, W.; Wu, S.; Zhe, L. Application and extension of the IFC standard in construction cost estimating for tendering in China. Autom. Constr. 2011, 20, 196–204. [Google Scholar] [CrossRef]
- Hassanain, M.; Froese, T.; Vanier, D. Development of a maintenance management model based on IAI standards. Artif. Intell. Eng. 2001, 15, 177–193. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Cheng, J.; Wang, Q.; Gan, V. BIM-based framework for automatic scheduling of facility maintenance work orders. Autom. Constr. 2018, 91, 15–30. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, X.; Parlikad, A.; Schooling, J. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Autom. Constr. 2020, 118, 103277. [Google Scholar] [CrossRef]
- Lee, S. A study of Development of 2DExtension Model for IFC 2.x. Master’s Thesis, Kyung Hee University, Seoul, Republic of Korea, 2002. [Google Scholar]
- Kim, Y. Development of Open BIM Extension Property Structure for Code Checking at Architectural Design Phase. Master’s Thesis, Kyung Hee University, Seoul, Republic of Korea, 2015. [Google Scholar]
- Bae, J. Development of Code Checking for Building Safety Maintenance Utilizing IFC Property Set Extension. Master’s Thesis, Kyung Hee University, Seoul, Republic of Korea, 2017. [Google Scholar]
- Kim, I.; Kim, Y.; Choi, J. Development of IFC property extension structure for automated building code checking in the architectural design phase. Korean J. Comput. Des. Eng. 2018, 23, 233–244. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, W.; Chen, K.; Wang, Q. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 2020, 112, 103087. [Google Scholar] [CrossRef]
- Benndorf, G.; Réhault, N.; Clairembault, M.; Rist, T. Describing HVAC controls in IFC–Method and application. Energy Procedia 2017, 122, 319–324. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Park, J. Development of an IFC-based data schema for the design information representation of the NATM tunnel. KSCE J. Civ. Eng. 2016, 20, 2112–2123. [Google Scholar] [CrossRef]
- Koch, C.; Vonthron, A.; König, M. A tunnel information modelling framework to support management, simulations and visualisations in mechanised tunnelling projects. Autom. Constr. 2017, 83, 78–90. [Google Scholar] [CrossRef]
- Yabuki, N. Representation of caves in a shield tunnel product model. In eWork and eBusiness in Architecture, Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2008; pp. 559–564. [Google Scholar] [CrossRef]
- Jubierre, J.; Borrmann, A. A Multi-Scale Product Model for Shield Tunnels Based on the Industry Foundation Classes; Technische Universität München: Munich, Germany, 2014. [Google Scholar]
- Vilgertshofer, S.; Jubierre, J.; Borrmann, A. IfcTunnel—A proposal for a multi-scale extension of the IFC data model for shield tunnels under consideration of downward compatibility aspects. In eWork and eBusiness in Architecture, Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2016; pp. 175–182. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Ding, L.; Love, P. Utilizing IFC for shield segment assembly in underground tunneling. Autom. Constr. 2018, 93, 178–191. [Google Scholar] [CrossRef]
- Huang, M.; Zhu, H.; Ninić, J.; Zhang, Q. Multi-LOD BIM for underground metro station: Interoperability and design-to-design enhancement. Tunn. Undergr. Space Technol. 2022, 119, 104232. [Google Scholar] [CrossRef]
- Hegemann, F.; Lehner, K.; König, M. IFC-based product modeling for tunnel boring machines. In Proceedings of the 9th European Conference on Product and Process Modeling, Reykjavik, Iceland, 25–27 July 2012; pp. 289–296. [Google Scholar]
