Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectra Measurements
2.2. Microwave Plasma-Atomic Emission Spectrometry (MP-AES) Determination of Cu and Pd in the Complexes
2.3. General Procedure for the Synthesis of Cu(II) and Pd(II) Complexes of 6-Methyl-2-Thiouracil (L1) and 6-Propyl-2-Thiouracil (L2)
2.3.1. Synthesis of CuL1
2.3.2. Synthesis of PdL1
2.3.3. Synthesis of CuL2
2.3.4. Synthesis of PdL2
2.4. Spectral Data of the Free Ligands and Their Metal Complexes
2.5. Antimicrobial Assay
3. Results and Discussion
3.1. Synthesis of the Metal Complexes
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abou El Ella, D.A.; Ghorab, M.M.; Noaman, E.; Heiba, H.I.; Khalil, A.I. Molecular modeling study and synthesis of novel pyrrolo[2,3-d]pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg. Med. Chem. 2008, 16, 2391–2402. [Google Scholar] [CrossRef] [PubMed]
- Renau, T.E.; Wotring, L.L.; Drach, J.C.; Townsend, L.B. Synthesis of Non-nucleoside Analogs of Toyocamycin, Sangivamycin, and Thiosangivamycin: Influence of Various 7-Substituents on Antiviral Activity. J. Med. Chem. 1996, 39, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Kuyper, L.F.; Garvey, J.M.; Baccanari, D.P.; Champness, J.N.; Stammers, D.K.; Beddell, C.R. Pyrrolo [2,3-d] pyrimidines and Pyrido [2,3-d] pyrimidines as Conformationally Restricted Analogues of the Antibacterial Agent Trimethoprim. Bioorg. Med. Chem. 1996, 4, 593–602. [Google Scholar] [CrossRef]
- Andrus, P.K.; Fleck, T.J.; Oostveen, J.A.; Hall, E.D. Neuroprotective Effects of the Novel Brain-Penetrating Pyrrolopyrimidine Antioxidants U-101033E and U-104067F Against Post-Ischemic Degeneration of Nigrostriatal Neurons. J. Neurosci. Res. 1997, 47, 650–654. [Google Scholar] [CrossRef]
- Chamberlain, S.D.; Redman, A.M.; Wilson, J.W.; Deanda, F.; Shotwell, J.B.; Gerding, R.; Lei, H.; Yang, B.; Stevens, K.L.; Hassell, A.M.; et al. Optimization of 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidine IGF-1R tyrosine kinase inhibitors towards JNK selectivity. Bioorg. Med. Chem. Lett. 2009, 19, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; Hanna, M.M.; Abo-Youssef, H.E.; George, R.F. Synthesis, analgesic and anti-inflammatory activities evaluation of some bi-, tri- and tetracyclic condensed pyrimidines. Eur. J. Med. Chem. 2009, 44, 4572–4584. [Google Scholar] [CrossRef]
- Meade, E.A.; Sznaidman, M.; Pollard, G.T.; Beauchamp, L.M.; Howard, J.L. Anxiolytic activity of analogues of 4-benzylamino-2-methyl-7H-pyrrolo[2,3-d]pyrimidin. Eur. J. Med. Chem. 1998, 33, 363–374. [Google Scholar] [CrossRef]
- Oladipo, M.A.; Isola, K.T. Coordination Possibility of Uracil and Applications of Some of Its Complexes: A Review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 386–394. [Google Scholar] [CrossRef]
- Shaban, N.Z.; Masoud, M.S.; Awad, D.; Mawlawia, M.A.; Sadek, O.M. Effect of Cd, Zn and Hg complexes of barbituric acid and thiouracil on rat brain monoamine oxidase-B (in vitro). Chem. Biol. Interact. 2014, 208, 37–46. [Google Scholar] [CrossRef]
