Activity Concentrations of Cs-137, Sr-90, Am-241, Pu-238, and Pu-239+240 and an Assessment of Pollution Sources Based on Isotopic Ratio Calculations and the HYSPLIT Model in Tundra Landscapes (Subarctic Zone of Russia)
Abstract
:1. Introduction
2. Materials and Methods
Methods
3. Results and Discussion
3.1. Spatial Distribution of Anthropogenic Radionuclides
3.2. Vertical Distribution of Anthropogenic Radionuclides
3.3. Estimation of Pollution Sources Based on Isotope Ratio Calculations and HYSPLIT Air Mass Trajectory Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Qian, X.; Peng, B.X.T.; Chen, Z.; Choudhary, A.; Hussain, A. Floaters for Oil and Gas Exploration in the Arctic—A Review. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016. [Google Scholar]
- Bergmann, M.; Collard, F.; Fabres, J.; Gabrielsen, G.W.; Provencher, J.F.; Rochman, C.M.; van Sebille, E.; Tekman, M.B. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 2022, 3, 323–337. [Google Scholar] [CrossRef]
- Brodt, L.E. Best Practices of Oil and Gas Companies to Develop Gas Fields on the Arctic Shelf. Arct. North 2021, 44, 30–44. [Google Scholar] [CrossRef]
- Latva, O.; Tynkkynen, N. The Problem of Plastic in the Arctic. In Cold Waters. Tangible and Symbolic Seascapes of the North; Lehtimäki, M., Rosenholm, A., Trubina, E., Tynkkynen, N., Eds.; Springer: Cham, Switzerland, 2022; pp. 3–17. [Google Scholar] [CrossRef]
- Madani, N.; Parazoo, N.C.; E Miller, C. Climate change is enforcing physiological changes in Arctic Ecosystems. Environ. Res. Lett. 2023, 18, 074027. [Google Scholar] [CrossRef]
- Pelaudeix, C. Governance of Arctic Offshore Oil and Gas; Routledge: London, UK, 2017. [Google Scholar]
- Schmale, J.; Arnold, S.R.; Law, K.S.; Thorp, T.; Anenberg, S.; Simpson, W.R.; Mao, J.; Pratt, K.A. Local Arctic Air Pollution: A Neglected but Serious Problem. Earth’s Future 2018, 6, 1385–1412. [Google Scholar] [CrossRef]
- Sorokina, T.; Trubina, A.; Tynkkynen, E. Pollution and Monitoring in the Arctic. In Cold Waters. Tangible and Symbolic Seascapes of the North; Lehtimäki, M., Rosenholm, N., Eds.; Springer: Cham, Switzerland, 2022; pp. 229–253. [Google Scholar] [CrossRef]
- Tudorache, V.-P.; Antonescu, N.-N. Challenges of oil and gas exploration in the Arctic. J. Eng. Sci. Innov. 2020, 5, 273–286. [Google Scholar] [CrossRef]
- Wangberg, S.A.; Bjork, G. Pollution in the Arctic Ocean. In Anthropogenic Pollution of Aquatic Ecosystems; Häder, D.-P., Helbling, E.W., Villafane, V.E., Eds.; Springer Nature: Berlin, Germany, 2021; pp. 91–111. [Google Scholar] [CrossRef]
- Epifanova, I.E.; Epifanov, A.O. On the issue of control of the Barents sea radioecological situation’s. Int. J. Appl. Fundam. Res. 2020, 10, 16–21. [Google Scholar]
- Livingston, H.D.; Povinec, P.P. A millennium perspective on the contribution of global fallout radionuclides to ocean science. Heal. Phys. 2002, 82, 656–668. [Google Scholar] [CrossRef]
- Matishov, G.G.; Ilyin, G.V.; Usyagina, I.S.; Kirillova, E.E. Dynamics of artificial radionuclides in the ecosystems of seas of the arctic ocean at the turn of the 21st century. Part 2. Bottom sediments. Sci. South Russ. 2019, 15, 24–35. [Google Scholar] [CrossRef]
- Matishov, G.G.; Kasatkina, N.E.; Usyagina, I.S. Technogenic Radioactivity of Waters in the Central Arctic Basin and Adjacent Water Areas. Dokl. Earth Sci. 2019, 485, 288–292. [Google Scholar] [CrossRef]
- AMAP Assessment 2015: Radioactivity in the Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2015.
