Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany
Abstract
:1. Introduction
- 9% inert material (glass, ceramics, stones, etc.);
- 1% unburned (residual organic matter);
- 10% metals (8% Fe metals and 2% NFe, mainly Al and Cu or Cu alloys);
- 40% ash;
- 40% melted products (slag).
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series Knowledge Papers; World Bank, Urban Development: Washington, DC, USA, 2018.
- Williams, P.T. Waste Treatment and Disposal; John Wiley & Sons: West Sussex, UK, 1998. [Google Scholar]
- Chandler, A.J.; Eighmy, T.T.; Hartlen, J.; Hjelmar, O.; Kosson, D.S.; Sawell, S.E.; van der Sloot, H.A.; Vehlow, J. (Eds.) Municipal Solid Waste Incineration Residues, The International Ash Working Group; Included in series Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1997; Volume 67. [Google Scholar]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. Complete determination of the material composition of municipal solid waste incineration bottom ash. Waste Manag. 2020, 102, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Huber, F.; Korotenko, E.; Šyc, M.; Fellner, J. Material and chemical composition of municipal solid waste incineration bottom ash fractions with different densities. J. Mater. Cycles Waste Manag. 2020, 23, 394–401. [Google Scholar] [CrossRef]
- van de Wouw, P.; Loginova, E.; Florea, M.; Brouwers, H. Compositional modelling and crushing behaviour of MSWI bottom ash material classes. Waste Manag. 2020, 101, 268–282. [Google Scholar] [CrossRef]
- Šyc, M.; Simon, F.G.; Hykš, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shimaoka, T.; Saffarzadeh, A.; Takahashi, F. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J. Hazard. Mater. 2011, 187, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Hyks, J.; Astrup, T. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: A full-scale study. Chemosphere 2009, 76, 1178–1184. [Google Scholar] [CrossRef]
- Meima, J.A.; Comans, R.N.J. Overview of Geochemical Processes Controlling Leaching Characteristics of MSWI Bottom Ash. In Studies in Environmental Science; Goumans, J.J.J.M., Senden, G.J., van der Sloot, H.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 71, pp. 447–457. [Google Scholar] [CrossRef]
- Speiser, C.; Baumann, T.; Niessner, R. Characterization of municipal solid waste incineration (MSWI) bottom ash by scanning electron microscopy and quantitative energy dispersive X-ray microanalysis (SEM/EDX). Anal. Bioanal. Chem. 2001, 370, 752–759. [Google Scholar] [CrossRef]
- Quina, M.J.; Bontempi, E.; Bogush, A.; Schlumberger, S.; Weibel, G.; Braga, R.; Funari, V.; Hyks, J.; Rasmussen, E.; Lederer, J. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy. Sci. Total. Environ. 2018, 635, 526–542. [Google Scholar] [CrossRef]
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H.; et al. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [CrossRef]
- Holm, O.; Simon, F.-G. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manag. 2017, 59, 229–236. [Google Scholar] [CrossRef]
- Bunge, R. Recovery of Metals from Waste Incineration Bottom Ash. In Removal, Treatment and Utilisation of Waste Incineration Bottom Ash; Holm, O., Thome-Kozmiensky, E., Eds.; TK Verlag: Neuruppin, Germany, 2018; pp. 63–143. [Google Scholar]
- Astrup, T.; Muntoni, A.; Polettini, A.; Pomi, R.; Van Gerven, T.; Van Zomeren, A. Treatment and Reuse of Incineration Bottom Ash. In Environmental Materials and Waste, Resource Recovery and Pollution Prevention; Prasad, M.N.V., Shih, K., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 607–645. [Google Scholar] [CrossRef]
- Kahle, K.; Kamuk, B.; Kallesøe, J.; Fleck, E.; Lamers, F.; Jacobsson, L.; Sahlén, J. Bottom Ash from WtE Plants, Metal Recovery and Utilization, Report; International Solid Waste Association ISWA: Vienna, Italy, 2015. [Google Scholar]
- Chen, B.; Perumal, P.; Illikainen, M.; Ye, G. A review on the utilization of municipal solid waste incineration (MSWI) bottom ash as a mineral resource for construction materials. J. Build. Eng. 2023, 71, 106386. [Google Scholar] [CrossRef]