- Teleb, S.M.; Askar, M.E.; El-Kalyoubi, S.A.; Gaballa, A.S. Synthesis, characterization and antimicrobial activities of some 5-bromouracil–metal ion complexes. Bull. Chem. Soc. Ethiop. 2019, 33, 255–268. [Google Scholar] [CrossRef]
- Golubyatnikova, L.G.; Khisamutdinov, R.A.; Grabovskii, S.A.; Kabal’nova, N.N.; Murinov, Y.I. Complexes of Palladium(II) and Platinum(II) with 6-tert-Butyl-2-thiouracil. Russ. J. Gen. Chem. 2017, 87, 117–121. [Google Scholar] [CrossRef]
- Lusty, J.R.; Peeling, J.; Abdel-Aal, M.A. Complexes of 6-Methyl-2-thiouracil with Rhodium, Iridium, Platinum and Palladium. Inorg. Chim. Acta 1981, 56, 21–26. [Google Scholar] [CrossRef]
- Bomfim, L.M.; de Araujo, F.A.; Dias, R.B.; Sales, C.B.S.; Gurgel Rocha, C.A.; Correa, R.S.; Soares, M.B.P.; Batista, A.A.; Bezerra, D.P. Ruthenium(II) complexes with 6-methyl-2-thiouracil selectively reduce cell proliferation, cause DNA double-strand break and trigger caspase-mediated apoptosis through JNK/p38 pathways in human acute promyelocytic leukemia cells. Sci. Rep. 2019, 9, 11483. [Google Scholar] [CrossRef] [PubMed]
- Paizanos, K.; Charalampou, D.; Kourkoumelis, N.; Kalpogiannaki, D.; Hadjiarapoglou, L.; Spanopoulou, A.; Lazarou, K.; Manos, M.J.; Tasiopoulos, A.J.; Kubicki, M.; et al. Synthesis and Structural Characterization of New Cu(I) Complexes with the Antithyroid Drug 6-n-Propyl-thiouracil. Study of the Cu(I)-Catalyzed Intermolecular Cycloaddition of Iodonium Ylides toward Benzo[b]furans with Pharmaceutical Implementations. Inorg. Chem. 2012, 51, 12248–12259. [Google Scholar] [CrossRef] [PubMed]
- Abou-Melha, K.S. Elaborated studies for the ligitional behavior of thiouracil derivative towards Ni(II), Pd(II), Pt(IV), Cu(II) and UO22 2 ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Masoud, M.S.; Amira, M.F.; Ramadan, A.M.; El-Ashry, G.M. Synthesis and characterization of some pyrimidine, purine, amino acid and mixed ligand complexes. Spectrochim. Acta Part A 2008, 69, 230–238. [Google Scholar] [CrossRef]
- Singh, U.P.; Ghose, R.; Ghose, A.K.; Sodhi, A.; Singh, S.M.; Singh, R.K. The effect of histidine on the structure and antitumor activity of metal-5-halouracil complexes. J. Inorg. Biochem. 1989, 37, 325–329. [Google Scholar] [CrossRef] [PubMed]
- El-Morsy, F.A.; Jean-Claude, B.J.; Butler, I.S.; El-Sayed, S.A.; Mostafa, S.I. Synthesis, characterization and anticancer activity of new zinc(II), molybdate(II), palladium(II), silver(I), rhodium(III), ruthenium(II) and platinum(II) complexes of 5,6-diamino-4-hydroxy2-mercaptopyrimidine. Inorg. Chim. Acta 2014, 423, 144–155. [Google Scholar] [CrossRef]
- Shobana, S.; Dharmaraja, J.; Kamatchi, P.; Selvaraj, S. Mixed ligand complexes of Cu (II)/Ni (II)/Zn (II) ions with 5-Fluorouracil (5-FU) in the presence of some amino acid moieties: Structural and antimicrobial studies. J. Chem. Pharm. Res. 2012, 4, 4995–5004. Available online: https://www.jocpr.com/articles/mixed-ligand-complexes-of-cu-ii--ni-ii--zn-ii-ions-with-5fluorouracil-5fuin-the-presence-of-some-amino-acid-moieties-str.pdf (accessed on 12 January 2012).