- Chen, J.; Zhang, W.; Sadi, B.; Wang, X.; Muir, D.C. Activity concentration measurements of selected radionuclides in seals from Canadian Arctic. J. Environ. Radioact. 2017, 169–170, 48–55. [Google Scholar] [CrossRef]
- Cwanek, A.; Mietelski, J.W.; Łokas, E.; Olech, M.A.; Anczkiewicz, R.; Misiak, R. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. Chemosphere 2019, 239, 124783. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, B.R.; Gochfeld, M.; Burger, J. Radionuclides in the marine environment: A CRESP science review. In Amchitka Independent Science Assessment: Biological and Geophysical Aspects of Potential Radionuclide Exposure in the Amchitka Marine Environment; Consortium for Risk Evaluation with Stakeholder Participation; Powers, C.W., Burger, J., Kosson, D., Gochfeld, M., Barnes, D., Eds.; IEEE Access: Piscataway, NJ, USA, 2005; pp. 1–95. [Google Scholar]
- Miroshnikov, A.Y.; Laverov, N.P.; Chernov, R.A.; Kudikov, A.V.; Ysacheva, A.A.; Semenkov, I.N.; Aliev, R.A.; Asadulin, E.E.; Gavrilo, M.V. Radioecological investigations on the Northern Novaya Zemlya Archipelago. Oceanology 2017, 57, 204–214. [Google Scholar] [CrossRef]
- Nielsen, S.P.; Lüning, M.; Ilus, E.; Outola, I.; Ikaheimonen, T.; Mattila, J.; Herrman, J.; Kanisch, G.; Osvath, I. Baltic Sea: Ra-dionuclides. In Radionuclides in the Environment, 2nd ed.; Atwood, D.A., Ed.; Wiley: New York, NY, USA, 2010; pp. 1–22. [Google Scholar] [CrossRef]
- Saniewski, M.; Wietrzyk-Pełka, P.; Zalewska, T.; Olech, M.; Węgrzyn, M.H. Bryophytes and lichens as fallout originated radionuclide indicators in the Svalbard archipelago (High Arctic). Polar Sci. 2020, 25, 100536. [Google Scholar] [CrossRef]
- ACIA (Arctic Climate Impact Assessment). Impacts of a Warming Arctic: Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004; p. 144. [Google Scholar]
- Łokas, E.; Mietelski, J.; Ketterer, M.; Kleszcz, K.; Wachniew, P.; Michalska, S.; Miecznik, M. Sources and vertical distribution of 137Cs, 238Pu, 239+240Pu and 241Am in peat profiles from southwest Spitsbergen. Appl. Geochem. 2013, 28, 100–108. [Google Scholar] [CrossRef]
- Yakovlev, E.; Spirov, R.; Druzhinin, S.; Ocheretenko, A.; Druzhinina, A.; Mishchenko, E.; Zhukovskaya, E. Atmospheric fallout of radionuclides in peat bogs in the Western Segment of the Russian Arctic. Environ. Sci. Pollut. Res. 2021, 28, 25460–25478. [Google Scholar] [CrossRef] [PubMed]
- Holm, E.; Rioseco, J.; Pettersson, H. Fallout of transuranium elements following the Chernobyl accident. J. Radioanal. Nucl. Chem. 1992, 156, 183–200. [Google Scholar] [CrossRef]
- Kershaw, P.; Baxter, A. The transfer of reprocessing wastes from north-west Europe to the Arctic. Deep Sea Res. Part II Top. Stud. Oceanogr. 1995, 42, 1413–1448. [Google Scholar] [CrossRef]
- Łokas, E.; Anczkiewicz, R.; Kierepko, R.; Mietelski, J. Variations in Pu isotopic composition in soils from the Spitsbergen (Norway): Three potential pollution sources of the Arctic region. Chemosphere 2017, 178, 231–238. [Google Scholar] [CrossRef]
- Łokas, E.; Wachniew, P.; Baccolo, G.; Gaca, P.; Janko, K.; Milton, A.; Buda, J.; Komędera, K.; Zawierucha, K. Unveiling the extreme environmental radioactivity of cryoconite from a Norwegian glacier. Sci. Total Environ. 2022, 814, 152656. [Google Scholar] [CrossRef]
- Łokas, E.; Zaborska, A.; Kolicka, M.; Różycki, M.; Zawierucha, K. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere 2016, 160, 162–172. [Google Scholar] [CrossRef]
- Mietelski, J.W.; Was, B. Plutonium from Chernobyl in Poland. Appl. Radiat. Isot. 1995, 46, 1203–1211. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation. In United Nations Scientific Committee on the Effects of Atomic Radiation; United Nations Publication: New York, NY, USA, 2008; Available online: https://applied–research.ru/ru/article/view?id=10199 (accessed on 1 September 2023).