- Amann, J.; Borrmann, A.; Hegemann, F.; Jubierre, J.; Flurl, M.; Koch, C.; König, M. A refined product model for shield tunnels based on a generalized approach for alignment representation. In Proceedings of the ICCBEI, Tokyo, Japan, 7–8 November 2013; pp. 1–8. [Google Scholar]
- Jang, S.; Kwon, T.; Lee, S. A method of tunnel information modeling reflecting curved alignment and model-based information management using IFC data schema. J. Comput. Struct. Eng. Inst. Korea 2017, 30, 549–558. [Google Scholar] [CrossRef]
- Chae, J.; Choi, H. A study on IFC extended and GIS linkage using BIM as facility management. J. KIBIM 2022, 12, 1–17. [Google Scholar] [CrossRef]
- Yabuki, N.; Lebegue, E.; Gual, J.; Shitani, T.; Zhantao, L. International collaboration for developing the bridge product model IFC-Bridge. In Proceedings of the 11th International Conference on Computing in Civil and Building Engineering, Montreal, QC, Cannada, 14–16 June 2006. [Google Scholar]
- Lee, S.; Jeong, Y. A system integration framework through development of ISO 10303-based product model for steel bridges. Autom. Constr. 2006, 15, 212–228. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Kim, H.; Lee, S. An extended data model based on the IFC for representing detailed design information of steel bridge members. J. Comput. Struct. Eng. Inst. Korea 2008, 21, 253–263. [Google Scholar]
- Lee, S.; Park, S.; Park, K. IFC Property Set-based approach for generating semantic information of steel box girder bridge components. KSCE J. Civ. Environ. Eng. Res. 2014, 34, 687–697. [Google Scholar] [CrossRef]
- Ji, Y.; Beetz, J.; Bonsma, P.; Bisbet, N.; Katz, C.; Borrmann, A. Integration of parametric geometry into IFC-Bridge. In Proceedings of the 23th Forum Bauinformatik, Cork, Ireland, 12–14 September 2011; pp. 1–8. [Google Scholar]
- Ji, Y.; Borrmann, A.; Beetz, J.; Obergrießer, M. Exchange of parametric bridge models using a neutral data format. J. Comput. Civ. Eng. 2013, 27, 593–606. [Google Scholar] [CrossRef]
- Floros, G.; Boyes, G.; Owens, D.; Ellul, C. Developing IFC for infrastructure: A case study of three highway entities. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 59–66. [Google Scholar] [CrossRef]
- Tanaka, F.; Hori, M.; Onosato, M.; Date, H.; Kanai, S. Bridge information model based on IFC standards and web content providing system for supporting an inspection process. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering (ICCCBE 2016), Osaka, Japan, 6–8 July 2016; pp. 1140–1147. [Google Scholar]
- Erdene, K.; Kwon, T.; Lee, S. Integration of extended IFC-BIM and ontology for information management of bridge inspection. J. Comput. Struct. Eng. Inst. Korea 2020, 33, 411–417. [Google Scholar] [CrossRef]
- Kwon, T. Extended IFC-Based Information Model for Sensor Data Analysis of Infrastructure: Focused on Railway Tracks and Bridges. Doctoral Dissertation, Yonsei University, Seoul, Republic of Korea, 2022. [Google Scholar]
- Lee, S.; Kim, B. IFC extension for road structures and digital modeling. Procedia Eng. 2011, 14, 1037–1042. [Google Scholar] [CrossRef]
- Cho, G.; Won, J.; Kim, J. The Extension of IFC model schema for geometry part of road drainage facility. J. Korea Acad. -Ind. Coop. Soc. 2013, 14, 5987–5992. [Google Scholar] [CrossRef]
- Cho, G.; Ju, K.B. Extension of the IFC schema for road subsidiary Facility. J. Korea Acad. -Ind. Coop. Soc. 2014, 15, 7385–7392. [Google Scholar] [CrossRef]
- Amann, J.; Singer, D.; Borrmann, A. Extension of the upcoming IFC alignment standard with cross sections for road design. In Proceedings of the ICCBEI, Tokyo, Japan; 2015; pp. 22–24. [Google Scholar]