- Kamalakannan, P.; Venkappayya, D.; Balasubramanian, T. A new antimetabolite, 5-morpholinomethyl-2-thiouracil—Spectral properties, thermal profiles, antibacterial, antifungal and antitumour studies of some of its metal chelates. J. Chem. Soc. Dalton Trans. 2002, 17, 3381–3391. [Google Scholar] [CrossRef]
- Abou-Melha, K.S. A series of Nano-sized metal ion–thiouracil complexes, tem, spectral, γ-irradiation, molecular modeling and biological studies. Orient. J. Chem. 2015, 31, 1897–1913. [Google Scholar] [CrossRef]
- Singh, U.P.; Singh, S.; Singh, S.M. Synthesis, characterization and antitumour activity of metal complexes of 5-carboxy-2-thiouraci. Met. Based Drugs 1998, 5, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, I.; Cox, P.J.; Hatzidimitriou, A.G.; Kokotidou, C.; Choli-Papadopoulou, T.; Aslanidis, P. Copper(I) halide complexes of 5-carbethoxy-2-thiouracil: Synthesis, structure and in vitro cytotoxicity. Eur. J. Med. Chem. 2014, 78, 383. [Google Scholar] [CrossRef] [PubMed]
- Hoeschele, J.D.; Piscataway, N.J. Ethylenediamineplatinum(II) 2,4-Dioxopyrimidine Complexes. U.S. Patent 4 207 416, 10 June 1980. [Google Scholar]
- Supaluk, P.; Apilak, W.; Ratchanok, P.; Thummaruk, S.; Chartchalerm, I.; Somsak, R.; Virapong, P. Metal Complexes of Uracil Derivatives with Cytotoxicity and Superoxide Scavenging Activity. Lett. Drug Des. Discov. 2012, 9, 282–287. [Google Scholar] [CrossRef]
- Illán-Cabeza, N.A.; García-García, A.R.; Moreno-Carretero, M.N.; Martínez-Martos, J.M.; Ramírez-Expósito, M.J. Synthesis, characterization and antiproliferative behavior of tricarbonyl complexes of rhenium(I) with some 6-amino-5-nitrosouracil derivatives: Crystal structure of fac-[ReCl(CO)3(DANU-N5,O4)] (DANU = 6-amino-1,3-dimethyl-5-nitrosouracil). J. Inorg. Biochem. 2005, 99, 1637–1645. [Google Scholar] [CrossRef]
- Kitagawa, S.; Nozaka, Y.; Munakata, M.; Kawata, S. Synthesis and crystal structures of tetra- and hexanuclear copper(I) complexes of pyrimidine derivatives, [Cu4(C4H8N2S4)](ClO4)4 and [Cu6(C5H5N2S)6]. Inorg. Chim. Acta. 1992, 197, 169–175. [Google Scholar] [CrossRef]
- Shaheen, F.; Badashah, A.; Gielen, M.; Marchio, L.; de Vos, D.; Khosa, M.K. Synthesis, characterization and in vitro cytotoxicity of homobimetallic complexes of palladium(II) with 2-thiouracil ligands. Crystal structure of [Pd2(TU)(PPh3)3Cl2]. Appl. Organomet. Chem. 2007, 21, 626–632. [Google Scholar] [CrossRef]
- Sce, F.; Beobide, G.; Castillo, O.; de Pedro, I.; Pérez-Yáñez, S.; Reyes, E. Supramolecular architectures based on p-cymene/ruthenium complexes functionalized with nucleobases. Cryst. Eng. Comm. 2017, 19, 6039–6048. [Google Scholar] [CrossRef]