- Di Gianfilippo, M.; Hyks, J.; Verginelli, I.; Costa, G.; Hjelmar, O.; Lombardi, F. Leaching behaviour of incineration bottom ash in a reuse scenario: 12 years-field data vs. lab test results. Waste Manag. 2018, 73, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Hyks, J.; Syc, M. Utilisation of Incineration Bottom Ash in Road Construction. In Waste Mangement; Thiel, S., Thomé-Kozmiensky, E., Winter, F., Juchelkova, D., Eds.; Waste-to-Energy, TK-Verlag: Nietwerder, Germany, 2019; Volume 9, pp. 731–741. [Google Scholar]
- Simon, F.G.; Schmidt, V.; Carcer, B. Alterungsverhalten von MVA-Schlacken. Müll Abfall 1995, 27, 759–764. [Google Scholar]
- Krüger, O.; Kalbe, U.; Berger, W.; Simon, F.-G.; Meza, S.L. Leaching experiments on the release of heavy metals and PAH from soil and waste materials. J. Hazard. Mater. 2012, 207–208, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Meza, S.L.; Kalbe, U.; Berger, W.; Simon, F.-G. Effect of contact time on the release of contaminants from granular waste materials during column leaching experiments. Waste Manag. 2010, 30, 565–571. [Google Scholar] [CrossRef]
- Liu, B.; Finkel, M.; Grathwohl, P. Mass Transfer Principles in Column Percolation Tests: Initial Conditions and Tailing in Heterogeneous Materials. Materials 2021, 14, 4708. [Google Scholar] [CrossRef]
- Rauscher, K.; Voigt, J.; Wilke, I.; Wilke, K.T. Chemische Tabellen und Rechentafeln für die Analytische Praxis, 6th ed.; VEB Deutscher Verlag für Grundstoffindustrie: Leipzig, Germany, 1977. [Google Scholar]
- Simon, F.-G.; Vogel, C.; Kalbe, U. Antimony and vanadium in incineration bottom ash—Leaching behavior and conclusions for treatment processes. Detritus 2021, 16, 75–81. [Google Scholar] [CrossRef]
- Bandarra, B.S.; Silva, S.; Pereira, J.L.; Martins, R.C.; Quina, M.J. A Study on the Classification of a Mirror Entry in the European List of Waste: Incineration Bottom Ash from Municipal Solid Waste. Sustainability 2022, 14, 10352. [Google Scholar] [CrossRef]
- Bandarra, B.; Mesquita, C.; Passos, H.; Martins, R.; Coelho, P.; Pereira, J.; Quina, M. An integrated characterisation of incineration bottom ashes towards sustainable application: Physicochemical, ecotoxicological, and mechanical properties. J. Hazard. Mater. 2023, 455, 131649. [Google Scholar] [CrossRef]
- Dijkstra, J.J.; A van der Sloot, H.; Comans, R.N. Process identification and model development of contaminant transport in MSWI bottom ash. Waste Manag. 2002, 22, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Piantone, P.; Bodénan, F.; Chatelet-Snidaro, L. Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implications for the modelling and trapping of heavy metals. Appl. Geochem. 2004, 19, 1891–1904. [Google Scholar] [CrossRef]
- Dijkstra, J.J.; Van Der Sloot, H.A.; Comans, R.N. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem. 2006, 21, 335–351. [Google Scholar] [CrossRef]
- Dijkstra, J.J.; Meeussen, J.C.; Van der Sloot, H.A.; Comans, R.N. A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash. Appl. Geochem. 2008, 23, 1544–1562. [Google Scholar] [CrossRef]
- Di Gianfilippo, M.; Costa, G.; Verginelli, I.; Gavasci, R.; Lombardi, F. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests. Waste Manag. 2016, 56, 216–228. [Google Scholar] [CrossRef]
- Huber, F.; Blasenbauer, D.; Aschenbrenner, P.; Fellner, J. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Manag. 2019, 95, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.-H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total. Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.P. Visual MINTEQ, a Freeware Chemical Equilibrium Model for the Calculation of Metal Speciation, Solubility Equilibria, Sorption etc. for Natural Waters; Version 3.1; 2020; Available online: https://vminteq.lwr.kth.se/ (accessed on 10 December 2023).
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MinteqA2/ProdefA2, A Geochemical Assessment Model for Environmental Systems, Database of Computer Programme; Version 3.0; US Environmental Protection Agency: Athens, GA, USA, 1991.