- Ait-Lamallam, S.; Yaagoubi, R.; Sebari, I.; Doukari, O. Extending the ifc standard to enable road operation and maintenance management through OpenBIM. ISPRS Int. J. Geo-Inf. 2021, 10, 496. [Google Scholar] [CrossRef]
- Won, J.; Shin, J.; Moon, H.; Ju, K. IFC-based standardization methods of quantity take-off properties for road construction cost estimating. J. Korean Inst. Commun. Inf. Sci. 2019, 44, 2239–2251. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Kwon, T. Civil infrastructure information modeling method based on extended IFC entities using BIM authoring software. J. Comput. Struct. Eng. Inst. Korea 2017, 30, 77–86. [Google Scholar] [CrossRef]
- Kwon, T.; Park, S.; Jang, Y.; Lee, S. Design of railway track model with three-dimensional alignment based on extended industry foundation classes. Appl. Sci. 2020, 10, 3649. [Google Scholar] [CrossRef]
- Pu, H.; Fan, X.; Schonfeld, P.; Li, W.; Zhang, W.; Wei, F.; Wang, P.; Li, C. Extending IFC for multi-component subgrade modeling in a railway station. Autom. Constr. 2022, 141, 104433. [Google Scholar] [CrossRef]
- Kwon, T.; Park, S.; Seo, K.; Lee, S. The information modeling method based on extended IFC for alignment-based objects of railway track. J. Comput. Struct. Eng. Inst. Korea 2018, 31, 339–346. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Y.; Wu, J.; Gu, M.; Yang, X.; Li, H. IFC railway: A semantic and geometric modeling approach for railways based on IFC. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016; Volume 6, pp. 6–8. [Google Scholar]
- Xu, Z.; Wang, X.; Xiao, Y.; Yuan, J. Modeling and performance evaluation of PPP projects utilizing IFC extension and enhanced matter-element method. Eng. Constr. Archit. Manag. 2020, 27, 1763–1794. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Wong, B.; Chan, C.; Cheng, J.; Gan, V. BIM-BVBS integration with openBIM standards for automatic prefabrication of steel reinforcement. Autom. Constr. 2021, 125, 103654. [Google Scholar] [CrossRef]
- Xu, Z.; Rao, Z.; Gan, V.; Ding, Y.; Wan, C.; Liu, X. Developing an extended IFC data schema and mesh generation framework for finite element modeling. Adv. Civ. Eng. 2019, 2019, 1434093. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, P. Implementation of BIM+ WebGIS Based on Extended IFC and Batched 3D Tiles Data: An Application in RCC Gravity Dam for Republication of Design Change Model. KSCE J. Civ. Eng. 2021, 25, 4045–4064. [Google Scholar] [CrossRef]
- Kim, C.; Moon, H.; Won, J.S.; Ju, K. Extention of IFC core schema for earth work object. In Proceedings of the Society of CAD/CAM Conference, Dubai, United Arab Emirates, 9–10 May 2014; pp. 727–730. [Google Scholar]
- Ding, L.; Li, K.; Zhou, Y.; Love, P. An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Autom. Constr. 2017, 84, 96–110. [Google Scholar] [CrossRef]
- Jaud, Š.; Clemen, C.; Muhič, S.; Borrmann, A. Georeferencing in IFC: Meeting the requirements of infrastructure and building industries. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 10, 145–152. [Google Scholar] [CrossRef]
- Won, J.; Shin, J.; Moon, H.; Ju, K. The development method of IFC extension elements using work breakdown structure in river fields. J. Korea Acad.-Ind. Coop. Soc. 2018, 19, 77–84. [Google Scholar] [CrossRef]
- van Berlo, L.; Krijnen, T.; Tauscher, H.; Liebich, T.; van Kranenburg, A.; Paasiala, P. Future of the Industry Foundation Classes: Towards IFC 5. In Proceedings of the 38th International Conference of CIB W78, Luxembourg, 11–15 October 2021; pp. 123–137. [Google Scholar]
- Wang, Z.; Ouyang, B.; Sacks, R. Graph-based inter-domain consistency maintenance for BIM models. Autom. Constr. 2023, 154, 104979. [Google Scholar] [CrossRef]