- Balas, V.I.; Verginadis, I.I.; Geromichalos, G.D.; Kourkoumelis, N.; Male, L.; Hursthouse, M.B.; Repana, K.H.; Yiannaki, E.; Charalabopoulos, K.; Bakas, T.; et al. Synthesis, structural characterization and biological studies of the triphenyltin(IV) complex with 2-thiobarbituric acid. Eur. J. Med. Chem. 2011, 46, 2835–2844. [Google Scholar] [CrossRef]
- Golovnev, N.N.; Molokeev, M.S.; Vereshchagin, S.N.; Atuchin, V.V.; Sidorenko, M.Y.; Dmitrushkov, M.S. Crystal structure and properties of the precursor [Ni(H2O)6](HTBA)2.2H2O and the complexes M(HTBA)2(H2O)2 (M = Ni, Co, Fe). Polyhedron 2014, 70, 71–76. [Google Scholar] [CrossRef]
- Pan, Z.R.; Zhang, Y.C.; Song, Y.L.; Zhuo, X.; Li, Y.Z.; Zheng, H.G. Synthesis, structure and nonlinear optical properties of three dimensional compounds. J. Coord. Chem. 2008, 61, 3189–3199. [Google Scholar] [CrossRef]
- Ruf, M.; Weis, K.; Vahrenkamp, H. Pyrazolylborate-Zinc Complexes of RNA Precursors and Analogues Thereof. Inorg. Chem. 1997, 36, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Yamanari, K.; Kida, M.; Fuyuhiro, A.; Kita, M.; Kaizaki, S. Cobalt(III) promoted ligand fusion reactions of thiobarbituric acid and 4,6-diamino-2-thiouracil (or 4-amino-2-thiouracil). Inorg. Chim. Acta 2002, 332, 115–122. [Google Scholar] [CrossRef]
- Esteruelas, M.A.; García-Raboso, J.; Oliván, M. Reactions of an Osmium-Hexahydride Complex with Cytosine, Deoxycytidine, and Cytidine: The Importance of the Minor Tautomers. Inorg. Chem. 2012, 51, 9522–9528. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; El-Mowafy, A.S.; El-Bindary, A.A. Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes. J. Mol. Liq. 2021, 326, 115381. [Google Scholar] [CrossRef]
- Chakraborty, S.; Laye, R.H.; Munshi, P.; Paul, R.L.; Ward, M.D.; Kumar, L.G. Dinuclear bis(bipyridine)ruthenium(II) complexes [(bpy)2RuII{L}2−RuII(bpy)2]2+ incorporating thiouracil-based dianionic asymmetric bridging ligands: Synthesis, structure, redox and spectroelectrochemical properties. J. Chem. Soc. Dalt. Trans. 2002, 11, 2348–2353. [Google Scholar] [CrossRef]
- Ma, C.; Tian, G.; Zhang, R. New triorganotin(IV) complexes of polyfunctional S,N,O-ligands: Supramolecular structures based on π-π and/or C–H-π interactions. J. Organomet. Chem. 2006, 691, 2014–2022. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Lotfallah, A.H.; Gaballah, M.S.; Awad, S.M.; Soltan, M.K. Novel 2-Thiouracil-5-Sulfonamide Derivatives: Design, Synthesis, Molecular Docking, and Biological Evaluation as Antioxidants with 15-LOX Inhibition. Molecules 2023, 28, 1925. [Google Scholar] [CrossRef]
- Marinova, P.; Tsoneva, S.; Frenkeva, M.; Blazheva, D.; Slavchev, A.; Penchev, P. New Cu(II), Pd(II) and Au(III) complexes with 2-thiouracil: Synthesis, Characteration and Antibacterial Studies. Russ. J. Gen. Chem. 2022, 92, 1578–1584. [Google Scholar] [CrossRef]
