Neuromuscular Assessment of a Stand-Up Paddle Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Ethical Procedures
2.2. Procedures
2.2.1. Measurements
2.2.2. Maximal Voluntary Contraction
2.2.3. Stand-Up Paddle Stroke Assessment
2.2.4. Data Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, C.; Nichols, A.; Forman, T. A survey of injuries and medical conditions affecting stand-up paddle surfboarding participants. Clin. J. Sports Med. 2010, 20, 144. [Google Scholar]
- Schram, B.; Hing, W.; Climstein, M. Profiling the Sport of Stand-up Paddle Boarding. J. Sports Sci. 2015, 34, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Schram, B.L.; Hing, W.A.; Climstein, M.; Furness, J.W. A Performance Analysis of a Stand-up Paddle Board Marathon Race. J. Strength Cond. Res. 2017, 31, 1552–1556. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Babarro, A.; Balerdi, E.; León-Guereño, P. Analysis of Stand-up Paddle Boarding: A Systematic Review (Análisis Del Stand up Paddle. Una Revisión Sistemática). Retos 2021, 44, 193–201. [Google Scholar] [CrossRef]
- Ruess, C.; Kristen, K.H.; Eckelt, M.; Mally, F.; Litzenberger, S.; Sabo, A. Stand up Paddle Surfing-an Aerobic Workout and Balance Training. Procedia Eng. 2013, 60, 62–66. [Google Scholar] [CrossRef]
- Schram, B.; Hing, W.; Climstein, M. The Physiological, Musculoskeletal and Psychological Effects of Stand up Paddle Boarding. BMC Sports Sci. Med. Rehabil. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Schram, B.; Hing, W.; Climstein, M. Laboratory- and Field-Based Assessment of Maximal Aerobic Power of Elite Stand-up Paddle-Board Athletes. Int. J. Sports Physiol. Perform. 2016, 11, 28–32. [Google Scholar] [CrossRef]
- Neiva, H.P.; Faíl, L.B.; Marinho, D.A. A 30-Min Test Applied to Stand-up Paddleboarding: A Pilot Study. J. Hum. Sport Exerc. 2020, 15, S1387–S1393. [Google Scholar] [CrossRef]
- Tsai, F.-H.; Wu, W.-L.; Chen, Y.-J.; Liang, J.-M.; Hou, Y.-Y. Electromyography Analysis of Muscle Activation during Stand-up Paddle Boarding: A Comparison of Paddling in Kneeling and Standing Positions. Appl. Sci. 2020, 10, 2356. [Google Scholar] [CrossRef]
- Hibbert, J.E.; Kaufman, C.; Schmidt, D.J. Shoulder, Trunk, and Hip Sagittal Plane Kinematics during Stand-up Paddle Boarding. Sports 2023, 11, 152. [Google Scholar] [CrossRef]
- Furness, J.; Olorunnife, O.; Schram, B.; Climstein, M.; Hing, W. Epidemiology of Injuries in Stand-up Paddle Boarding. Orthop. J. Sports Med. 2017, 5, 232596711771075. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Babarro, A.; Calleja-González, J.; Viribay, A.; Fernández-Lázaro, D.; León-Guereño, P.; Mielgo-Ayuso, J. Relationship between Training Factors and Injuries in Stand-up Paddleboarding Athletes. Int. J. Environ. Res. Public Health 2021, 18, 880. [Google Scholar] [CrossRef] [PubMed]
- Schram, B. The Long-Term Effects of Stand-up Paddle Boarding: A Case Study. Int. J. Sports Exerc. Med. 2017, 3, 065. [Google Scholar] [CrossRef]
- Schram, B.; Furness, J.; Kemp-Smith, K.; Sharp, J.; Cristini, M.; Harvie, D.; Keady, E.; Ghobrial, M.; Tussler, J.; Hing, W.; et al. A Biomechanical Analysis of the Stand-up Paddle Board Stroke: A Comparative Study. PeerJ 2019, 7, e8006. [Google Scholar] [CrossRef]
- Balikian, P.; Marinho, A.H.; Gomes de Araujo, G.; Prado, E.S.; Mendes, E.V.; Ryan Geraldes, A.A. Anaerobic Threshold in Stand-up Paddle. J. Strength Cond. Res. 2022, 36, 1896–1900. [Google Scholar] [CrossRef]