Predefined Subclasses | Description |
---|---|
IfcRelAssigns | Expresses the relationships that are established when an object needs another object’s service |
IfcRelAssociates | Establishes an association between objects or properties and associated information |
IfcRelConnects | Defines connectivity relationships between objects |
IfcRelDeclares | Establishes an association between one-to-many objects or property templates and the associated information |
IfcRelDecomposes | Defines the general concept of elements being composed or decomposed |
IfcRelDefines | Defines the relationships between property set and objects |
Domain | Sector | No. of Cases | Total |
---|---|---|---|
Architecture | General building | 18 | 20 |
MEP | 2 | ||
Infrastructure | Tunnel | 11 | 46 |
Bridge | 11 | ||
Road | 7 | ||
Railway | 6 | ||
General structure | 4 | ||
Dam | 1 | ||
Earthworks | 1 | ||
Foundation construction | 1 | ||
Georeferencing | 1 | ||
Harbor | 1 | ||
Plants | 1 | ||
River facility | 1 |
Domain | Sector | Objective | Main Purpose | Extension Approach | ||||
---|---|---|---|---|---|---|---|---|
Product Oriented | Process Oriented | Entity Extension | Example | Property Extension | Example | |||
Architecture | General building | Define components for RFID [38] | O | O | IfcRfidSystem | O | Pset_ElectricalDeviceCommon | |
Define space [39,40] | O | O | IfcBuildingPropertyUnit | O | Representation, BoundedBy | |||
Define fire [41] | O | IfcFireSafetyElement | O | Pset_FireSpread_F | ||||
Link 2D drawing information [42] | O | O | IfcPresentRepresentation | O | Symbol color, text style | |||
Link structural analysis information [34] | O | O | IfcStructuralActivity | O | Material, profile | |||
Incorporate design changes [43] | O | O | IfcRelElementChange | |||||
Define the concept for the point cloud model [44] | O | O | IfcPointCloud | O | Vector, colors | |||
Define features for modular buildings [45] | O | O | IfcConnectionPointJointType | O | PointOnRelatingElement | |||
Link design guideline information [46] | O | O | Pset_SiteCommon | |||||
Define concepts and taxonomies for construction cost [47] | O | O | Pset_in-situ concrete wall | |||||
Link O&M information [48,49,50] | O | O | IfcMaintenanceHistory | O | MaintenanceType | |||
Define a structure for building code compliance [51,52,53,54] | O | O | Pset_BuildingCodeChecking | |||||
MEP | Define the type of sensor components [55] | O | O | Temperature sensor, Flowrate sensor | ||||
Define control function for HVAC [56] | O | O | IfcThermodynamicTemperatureMeasure | O | Pset_HeatingCurve | |||
Infrastructure | Tunnel | Define components for NATM tunnel [57,58] | O | O | IfcConcreteLiningProfileDef | O | PSET_ConcreteLining | |
Define components for the TBM tunnel and excavation machine [59,60,61,62,63,64] | O | O | IfcRingSegmentElement | O | tbmHeadType | |||
Define alignment concept [65,66,67] | O | O | IfcHorizontalAlignmentLine | O | Space type (FullTunnelSpace, Interior space) | |||
Bridge | Define elements for bridge components [68] | O | O | IfcBridgeElement | O | ConcreteProperties, RebarProperties | ||
Define components for steel bridge [69,70,71] | O | O | IfcBridgeProfileDef | O | Characteristic information of bridge | |||
Define the parametric geometry concept [72,73] | O | O | IfcParametricProfileDef | O | OverallHeight | |||
Link asset management information [74] | O | O | IfcTransportationNetwork | O | Pset_TransportationNetworkCommon | |||
Link inspection information [75,76,77] | O | O | IfcMeasuredRegion | O | RelatingRegion | |||