- Siddique, A.B.; Ahmad, S.; Shaheen, M.A.; Ali, A.; Tahir, M.N.; Vieira, L.C.; Muham-mad, S.; Siddeeg, S.M. Synthesis, antimicrobial potential and computational studies of crystalline 4-bromo-2-(1,4,5-triphenyl-1H-imidazole-2-yl)phenol and its metal com-plexes. Cryst. Eng. Comm. 2022, 24, 8237–8247. Available online: https://pubs.rsc.org/en/content/articlelanding/2022/ce/d2ce01118b (accessed on 8 December 2023). [CrossRef]
- Ahmada, M.S.; Siddique, A.B.; Khalid, M.; Ali, A.; Shaheen, M.A.; Tahire, M.N.; Imran, M.; Irfanfg, A.; Khan, M.U.; Paixão, M.W. Synthesis, antioxidant activity, anti-microbial efficacy and molecular docking studies of 4-chloro-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol and its tran-sition metal complexes. RSC Adv. 2023, 13, 9222–9230. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.Z.; Amir, M.K.; Ullaha, I.; Aamir, A.; Pezzuto, J.M.; Kondratyuk, T.; Bélanger-Gariepye, F.; Alia, A.; Khan, S.; Zia-ur-Rehman. New heteroleptic palladium(II) dithiocarbamates: Synthesis, characterization, packing and anticancer activity against five different cancer cell lines. Appl. Organomet. Chem. 2016, 30, 392–398. [Google Scholar] [CrossRef]
- El-Zahed, M.M.; Diab, M.A.; El-Sonbati, A.Z.; Saad, M.H.; Eldesoky, A.M.; El-Bindary, M.A. Synthesis, spectroscopic characterization studies of chelating complexes and their applications as antimicrobial agents, DNA binding, molecular docking, and electrochemical studies. Appl. Organomet. Chem. 2023, 37, e7290. [Google Scholar] [CrossRef]
Metal Complex | Composition * | Formula | Molecular Weight | W(M)% Calc./Exp. |
---|---|---|---|---|
CuL1 | [3LCu.(DMSO)] | C17H24N6O4S4Cu | M = 568.22 g/mol | 11.2/11.6 ± 0.6 |
PdL1 | [5LPd.(DMSO)].H2O | C27H38N10O7S6Pd | M = 913.46 g/mol | 11.6/11.1 ± 0.6 |
CuL2 | [LCu.H2O.(OH−)2.(DMSO)2] | C11H26N2O6S3Cu | M = 442.07 g/mol | 14.4/14.3 ± 0.7 |
PdL2 | [4LPd.(DMSO)2].H2O | C32H54N8O7S6Pd | M = 961.63 g/mol | 11.1/11.5 ± 0.5 |
Complexes | Color | Yield (%) | Melting Point (°C) | Solubility, * Limited |
---|---|---|---|---|
L1 | colorless | 330 | soluble in DMSO | |
CuL1 | yellow-green | 61 | >350 °C | soluble in DMSO *, DMF *, C2H5OH *, H2O * and insoluble in THF, EtOAc, and C6H12. |
PdL1 | brown | 72 | >350 °C | soluble in DMSO *, DMF * and insoluble in H2O, THF, C2H5OH, EtOAc, and C6H12. |
L2 | colorless | 218–220 | soluble in DMSO | |
CuL2 | yellow-green | 43 | 260–263 °C | soluble in DMSO * and insoluble in H2O, THF, C2H5OH, EtOAc, and C6H12. |
PdL2 | brown | 70 | 255–257 °C | Soluble in DMSO *, DMF * and insoluble in H2O, THF, C2H5OH, EtOAc, and C6H12. |
Assignment | L1 | CuL1 | PdL1 |
---|---|---|---|
ν(OH) | - | - | 3442 |
ν(NH) | 3115 sh | 3115 | 3111 |
ν(NH) | 3080 | 3080 | 3071 |
ν(=CH) | 3014 | 3003 | 3052 |
ν(C=O) | 1676 m | 1637 | 1678 |
1560 w | 1559 | 1559 | |
ν(C=S) | 1242 | 1242 | 1244 |
1167 s | 1167 | 1168 |
Assignment | L2 | CuL2 | PdL2 |
---|---|---|---|
ν(OH) | - | 3451 | 3437 |