- DIN 19529: 2015-12; Elution von Feststoffen—Schüttelverfahren zur Untersuchung des Elutionsverhaltens von anorganischen und organischen Stoffen mit einem Wasser/Feststoff-Verhältnis von 2 l/kg. Beuth-Verlag: Berlin, Germany, 2015.
- DIN EN 12457-2: 2003-01; Charakterisierung von Abfällen—Auslaugung; Übereinstimungsuntersuchung für die Auslaugung von körnigen Abfällen und Schlämmen—Teil 2: Einstufiges Schüttelverfahren mit einem Flüssigkeits-/Feststoffverhältnis von 10 l/kg und einer Korngröße unter 4 mm (ohne oder mit Korngrößenreduzierung). Beuth-Verlag: Berlin, Germany, 2003.
- DIN 19528: 2009-01; Elution von Feststoffen—Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von organischen und anorganischen Stoffen für Materialien mit einer Korngröße bis 32 mm—Grundlegende Charakterisierung mit einem ausführlichen Säulenversuch und Übereinstimmungsuntersuchung mit einem Säulenschnelltest. Beuth-Verlag: Berlin, Germany, 2009.
- DIN ISO 11466:1997-06; Bodenbeschaffenheit—Extraktion in Königswasser löslicher Spurenelemente (Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia). Beuth-Verlag: Berlin, Germany, 1997.
- Hennebert, P. Hazard Classification of Waste: Review of Available Practical Methods and Tools. Detritus 2019, 7, 13–28. [Google Scholar] [CrossRef]
- IGAM; ITAD. Einstufung von Hausmüllverbrennungsschlacken in das Abfallverzeichnis Anhand der Gefahrenrelevanten Eigenschaften HP1-HP15, Praxisleitfaden der Verbände IGAM und ITAD e.V.; Version 2.0 vom 18.06.2019; 2019; Available online: https://www.itad.de/service/mitgliederinfos/oeffentliche-anhaenge/20200424-praxisleitfaden_igam-itad-zur-einstufung-von-hmv-schlacke_version_2-1.pdf (accessed on 10 December 2023).
- Nordsieck, H.; Wambach, K.; Thiel, N.; Warnecke, R.; Rommel, W. Gefährliche Eigenschaft HP14 von Rostaschen. In Mineralische Nebenprodukte und Abfälle, Aschen, Schlacken Stäube und Baurestmassen; Thiel, S., Thomé-Kozmiensky, E., Pretz, T., Senk, D.G., Wotruba, H., Eds.; TK-Verlag: Neuruppin, Germany, 2019; Volume 6, pp. 98–112. [Google Scholar]
- Hjelmar, O.; van der Sloot, H.A.; van Zomeren, A. Hazard property classification of high temperature waste materials. In Proceedings of the Fourteenth International Waste Management and Landfill Symposium, S. Margerita di Pula, Cagliari, Italy, 30 September–4 October 2013; CISA Publisher: Padova, Italy, 2013. [Google Scholar]
- Simon, F.-G.; Kalbe, U. Case Study on Secondary Building Materials for a Greener Economy. Appl. Sci. 2023, 13, 6010. [Google Scholar] [CrossRef]
- Johnson, C.; Kaeppeli, M.; Brandenberger, S.; Ulrich, A.; Baumann, W. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash: Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland. J. Contam. Hydrol. 1999, 40, 239–259. [Google Scholar] [CrossRef]
- Arickx, S.; De Borger, V.; Van Gerven, T.; Vandecasteele, C. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Manag. 2010, 30, 1296–1302. [Google Scholar] [CrossRef]
- Meima, J.A.; van Zomeren, A.; Comans, R.N.J. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates. Environ. Sci. Technol. 1999, 33, 1424–1429. [Google Scholar] [CrossRef]
- Olsson, S.; van Schaik, J.W.J.; Gustafsson, J.P.; Kleja, D.B.; van Hees, P.A.W. Copper(II) Binding to Dissolved Organic Matter Fractions in Municipal Solid Waste Incinerator Bottom Ash Leachate. Environ. Sci. Technol. 2007, 41, 4286–4291. [Google Scholar] [CrossRef] [PubMed]