- Ho, S.R.; Smith, R.; O’Meara, D. Biomechanical Analysis of Dragon Boat Paddling: A Comparison of Elite and Sub-Elite Paddlers. J. Sports Sci. 2009, 27, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ruess, C.; Kristen, K.H.; Eckelt, M.; Mally, F.; Litzenberger, S.; Sabo, A. Activity of Trunk and Leg Muscles during Stand up Paddle Surfing. Procedia Eng. 2013, 60, 57–61. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Fey, A.J.; Dorn, C.S.; Busch, B.P.; Laux, L.A.; Hassett, D.R.; Ludewig, P.M. Potential torque capabilities of the trapezius. J. Orthop. Sports Phys. Ther. 2007, 37, A44–A45. [Google Scholar]
- Limonta, E.; Squadrone, R.; Rodano, R.; Marzegan, A.; Veicsteinas, A.; Merati, G.; Sacchi, M. Tridimensional Kinematic Analysis on a Kayaking Simulator: Key Factors to Successful Performance. Sport Sci. Health 2010, 6, 27–34. [Google Scholar] [CrossRef]
- Willmott, A.G.B.; Sayers, B.; Brickley, G. The Physiological and Perceptual Responses of Stand-up Paddle Board Exercise in a Laboratory- and Field-Setting. Eur. J. Sport Sci. 2019, 20, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Afsharipour, B.; Soedirdjo, S.; Merletti, R. Two-Dimensional Surface EMG: The Effects of Electrode Size, Interelectrode Distance and Image Truncation. Biomed. Signal Process. Control 2019, 49, 298–307. [Google Scholar] [CrossRef]
- Conceição, A.; Silva, A.J.; Barbosa, T.; Karsai, I.; Louro, H. Neuromuscular Fatigue during 200 M Breaststroke. J. Sports Sci. Med. 2014, 13, 200–210. [Google Scholar] [PubMed]
- Dyson, R.; Buchanan, M.; Farrington, T.A.; Hurrion, P. Electromyographic Activity during Windsurfing on Water. J. Sports Sci. 1996, 14, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Castelein, B.; Cagnie, B.; Parlevliet, T.; Danneels, L.; Cools, A. Optimal Normalization Tests for Muscle Activation of the Levator Scapulae, Pectoralis Minor, and Rhomboid Major: An Electromyography Study Using Maximum Voluntary Isometric Contractions. Arch. Phys. Med. Rehabil. 2015, 96, 1820–1827. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, S.; Aghazadeh, F. Electromyography Analysis: Comparison of Maximum Voluntary Contraction Methods for Anterior Deltoid and Trapezius Muscles. Procedia Manuf. 2015, 3, 4578–4583. [Google Scholar] [CrossRef]
- Konrad, P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography; Version of 1.4 March 2006; Noraxon Inc.: Scottsdale, AZ, USA, 2006; pp. 1–61. Available online: https://www.noraxon.com/wp-content/uploads/2014/12/ABC-EMG-ISBN.pdf (accessed on 12 September 2023).
- Liu, P.; Liu, L.; Martel, F.; Rancourt, D.; Clancy, E.A. Influence of Joint Angle on EMG–Torque Model during Constant-Posture, Quasi-Constant-Torque Contractions. J. Electromyogr. Kinesiol. 2013, 23, 1020–1028. [Google Scholar] [CrossRef]
- Roman-Liu, D.; Bartuzi, P. Influence of Type of MVC Test on Electromyography Measures of Biceps Brachii and Triceps Brachii. Int. J. Occup. Saf. Ergon. 2017, 24, 200–206. [Google Scholar] [CrossRef]
- Boettcher, C.E.; Ginn, K.A.; Cathers, I. Standard Maximum Isometric Voluntary Contraction Tests for Normalizing Shoulder Muscle EMG. J. Orthop. Res. 2008, 26, 1591–1597. [Google Scholar] [CrossRef]
- National Weather Service. The Beaufort Wind Force Scale. Available online: https://www.weather.gov/mfl/beaufort (accessed on 1 May 2022).