ν(NH) | 3112 | - | 3117 |
ν(NH) | 3093 | 3093 | 3080 |
ν(=CH) | 3042 | 3042 | |
ν(C=O) | 1656 | 1651 | 1657 |
1557 | 1553 | 1545 | |
ν(C=S) | 1243 | 1232 | 1261 |
1165 | 1166 | 1175 |
Atom | δ (13C) ppm | DEPT-135 | δ (1H) ppm | Multiplicity (J, Hz) | 1H-1H COSY | HMBC |
---|---|---|---|---|---|---|
1 (NH) | 12.29 | s | ||||
2 (C=S) | 175.87 | C | ||||
3 (NH) | 12.29 | s | ||||
4 (C=O) | 161.06 | C | ||||
5 | 103.72 | CH | 5.68 | d (0.9) | 7 | 4 b, 6, 7 |
6 | 153.20 | C | ||||
1′ | 18.11 | CH3 | 2.06 | d (0.7) | 5 | 5, 6 |
Atom | L1 (6-Methyl-2-Thiouracil) | CuL1 Multiplicity (J, Hz) | PdL1 Multiplicity (J, Hz) |
---|---|---|---|
1 (NH) | 12.29 s | 12.24 s | 12.24 s and 10.80 |
2 (C=S) | - | - | - |
3 (NH) | 12.29 s | 12.29 s | 12.30 s and 10.86 |
4 (C=O) | - | - | - |
5 | 5.68 | 5.68 s | 5.68 s and 5.31 |
6 | - | - | - |
1′ | 2.06 | 2.07 | 2.07 and 2.01 |
DMSO-H6 | 2.54 s | 2.54 s |
Atom | δ (13C) ppm, L1 | CuL1 | PdL1 |
---|---|---|---|
1 (NH) | - | - | - |
2 (C=S) | 175.87 | 175.86 | 175.86/? |
3 (NH) | - | - | - |
4 (C=O) | 161.06 | 161.01 | 161.01/? |
5 | 103.72 | 103.69 | 103.69 and 98.71 |
6 | 153.20 | 153.12 | 153.12/? |
1′ | 18.11 | 18.06 | 18.06 and 18.20 |
Atom | L1 | L2 | CuL1 | CuL2 | PdL2 |
---|---|---|---|---|---|
1 (NH) | |||||
2 (C=S) | 174.6 | 175.5 | 171.7/174.8 | 168.3/175.4 | 172.3/172.9/174.0 |
3 (NH) | |||||
4 (C=O) | 163.0 | 164.8 | 162.9/169.5 | 164.9/166.1 | 160.3/166.4/167.0 |
5 (CH) | 104.7 | 103.8/104.6 | 104.7/105.4 | 103.8/104.6/105.4/107.2 | 95.8/103.1/105.0 |
6 (C) | 156.2 | 159.9 | 154.0/156.4 | 159.9/161.3 | 153.0/156.0/159.7 |
1′ | 20.2 | 32.7 | 20.1 | 32.7/39.3/39.6/40.9 | 33.4/34.2/38.6 |
2′ | 19.6/20.2 | 18.2/19.7/20.2/24.4 | 18.2/19.3/19.7 | ||
3′ | 13.1/14.7 | 13.1/13.6/14.7/15.7 | 12.9/15.4 | ||
DMSO | 40.3 |
Atom | δ (13C) ppm | DEPT -135 | δ (1H) ppm | Multiplicity (J, Hz) | 1H-1H COSY |
---|---|---|---|---|---|
1 (NH) | - | - | 12.20 | s | |
2 (C=S) | 176.08 | C | - | ||
3 (NH) | - | - | 12.31 | s | |
4 (C=O) | 161.22 | C | - | ||
5 | 103.06 | CH | 5.67 | s | |
6 | 156.74 | C | |||
1′ | 33.21 | CH2 | 2.32 | t(7.5) | 2′ |
2′ | 20.58 | CH2 | 1.54 | sx(7.4) | 1′, 3′ |
3′ | 13.26 | CH3 | 0.87 | t(7.4) | 2′ |
Atom | L2 (6-Propyl-2-Thiouracil) | CuL2 Multiplicity (J, Hz) | PdL2 Multiplicity (J, Hz) |
---|---|---|---|
1 (NH) | 12.20 s | 12.20 s | 12.20 and 10.77 s |
2 (C=S) | - | - | - |
3 (NH) | 12.31 s | 12.31 s | 12.32 and 10.87 s |
4 (C=O) | - | - | - |
5 | 5.67 s | 5.67 s | 5.68 and 5.31 s and t(1.8) |
6 | - | - | - |
1′ | 2.32 t(7.5) | 2.32 t(7.4) | 2.32 and 2.25 t(7.3) and t(7.3) |
2′ | 1.54 sx(7.4) | 1.54 sx(7.5) | 1.54 and 1.48 sx(7.6) and m |
3′ | 0.87 t(7.4) | 0.88 t(7.3) | 0.87 and 0.82 t(7.3) and m |
DMSO | - | 2.54 s | 2.54 s |
Atom | δ (13C) ppm, L2 | CuL2 | PdL2 |
---|---|---|---|
1 (NH) | - | - | - |
2 (C=S) | 176.08 | 176.02 | |