- van Zomeren, A.; Comans, R.N.J. Contribution of Natural Organic Matter to Copper Leaching from Municipal Solid Waste Incinerator Bottom Ash. Environ. Sci. Technol. 2004, 38, 3927–3932. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, G.; Van Gerven, T.; Vandecasteele, C. Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Manag. 2012, 32, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Moench, H.; Wersin, P.; Kugler, P.; Wenger, C. Solubility of Antimony and Other Elements in Samples Taken from Shooting Ranges. J. Environ. Qual. 2005, 34, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, G.; Almås, Å.R.; Morin, N.; Hale, S.E.; Arp, H.P.H. The presence and leachability of antimony in different wastes and waste handling facilities in Norway. Environ. Sci. Process. Impacts 2015, 17, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Kalbe, U.; Simon, F.-G. Potential Use of Incineration Bottom Ash in Construction: Evaluation of the Environmental Impact. Waste Biomass-Valorization 2020, 11, 7055–7065. [Google Scholar] [CrossRef]
- Mantovani, L.; De Matteis, C.; Tribaudino, M.; Boschetti, T.; Funari, V.; Dinelli, E.; Toller, S.; Pelagatti, P. Grain size and mineralogical constraints on leaching in the bottom ashes from municipal solid waste incineration: A comparison of five plants in northern Italy. Front. Environ. Sci. 2023, 11, 1179272. [Google Scholar] [CrossRef]
- Meima, J.A.; Comans, R.N.J. Geochemical Modeling of Weathering Reactions in Municipal Solid Waste Incinerator Bottom Ash. Environ. Sci. Technol. 1997, 31, 1269–1276. [Google Scholar] [CrossRef]
- Perkins, R.B.; Palmer, C.D. Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3 · 26H2O) at 5–75 °C. Geochim. Cosmochim. Acta 1999, 63, 1969–1980. [Google Scholar] [CrossRef]
- Warren, C.; Reardon, E. The solubility of ettringite at 25°C. Cem. Concr. Res. 1994, 24, 1515–1524. [Google Scholar] [CrossRef]
- Myneni, S.C.; Traina, S.J.; Logan, T.J. Ettringite solubility and geochemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K. Chem. Geol. 1998, 148, 1–19. [Google Scholar] [CrossRef]
- Schweizerischer Bundesrat. Verordnung über Die Vermeidung und Die Entsorgung von Abfällen (VVEA); 2015; Available online: https://www.fedlex.admin.ch/eli/cc/2015/891/de (accessed on 10 December 2023).
- Bundesregierung. TA Siedlungsabfall, Technische Anleitung zur Verwertung, Behandlung und Sonstigen Entsorgung von Siedlungsabfällen (Dritte Allgemeine Verwaltungsvorschrift zum Abfallgesetz) vom 14. Mai 1993, Bundesanzeiger 99a. 1993. Available online: https://www.lanuv.nrw.de/fileadmin/lanuv/abfall/tasi.pdf (accessed on 10 December 2023).
- Bundesregierung. Verordnung über Deponien und Langzeitlager (Deponieverordnung—DepV), Bundesgesetzblatt I (2002) 2807. 2002. Available online: https://www.gesetze-im-internet.de/depv_2009/DepV.pdf (accessed on 10 December 2023).
- Blasenbauer, D.; Huber, F.; Lederer, J.; Fellner, J. Utilisation of Incineration Bottom Ash and Respective Legal Requirements in the EU, Norway and Switzerland. In Waste Mangement; Thiel, S., Thomé-Kozmiensky, E., Winter, F., Juchelkova, D., Eds.; Waste-to-Energy, TK-Verlag: Nietwerder, Germany, 2019; Volume 9, pp. 715–729. [Google Scholar]
- Eberle, S.H.; Freyas, R.; Huckele, S.; Haag, I.; Rödelsperger, M. Sickerwasserprognose, Forschungsreport (Schlussbericht), 02WA0071; Heinrich-Sontheimer-Laboratorium im Technologiezentrum Wasser: Karlsruhe, Germany, 2010. [Google Scholar]
