Securing Construction Workers’ Data Security and Privacy with Blockchain Technology
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Research Motivation and Significance
1.3. Research Aim and Objectives
- (1)
- To develop a Hyperledger fabric blockchain for privacy protection of personal information and safety among construction workers.
- (2)
- To optimize Amazon Web Services (AWS) as the cloud provider and storage service to deploy the blockchain solution.
- (3)
- To test and evaluate the effectiveness of the blockchain for ensuring privacy protection and the security of construction workers’ personal information.
- (4)
- To develop a conceptual blockchain model to enhance the privacy and safety of construction workers’ personal information, and to illustrate the practical implementation of the proposed model to validate its usability and benefits for the construction industry.
2. Literature Review
2.1. Traditional Methods of Data Management
2.2. Advanced Privacy Management Practices and the Adoption of Secure and Efficient Digital Solutions
2.3. Evolution of Blockchain Technology: From Bitcoin to Blockchain 3.0
2.4. Blockchain Technology as an Information Management System
2.5. Blockchain Types
2.6. Key Concepts of Blockchain Technology
3. Methodology
3.1. Experimental Design of the Proposed Blockchain
3.1.1. Blockchain System Architecture of the Case Study
3.1.2. System Structure of Proposed Blockchain
3.1.3. Deployment of Proposed Blockchain
- Step 1: Establishing AWS infrastructure
- Step 2: Installing and configuring the Hyperledger Fabric components
- Step 3: Storing and managing construction workers’ data
- Step 4: Enabling communication and integration among network components
- Step 5: Configuration and deployment of chaincode
Algorithm 1 Biodata of construction workers in case study |
// Define a User class |
class User { |
// Define private member variables |
String user_id |
String user_name |
String user_address |
String user_email |
String account_type |
// Define getters and setters for the member variables |
method getUser_id() : String |
method setUser_id(user_id : String) : void |
method getUser_name() : String |
Algorithm 2 Safety data of construction workers |
// Define a SpreadingMortar class |
class SpreadingMortar { |
// Declare private member variables |
String id |
String numberOfFrames |
String neckAngle |
String rightElbow |
String leftElbow |
String rightwrist |
String lefttwrist |
String rightSoulder |
String leftSoulder |
String rightHip |
String leftHip |
String rightKnee |
String leftKnee |
String rebaScore |
String levelOfMSDRisk |
// Define a parameterized constructor |
method SpreadingMotor(id : String, numberOfFrames : String, neckAngle : String, rightElbow : String, leftElbow : String, rightwrist : String, lefttwrist : String, rightSoulder : String, leftSoulder : String, |
4. Results and Discussions
4.1. Results
4.1.1. A Conceptual Blockchain-Based Model for Enhancing the Privacy and Safety of Construction Workers’ Personal Information
4.1.2. Testing of Conceptual Blockchain-Based System Using the Transaction Testing Approach
4.1.3. Security Details of the Conceptual Blockchain Developed on AWS
4.2. Discussion
5. Conclusions
- Informed decision making for high-risk activities: By storing safety data, especially work-related musculoskeletal disorder (WMSD) risk assessments, on the blockchain, construction stakeholders gain access to verified and authenticated information. This empowers them to make informed decisions related to workforce management during high-risk construction tasks. Comprehensive safety data facilitate effective risk assessment, optimal resource allocation, and the assignment of skilled workers to specific high-risk activities. This proactive approach enhances safety measures, reduces accidents, and ensures the well-being of construction personnel.
- Enhanced data security and privacy: Storing workers’ biographic data on the blockchain enhances security and privacy compared to centralized systems. The blockchain’s decentralized architecture distributes data across multiple nodes, making unauthorized manipulation challenging. Cryptographic techniques further safeguard sensitive information, ensuring its confidentiality. This heightened data security fosters trust between construction stakeholders and workers, assuring them that their information is handled with the utmost security.
- Promotion of Industry Innovation and Trust: The successful implementation of blockchain within the construction sector sets a precedent for technological innovation. Demonstrating the practical application of blockchain in enhancing data security and privacy inspires confidence among stakeholders. This newfound trust encourages further adoption of advanced technologies to modernize construction practices, driving industry-wide innovation and fostering a culture of continuous improvement.
6. Limitations, Recommendations, and Future Research Direction
6.1. Limitations
6.2. Recommendations
- (1)
- Continuous Monitoring and Auditing: Ensuring compliance with data protection regulations and preemptively identifying vulnerabilities require consistent monitoring and auditing of the blockchain system. Regular updates and patches should be swiftly applied to mitigate potential security risks, thus creating a robust environment for data management.
- (2)
- Real-world Testing and Iterative Enhancement: Real-world testing and pilot implementation of the blockchain platform in construction projects are essential. This approach facilitates the identification of practical challenges and permits iterative refinements. Collecting user feedback and promptly addressing any emerging issues will optimize the system’s performance and tailor its functionality to the specific requirements of the construction industry.