3 (NH) | - | - | - |
4 (C=O) | 161.22 | 164.19 and 161.09 | |
5 | 103.06 | 98.03 | |
6 | 156.74 | 156.61 and 156.33 and 151.71 | |
1′ | 33.21 | 33.24 | 33.56 and 33.14 |
2′ | 20.58 | 20.55 | 20.50 and 20.24 |
3′ | 13.26 | 13.25 | 13.20 |
Test Microorganisms | Complexes | ||
---|---|---|---|
6-Methyl-2- Thiouracil | CuL1 | PdL1 | |
Inhibition Zone, mm | |||
Staphylococcus aureus ATCC 25923 | - | 8 | - |
Escherichia coli ATCC 8739 | - | 11 * | 10 * |
Eterococcus faecalis ATCC 19433 | 11 | 13 | - |
Salmonella enterica ssp. enterica ser. Enetritidis ATCC 13076 | - | 13 | 8 |
Pseudomonas aeruginosa ATCC 9027 | 9 | 12 | 9 |
Proteus vulgaris G | 9 * | 11 * | 9 * |
Bacillus subtilis ATCC 6633 | 9 * | 9 | 10 * |
Bacillus cereus ATCC 11778 | 9 * | 8 | 9 * |
Listeria monocytogenes ATCC 8787 | 9 * | 11 | 8 |
Klebsiella pneumoniae ATCC 13883 | 9 * | 13 * | 11 * |
Candida albicans ATCC 10231 | 11 | 11 | 9/10 * |
Saccharomyces cerevisiae | - | 9 | - |
Test Microorganisms | Complexes | ||
---|---|---|---|
6-Propyl-2-Thiouracil | CuL2 | PdL2 | |
Inhibition Zone, mm | |||
Staphylococcus aureus ATCC 25923 | - | 8 | 11/16 * |
Escherichia coli ATCC 8739 | - | 10 * | - |
Eterococcus faecalis ATCC 19433 | - | 12 | 15 |
Salmonella enterica ssp. enterica ser. Enetritidis ATCC 13076 | 8 | 12 | 15 |
Pseudomonas aeruginosa ATCC 9027 | 8 | 12 | 14 |
Proteus vulgaris G | 10 | 9 * | - |
Bacillus subtilis ATCC 6633 | 8 | 12 * | 12 |
Bacillus cereus ATCC 11778 | 10 * | 8 | 11/15 * |
Listeria monocytogenes ATCC 8787 | 8 | 9 | 14 |
Klebsiella pneumoniae ATCC 13883 | 11 * | 12 * | 12 * |
Candida albicans ATCC 10231 | 12 | 11 | 11 |
Saccharomyces cerevisiae | 11 * | 9 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova, P.; Hristov, M.; Tsoneva, S.; Burdzhiev, N.; Blazheva, D.; Slavchev, A.; Varbanova, E.; Penchev, P. Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil. Appl. Sci. 2023, 13, 13150. https://doi.org/10.3390/app132413150
Marinova P, Hristov M, Tsoneva S, Burdzhiev N, Blazheva D, Slavchev A, Varbanova E, Penchev P. Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil. Applied Sciences. 2023; 13(24):13150. https://doi.org/10.3390/app132413150
Chicago/Turabian StyleMarinova, Petya, Mariyan Hristov, Slava Tsoneva, Nikola Burdzhiev, Denica Blazheva, Aleksandar Slavchev, Evelina Varbanova, and Plamen Penchev. 2023. "Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil" Applied Sciences 13, no. 24: 13150. https://doi.org/10.3390/app132413150
APA StyleMarinova, P., Hristov, M., Tsoneva, S., Burdzhiev, N., Blazheva, D., Slavchev, A., Varbanova, E., & Penchev, P. (2023). Synthesis, Characterization, and Antibacterial Studies of New Cu(II) and Pd(II) Complexes with 6-Methyl-2-Thiouracil and 6-Propyl-2-Thiouracil. Applied Sciences, 13(24), 13150. https://doi.org/10.3390/app132413150