Incorporate finite element analysis information [30] | O | O | IfcBridgeSpan | O | Continuity | |||
Road | Define road component [78] | O | O | IfcRoadSpatialElement | O | Partial type | ||
Define components for drainage facility [79] | O | O | IfcGutter | O | Pset_GutterCommon | |||
Define components for subsidiary facility [80] | O | O | IfcSubsidiaryFacility | O | Pset_RoadSignEquipmentCommon | |||
Define alignment concept [81] | O | O | IfcAlignment2DVertical | O | TangentialContinuity | |||
Link asset management information [74] | O | O | IfcTransportationNetwork | O | Pset_TransportationNetworkCommon | |||
Link O&M information [82] | O | O | IfcTechnicalSolution | O | Pset_ProcessDescriptionCommon | |||
Define quantity take-off concepts [83] | O | O | Pset_CulvertCommon, Qto_CulvertCustomQuantities_2WayWaterwayType _K | |||||
Rail | Define components for rail tracks and ties [84,85] | O | O | IfcTrackStructureElement | O | PSET4RMODEL | ||
Define components for subgrades [86] | O | O | IfcSubgrade | O | SubComponent | |||
Define alignment concept [87] | O | O | IfcTrackTurnout | O | IfcTrackTurnout TypeEnum | |||
Define semantic and parametric concepts [88] | O | O | IfcCurveSegment2D | O | StartPoint, SegmentLength | |||
Link inspection information [77] | O | IfcTrackFastening | O | Pset_RailCommon | ||||
General structure | Link structural health monitoring information [14] | O | O | IfcSensorNetwork | O | NetworkTopology | ||
Define the concept for project performance evaluation indicator of PPP [89] | O | O | PSet_ Performance evaluation during construction period | |||||
Link product information and work control information for rebars [90] | O | O | IfcReinforcingSpiralType | O | SpiralLength, SpiralDiameter | |||
Define the concept for the finite element model [91] | O | O | Pset_AppraisalResult | |||||
Dam | Define components for 3D tiles [92] | O | O | IfcDamElement | O | Functions, materials | ||
Earthworks | Define components for earthworks [93] | O | O | IfcEarthWorkElement | ||||
Foundation construction | Link schedule and quality information [94] | O | O | IfcQualityManagement | O | Inspection time, design code | ||
Georeferencing | Link georeferencing information [95] | O | O | IfcGeographicCRS | O | GEODETICDATUM | ||
Harbor | Define components for quay walls [18] | O | O | IfcQuay | O | Link predefined properties in bsDD | ||
Plants | Define components for wastewater treatment plants [19] | O | O | IfcTank | O | SludgeVolumeIndex | ||
River facility | Define components for river facilities [96] | O | O | IfcRiverElement |
Validation Approaches | Extension Approach | Total | |
---|---|---|---|
Entity + Property Extension | Property Extension | ||
Representation centric | 25 | 2 | 27 |
Utility centric | 13 | 7 | 20 |
Not implemented | 17 | - | 17 |
Total | 55 | 9 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Kim, S.; Jeon, H.; Koo, B. A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability. Appl. Sci. 2023, 13, 12560. https://doi.org/10.3390/app132312560
Yu Y, Kim S, Jeon H, Koo B. A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability. Applied Sciences. 2023; 13(23):12560. https://doi.org/10.3390/app132312560
Chicago/Turabian StyleYu, Youngsu, Sihyun Kim, Haein Jeon, and Bonsang Koo. 2023. "A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability" Applied Sciences 13, no. 23: 12560. https://doi.org/10.3390/app132312560
APA StyleYu, Y., Kim, S., Jeon, H., & Koo, B. (2023). A Systematic Review of the Trends and Advances in IFC Schema Extensions for BIM Interoperability. Applied Sciences, 13(23), 12560. https://doi.org/10.3390/app132312560