- Michael, J.S.; Smith, R.; Rooney, K.B. Determinants of Kayak Paddling Performance. Sports Biomech. 2009, 8, 167–179. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for T-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Trevithick, B.A.; Ginn, K.A.; Halaki, M.; Balnave, R. Shoulder Muscle Recruitment Patterns during a Kayak Stroke Performed on a Paddling Ergometer. J. Electromyogr. Kinesiol. 2007, 17, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.F.; Woollacott, M.H.; Chong, R.K.Y. Control of Reactive Balance Adjustments in Perturbed Human Walking: Roles of Proximal and Distal Postural Muscle Activity. Exp. Brain Res. 1998, 119, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Pink, M.; Perry, J.; Browne, A.; Scovazzo, M.L.; Kerrigan, J. The Normal Shoulder during Freestyle Swimming. Am. J. Sports Med. 1991, 19, 569–576. [Google Scholar] [CrossRef]
- Martens, J.; Daly, D.; Deschamps, K.; Fernandes, R.J.P.; Staes, F. Intra-Individual Variability of Surface Electromyography in Front Crawl Swimming. PLoS ONE 2015, 10, e0144998. [Google Scholar] [CrossRef]
Paddle Side | Mean ± SD | p-Value | Cohen’s D | 95% CI for Cohen’s D | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Stroke Time (s) | Left | 1.50 ± 0.25 | 0.93 | −0.03 | −0.77 | 0.71 |
Right | 1.51 ± 0.27 | |||||
Recovery Time (s) | Left | 0.92 ± 0.20 | 0.83 | 0.08 | −0.66 | 0.82 |
Right | 0.91 ± 0.19 | |||||
Pull Time (s) | Left | 0.60 ± 0.11 | 0.85 | 0.07 | −067 | 0.82 |
Right | 0.59 ± 0.12 | |||||
Recovery Phase (%) | Left | 60.04 ± 5.62 | 0.66 | −0.16 | −0.91 | 0.57 |
Right | 60.97 ± 5.56 | |||||
Pull Phase (%) | Left | 39.96 ± 5.62 | 0.66 | 0.16 | −0.57 | 0.91 |
Right | 39.03 ± 5.56 |
Phases | Muscles | Opposite (% MVC) | Adjacent (%MVC) | p-Value | Cohen’s D | 95% CI for Cohen’s D | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Pull | Upper trapezius | 24.35 ± 8.75 | 12.28 ± 6.98 | 0.01 | 1.53 | 0.66 | 2.36 |
Triceps brachii | 10.67 ± 5.10 | 10.02 ± 4.50 | 0.72 | 0.13 | −0.61 | 0.87 | |
Biceps brachii | 7.41 ± 3.86 | 8.51 ± 2.80 | 0.40 | −0.33 | −1.07 | 0.43 | |
Tibialis anterior | 10.18 ± 6.36 | 12.24 ± 7.70 | 0.45 | −0.29 | −1.04 | 0.45 | |
Gastrocnemius medialis | 10.98 ± 4.86 | 8.45 ± 4.06 | 0.15 | 0.56 | −0.19 | 1.32 | |
Recovery | Upper trapezius | 14.78 ± 6.37 | 10.21 ± 5.49 | 0.05 | 0.77 | −0.01 | 1.53 |
Triceps brachii | 33.57 ± 17.03 | 32.92 ± 16.06 | 0.92 | 0.04 | −0.71 | 0.78 | |
Biceps brachii | 4.80 ± 2.17 | 8.36 ± 5.11 | 0.03 | −0.91 | −1.68 | −0.12 | |
Tibialis anterior | 17.90 ± 11.76 | 18.70 ± 9.73 | 0.85 | −0.07 | −0.82 | 0.67 | |
Gastrocnemius medialis | 10.43 ± 4.86 | 10.73 ± 6.85 | 0.90 | −0.05 | −0.79 | 0.69 |
Phases | Muscles | Opposite (%MVC) | Adjacent (%MVC) | p-Value | Cohen’s D | 95% CI for Cohen’s D | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Pull | Upper trapezius | 27.60 ± 12.65 | 10.77 ± 5.68 | 0.01 | 1.72 | 0.83 | 2.58 |
Triceps brachii | 14.11 ± 6.30 | 11.35 ± 6.63 | 0.27 | 0.43 | −0.33 | 1.17 | |
Biceps brachii | 6.99 ± 2.68 | 9.24 ± 3.20 | 0.05 | −0.76 | −1.52 | 0.02 | |
Tibialis anterior | 13.14 ± 7.71 | 13.56 ± 7.78 | 0.89 | −0.05 | −0.79 | 0.69 | |
Gastrocnemius medialis | 10.43 ± 5.00 | 9.42 ± 3.37 | 0.54 | 0.24 | −0.51 | 0.97 | |
Recovery | Upper Trapezius | 11.85 ± 4.92 | 10.21 ± 6.15 | 0.44 | 0.29 | −0.46 | 1.04 |