- Lynn, C.J.; Obe, R.K.D.; Ghataora, G.S. Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Constr. Build. Mater. 2016, 127, 504–517. [Google Scholar] [CrossRef]
- Stabile, P.; Bello, M.; Petrelli, M.; Paris, E.; Carroll, M. Vitrification treatment of municipal solid waste bottom ash. Waste Manag. 2019, 95, 250–258. [Google Scholar] [CrossRef]
- Xiao, Y.; Oorsprong, M.; Yang, Y.; Voncken, J. Vitrification of bottom ash from a municipal solid waste incinerator. Waste Manag. 2008, 28, 1020–1026. [Google Scholar] [CrossRef]
Element | Sample A | Sample B | Literature 1 [46] |
---|---|---|---|
Ca | 67,793 | 76,417 | 130,833 (50,825–198,289) |
Si 2 | 224,100 | 161,800 | 82,713 (6106–96,078) |
Fe | 38,530 | 52,932 | 58,714 (34,216–11,822) |
Al | 15,098 | 16,490 | 47,232 (30,527–75,089) |
Na | 10,916 | 9599 | 21,379 (12,308–34,791) |
Mg | 4781 | 4655 | 12,429 (6377–34,372) |
K | 3663 | 2504 | 7748 (4854–12,722) |
P | 3247 | 4378 | 5633 (2531–12,556) |
Ti | 2687 | 2661 | 4244 (2873–7479) |
S | 2853 | 3785 | 3862 (131–16,808) |
Cu | 1216 | 2883 | 3275 (738–17,620) |
Zn | 1671 | 2504 | 3241 (1142–9370) |
Pb | 475 | 418 | 1309 (197–6441) |
Mn | 546 | 929 | 1173 (644–2248) |
Ba | 774 | 1483 | 1102 (760–297) |
Cr | 28 | 180 | 353 (115–852) |
Sr | 132 | 213 | 271 (267–369) |
B | 89.5 | 26.1 | 198 (30–532) |
Ni | 85.0 | 100.8 | 185 (38–850) |
Sn 2 | 134.7 | 213.0 | 181 (52–737) |
Sb | 54.1 | 88.4 | 73 (18–250) |
V | 16.5 | 15.3 | 41.2 (19–248) |
Co | 35.7 | 32.9 | 31.8 (11–103) |
Mo | 4.4 | 8.2 | 30.1 (5–84) |
As | 7.8 | 34.2 | 17.3 (4.4–73.2) |
Cd | 1.9 | 1.1 | 4.8 (1.1–117) |
Carbonate (%) 3 | 5.4 | 5.0 | 12,215 (5232–20,760) |
LOI (%) 4 | 1.93 | 1.8 | 1.0 (0.1–4.2) |
Chloride 5 | 2318 | 4485 | 9211 (3644–37,633) |
Sulfate 5 | 7337 | 16,544 | 11,586 (393–50,424) |
Parameter | Unit | HMVA-1 | HMVA-2 | DK 0 | DK I | DK II |
---|---|---|---|---|---|---|
pH value | - | 7–13 | 7–13 | 5.5–13 | 5.5–13 | 5.5–14 |
Electrical conductivity | μS/cm | 2000 | 12,500 | |||
DOC | mg/kg | 500 | 800 | 1000 | ||
Cl | mg/kg | 320 | 10,000 | 800 | 15,000 | 25,000 |
SO4 | mg/kg | 1640 | 6000 | 1000 | 20,000 | 20,000 |
Sb | µg/kg | 20 | 120 | 60 | 300 | 700 |
Cr (total) | µg/kg | 300 | 920 | 500 | 3000 | 10,000 |
Cu | µg/kg | 220 | 2000 | 2000 | 10,000 | 50,000 |
Mo | µg/kg | 110 | 800 | 500 | 3000 | 10,000 |
V | µg/kg | 110 | 300 | |||
As | µg/kg | 500 | 2000 | 2000 | ||
Pb | µg/kg | 500 | 2000 | 10,000 | ||
Cd | µg/kg | 40 | 500 | 1000 | ||
Ni | µg/kg | 400 | 2000 | 10,000 | ||
Hg | µg/kg | 10 | 50 | 200 | ||
Zn | µg/kg | 4000 | 20,000 | 50,000 | ||
Total dissolved matter | mg/kg | 4000 | 30,000 | 60,000 | ||
TOC (solid content) | % | 1 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, F.-G.; Scholz, P. Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany. Appl. Sci. 2023, 13, 13228. https://doi.org/10.3390/app132413228
Simon F-G, Scholz P. Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany. Applied Sciences. 2023; 13(24):13228. https://doi.org/10.3390/app132413228
Chicago/Turabian StyleSimon, Franz-Georg, and Philipp Scholz. 2023. "Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany" Applied Sciences 13, no. 24: 13228. https://doi.org/10.3390/app132413228
APA StyleSimon, F.-G., & Scholz, P. (2023). Assessment of the Long-Term Leaching Behavior of Incineration Bottom Ash: A Study of Two Waste Incinerators in Germany. Applied Sciences, 13(24), 13228. https://doi.org/10.3390/app132413228