- Biblin, A.M.; Khramtsov, E.V.; Ivanov, S.A.; Sednev, K.A.; Georgieva, A.G. Radiation-Hygienic Research at the Site of the Peaceful Nuclear Explosion “Horizon-1” on the Territory of the Komi Republic; Collection of Abstracts of the All-Russian Scientific-Practical Conference with International Participation “Radiation Hygiene and Continuing Professional Education: New Challenges and Ways of Development”; Moscow State University: Moscow, Russia, 2022. [Google Scholar]
- Bogoyavlensky, V.I.; Perekalin, S.O.; Boichuk, V.M.; Bogoyavlensky, I.V.; Kargina, T.N. Kumzhinskoye Gas Condensate Field Disaster: Reasons, results and ways of eliminating the consequences. Arct. Ecol. Econ. 2017, 25, 32–46. [Google Scholar] [CrossRef]
- Puchkov, A.V.; Druzhinina, A.S.; Yakovlev, E.Y.; Druzhinin, S.V. Assessing the natural and anthropogenic radionuclide activities in fish from Arctic rivers (Northwestern Russia). Pollution 2023, 9, 1098–1116. [Google Scholar] [CrossRef]
- Puchkov, A.; Druzhinina, A.; Yakovlev, E.; Druzhinin, P. Accumulation of radionuclides in fish from the rivers of the northwestern sector of the Russian Arctic. Arct. Ecol. Econ. 2023, 13, 127–137. [Google Scholar] [CrossRef]
- Puchkov, A.; Yakovlev, E. Features of accumulation and migration of technogenic radionuclides Cs-137 and Sr-90 in the tundra landscapes of the Russian Arctic (evidence from the Nes river basin, Kanin tundra). Vestn. Geosci. 2023, 1, 42–51. [Google Scholar] [CrossRef]
- Puchkov, A.; Yakovlev, E.; Druzinin, S. Radiation parameters of hydrobionts of the background territory of the nenets autonomous okrug. Success Mod. Nat. Sci. 2020, 6, 118–122. [Google Scholar] [CrossRef]
- Fortescue, J.A.C. Element Migration in Landscapes. In Environmental Geochemistry. Ecological Studies; Springer: New York, NY, USA, 1980; Volume 35. [Google Scholar] [CrossRef]
- Gavrilova, I.P.; Kasimov, N.S. Workshop on Landscape Geochemistry; Moscow University: Moscow, Russia, 1989; 72p. [Google Scholar]
- Linnik, V. Landscape Differentiation of Technogenic Radionuclides; ResearchGate: Berlin, Germany, 2018. (In Russian) [Google Scholar]
- Perel’man, A.I.; Levin, V.N. Landscape geochemistry and the problems of genesis, exploration, and ecology of uranium de-posits. Geol. Ore Depos. 1999, 41, 30–35. [Google Scholar]
- Tokar’, E.; Kuzmenkova, N.; Rozhkova, A.; Egorin, A.; Shlyk, D.; Shi, K.; Hou, X.; Kalmykov, S. Migration Features and Regularities of Heavy Metals Transformation in Fresh and Marine Ecosystems (Peter the Great Bay and Lake Khanka). Water 2023, 15, 2267. [Google Scholar] [CrossRef]
- Bazhenov, A.V. Cesium-137 in the Soils of the Arkhangelsk Region. Ph.D. Thesis, Institute of Geoecology of the RAS, Moscow, Russia, 2001. (In Russian). [Google Scholar]
- Cwanek, A.; Łokas, E.; Dinh, C.N.; Zagórski, P.; Singh, S.M.; Szufa, K.; Tomankiewicz, E. 90Sr level and behaviour in the terrestrial environment of Spitsbergen. J. Radioanal. Nucl. Chem. 2020, 327, 485–494. [Google Scholar] [CrossRef]
- Lukoshkova, A.; Yakovlev, E.; Orlov, A. Specific activity and features of vertical migration of strontium-90 in the peat bog of the Murmansk region. Vestn. Geosci. 2022, 329, 21–25. [Google Scholar] [CrossRef]
- Orlov, V.V. Radiometric Assessment of the Territory of the Arkhangelsk and Novgorod Regions, the North-Western Part of the Komi Republic in Order to Identify and Map Environmentally Unfavorable Areas; Report AGP-4 on the results of environmental airborne gamma spectrometric survey at a scale of 1:1000000 at the Ecosever site in 1990-1993; State Registration Number 29-90-248/44; Committee of the Russian Federation on Geology: St. Petersburg, Russia, 1993. (In Russian) [Google Scholar]
- Glasstone and Sesonske. Nuclear Reactor Engineering: Reactor Systems Engineering, 4th ed.; Springer: Berlin, Germany, 1994; ISBN 978-0412985317. [Google Scholar]
- Lamarsh, J.R.; Baratta, A.J. Introduction to Nuclear Engineering, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2001; ISBN 0-201-82498-1. [Google Scholar]