Triceps brachii | 42.25 ± 18.77 | 29.96 ± 10.44 | 0.04 | 0.81 | 0.03 | 1.58 | |
Biceps brachii | 6.09 ± 4.32 | 9.67 ± 7.82 | 0.15 | −0.57 | −1.31 | 0.19 | |
Tibialis anterior | 19.59 ± 9.89 | 17.67 ± 11.09 | 0.63 | 0.18 | −0.57 | 0.93 | |
Gastrocnemius medialis | 10.12 ± 5.52 | 12.04 ± 4.91 | 0.34 | −0.37 | −1.12 | 0.38 |
Body Side | Muscles | Pull | Recovery | p-Value | Cohen’s D | 95% CI for Cohen’s D | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Opposite (%) | Upper trapezius | 24.35 ± 8.75 | 14.78 ± 6.37 | 0.03 | 1.26 | 0.43 | 2.05 |
Triceps brachii | 10.67 ± 5.10 | 33.57 ± 17.03 | 0.01 | −1.82 | −2.69 | −0.92 | |
Biceps brachii | 7.41 ± 3.86 | 4.80 ± 2.17 | 0.04 | 0.83 | 0.05 | 1.60 | |
Tibialis anterior | 10.18 ± 6.36 | 17.90 ± 11.76 | 0.04 | −0.82 | −1.58 | −0.04 | |
Gastrocnemius medialis | 10.98 ± 4.86 | 10.43 ± 4.86 | 0.77 | 0.12 | −0.63 | 0.85 | |
Adjacent (%) | Upper trapezius | 12.28 ± 6.98 | 10.21 ± 5.49 | 0.39 | 0.33 | −0.42 | 1.07 |
Triceps brachii | 10.02 ± 4.50 | 32.92 ± 16.06 | 0.01 | −1.94 | −2.84 | −1.02 | |
Biceps brachii | 8.51 ± 2.80 | 8.36 ± 5.11 | 0.93 | 0.04 | −0.71 | 0.77 | |
Tibialis anterior | 12.24 ± 7.70 | 18.70 ± 9.73 | 0.06 | −0.74 | −1.49 | 0.04 | |
Gastrocnemius medialis | 8.45 ± 4.06 | 10.73 ± 6.85 | 0.30 | −0.41 | −1.16 | 0.35 |
Body Side | Muscles | Pull | Recovery | p-Value | Cohen’s D | 95% CI for Cohen’s D | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Opposite (%) | Upper trapezius | 27.60 ± 12.65 | 11.85 ± 4.92 | 0.01 | 1.64 | 0.76 | 2.49 |
Triceps brachii | 14.11 ± 6.30 | 42.25 ± 18.77 | 0.01 | −2.01 | −2.92 | −1.08 | |
Biceps brachii | 6.99 ± 2.68 | 6.09 ± 4.32 | 0.51 | 0.25 | −0.49 | 0.99 | |
Tibialis anterior | 13.14 ± 7.71 | 19.59 ± 9.89 | 0.07 | −0.73 | −1.48 | 0.05 | |
Gastrocnemius medialis | 10.43 ± 5.00 | 10.12 ± 5.52 | 0.88 | 0.06 | −0.68 | 0.79 | |
Adjacent (%) | Upper trapezius | 10.77 ± 5.68 | 10.21 ± 6.15 | 0.80 | 0.95 | −0.64 | 0.84 |
Triceps brachii | 11.35 ± 6.63 | 29.96 ± 10.44 | 0.01 | −2.13 | −3.05 | −1.17 | |
Biceps brachii | 9.24 ± 3.20 | 9.67 ± 7.82 | 0.85 | −0.07 | −0.82 | 0.67 | |
Tibialis anterior | 13.56 ± 7.78 | 17.67 ± 11.09 | 0.27 | −0.43 | −1.17 | 0.33 | |
Gastrocnemius medialis | 9.42 ± 3.37 | 12.04 ± 4.91 | 0.11 | −0.63 | −1.37 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, J.; Conceição, A.; Šťastný, J.; Louro, H.; Leitão, L.; Torres, D.; Marinho, D.A.; Neiva, H.P. Neuromuscular Assessment of a Stand-Up Paddle Stroke. Appl. Sci. 2023, 13, 13265. https://doi.org/10.3390/app132413265
Freitas J, Conceição A, Šťastný J, Louro H, Leitão L, Torres D, Marinho DA, Neiva HP. Neuromuscular Assessment of a Stand-Up Paddle Stroke. Applied Sciences. 2023; 13(24):13265. https://doi.org/10.3390/app132413265
Chicago/Turabian StyleFreitas, João, Ana Conceição, Jan Šťastný, Hugo Louro, Luís Leitão, Diana Torres, Daniel A. Marinho, and Henrique P. Neiva. 2023. "Neuromuscular Assessment of a Stand-Up Paddle Stroke" Applied Sciences 13, no. 24: 13265. https://doi.org/10.3390/app132413265
APA StyleFreitas, J., Conceição, A., Šťastný, J., Louro, H., Leitão, L., Torres, D., Marinho, D. A., & Neiva, H. P. (2023). Neuromuscular Assessment of a Stand-Up Paddle Stroke. Applied Sciences, 13(24), 13265. https://doi.org/10.3390/app132413265