- Stacey, W.M. Nuclear Reactor Physics; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 0-471-39127-1. [Google Scholar]
- Semenkov, I.N.; Usacheva, A.A.; Miroshnikov, A.Y. Distribution of caesium-137 global fallout in taiga and tundra catenaries of the Ob River basin. Geol. Ore Depos. 2015, 57, 154–173. [Google Scholar] [CrossRef]
- Rakhimova, N.N.; Efremov, I.V.; Gorshenina, E.L. Migration Abilities of Radionuclides Cs-137 and Sr-90 in Different Types of Soils; Bulletin of Orenburg State University: Orenburg, Russia, 2015; Volume 10, pp. 412–415. [Google Scholar]
- Iglovsky, S.A.; Shvartsman, Y.G.; Bolotov, I.N. Cryolithozone of the Dvinsko-Mezenskaya Plain and Kanin Peninsula; NarFU: Arkhangelsk, Russia, 2010; 122p. [Google Scholar]
- Klimova, E.B. Influence of macro and microrelief of agricultural lands on 137Cs migration along the soil profile. Ecological safety in agro-industrial complex. Abstr. J. 2004, 4, 155–158. [Google Scholar]
- Barsukov, O.A.; Yazykeev, D.V. Horizontal and Vertical Migration of 40K, 137Cs, 226Ra, 232Th and 241Am on Cultivated Slope Landscapes of Penza Region of Different Degrees of Steepness; Izvestiya PSPU named after V.G. Belinsky; Penza State Pedagogical University: Penza, Russia, 2012; Volume 29, pp. 369–374. [Google Scholar]
- Korobova, E.M.; Tarasov, O.V.; Romanov, S.L.; Baranchukov, V.S.; Berezkin, V.Y.I.; Modorov, M.V.; Mikhailovskaya, L.N.N.; Lukyanov, V.V. On the distribution of Sr-90 and Cs-137 in elementary landscape-geochemical systems of the East Ural radioactive trace. In Proceedings of the International Scientific and Practical Conference Nuclear Physics Research and Technology in Agriculture, Obninsk, Russia, 16–18 September 2020; pp. 175–177. [Google Scholar]
- Matishov, G.G.; Matishov, D.G.; Usyagina, I.S.; Kasatkina, N.E. Multiyear dynamics of radioactive pollution of the Barents-Kara region (1960–2013). Rep. Acad. Sci. 2014, 458, 473. [Google Scholar] [CrossRef]
- Kirchner, G.; Noack, C. Core history and nuclide inventory of the Chernobyl core at the time of accident. Nucl. Saf. 1988, 1, 29. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Militaryrussia: Website—Moscow. 2009. Available online: http://militaryrussia.ru (accessed on 2 October 2023).
Radionuclide | Isotopic Ratio, rel. un. | ||||
---|---|---|---|---|---|
Nes River Basin | Svalbard Island | Global Fallout | |||
Average Value | Regression Slope | Average Value | Regression Slope | ||
Sr-90/ Cs-137 | 0.501 | 0.2821 | - | - | 0.6 * |
Pu-238/ Pu-239+240 | 0.102 | 0.0524 | 0.034 | 0.0231 | 0.025 ** |
Pu-239+240/ Cs-137 | 0.0323 | 0.0205 | 0.06 | 0.0622 | 0.04 ** |
Am-241/ Pu-239+240 | 0.46 | 0.2697 | 0.46 | 0.4161 | 0.37 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puchkov, A.; Yakovlev, E. Activity Concentrations of Cs-137, Sr-90, Am-241, Pu-238, and Pu-239+240 and an Assessment of Pollution Sources Based on Isotopic Ratio Calculations and the HYSPLIT Model in Tundra Landscapes (Subarctic Zone of Russia). Appl. Sci. 2023, 13, 12952. https://doi.org/10.3390/app132312952
Puchkov A, Yakovlev E. Activity Concentrations of Cs-137, Sr-90, Am-241, Pu-238, and Pu-239+240 and an Assessment of Pollution Sources Based on Isotopic Ratio Calculations and the HYSPLIT Model in Tundra Landscapes (Subarctic Zone of Russia). Applied Sciences. 2023; 13(23):12952. https://doi.org/10.3390/app132312952
Chicago/Turabian StylePuchkov, Andrey, and Evgeny Yakovlev. 2023. "Activity Concentrations of Cs-137, Sr-90, Am-241, Pu-238, and Pu-239+240 and an Assessment of Pollution Sources Based on Isotopic Ratio Calculations and the HYSPLIT Model in Tundra Landscapes (Subarctic Zone of Russia)" Applied Sciences 13, no. 23: 12952. https://doi.org/10.3390/app132312952
APA StylePuchkov, A., & Yakovlev, E. (2023). Activity Concentrations of Cs-137, Sr-90, Am-241, Pu-238, and Pu-239+240 and an Assessment of Pollution Sources Based on Isotopic Ratio Calculations and the HYSPLIT Model in Tundra Landscapes (Subarctic Zone of Russia). Applied Sciences, 13(23), 12952. https://doi.org/10.3390/app132312952