6.3. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A.; Kennedy, I.B. Industrial Revolution 4.0 in the construction industry: Challenges and opportunities for stakeholders. Ain Shams Eng. J. 2020, 11, 225–230. [Google Scholar] [CrossRef]
- World Economic Forum. Shaping the Future of Construction a Breakthrough in Mindset and Technology; World Economic Forum: Cologny, Switzerland, 2016. [Google Scholar]
- Chen, J.; Lv, Z.; Song, H. Design of personnel big data management system based on blockchain. Future Gener. Comput. Syst. 2019, 101, 1122–1129. [Google Scholar] [CrossRef]
- Gruschka, N.; Mavroeidis, V.; Vishi, K.; Jensen, M. Privacy issues and data protection in big data: A case study analysis under GDPR. In Proceedings of the IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5027–5033. [Google Scholar]
- Monahan, T. Identity theft vulnerability: Neoliberal governance through crime construction. Theor. Criminol. 2009, 13, 155–176. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, Y.; Archer, N. A contextual framework for combating identity theft. IEEE Secur. Priv. 2006, 4, 30–38. [Google Scholar] [CrossRef]
- Smith, A.D.; Lias, A.R. Identity theft and e-fraud as critical CRM concerns. Int. J. Enterp. Inf. Syst. (IJEIS) 2005, 1, 17–36. [Google Scholar] [CrossRef]
- Tikkinen-Piri, C.; Rohunen, A.; Markkula, J. EU General Data Protection Regulation: Changes and implications for personal data collecting companies. Comput. Law Secur. Rev. 2018, 34, 134–153. [Google Scholar] [CrossRef]
- Xu, J.; Lu, W.; Wu, L.; Lou, J.; Li, X. Balancing privacy and occupational safety and health in construction: A blockchain-enabled P-OSH deployment framework. Saf. Sci. 2022, 154, 105860. [Google Scholar] [CrossRef]
- Gamil, Y.; Alhagar, A. The impact of pandemic crisis on the survival of construction industry: A case of COVID-19. Mediterr. J. Soc. Sci. 2020, 11, 122. [Google Scholar] [CrossRef]
- Olanrewaju, A.; Tan, S.Y.; Kwan, L.F. Roles of communication on performance of the construction sector. Procedia Eng. 2017, 196, 763–770. [Google Scholar] [CrossRef]
- Ho, P.H. Labour and skill shortages in Hong Kong’s construction industry. Eng. Constr. Archit. Manag. 2016, 23, 533–550. [Google Scholar] [CrossRef]
- Olsen, D.; Tatum, M.; Defnall, C. How industrial contractors are handling skilled labor shortages in the United States. In Proceedings of the 48th ASC Annual International Conference Proceedings, Birmingham, UK, 11–14 April 2012. [Google Scholar]
- Kerrest, F. Commentary: How Blockchain Could Put an End to Identity Theft. Fortune. 2018. Available online: http://fortune.com/2018/04/20/blockchain-technology-identity-theft-dataprivacy-protection/ (accessed on 27 September 2018).
- Antwi-Afari, M.F.; Li, H.; Edwards, D.J.; Pärn, E.A.; Seo, J.; Wong, A.Y.L. Biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. Autom. Constr. 2017, 83, 41–47. [Google Scholar] [CrossRef]
- Antwi-Afari, M.F.; Li, H.; Yu, Y.; Kong, L. Wearable insole pressure system for automated detection and classification of awkward working postures in construction workers. Autom. Constr. 2018, 96, 433–441. [Google Scholar] [CrossRef]
- Boschman, J.S.; van der Molen, H.F.; Sluiter, J.K.; Frings-Dresen, M.H. Musculoskeletal disorders among construction workers: A one-year follow-up study. BMC Musculoskelet. Disord. 2012, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Valero, E.; Sivanathan, A.; Bosché, F.; Abdel-Wahab, M. Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Autom. Constr. 2017, 83, 48–55. [Google Scholar] [CrossRef]
- Cheng, S.; Daub, M.; Domeyer, A.; Lundqvist, M. Using Blockchain to Improve Data Management in the Public Sector; McKinsey Digital: Kolkata, India, 2017. [Google Scholar]
- Perera, S.; Nanayakkara, S.; Rodrigo, M.N.N.; Senaratne, S.; Weinand, R. Blockchain technology: Is it hype or real in the construction industry? J. Ind. Inf. Integr. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Heilig, L.; Voß, S. A holistic framework for security and privacy management in cloud-based smart ports. In Proceedings of the 15th International Conference on Computer and IT Applications in the Maritime Industries-COMPIT ‘16, Lecce, Italy, 9–11 May 2016. [Google Scholar]
- Nikmehr, B.; Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Antucheviciene, J. Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability 2021, 13, 5040. [Google Scholar] [CrossRef]
- Klinc, R.; Turk, Ž. Construction 4.0–digital transformation of one of the oldest industries. Econ. Bus. Rev. 2019, 21, 4. [Google Scholar] [CrossRef]
- Gourévitch, A.; Fæste, L.; Baltassis, E.; Marx, J. Data-Driven Transformation. BCG Perspect. 2017, 5, 8. [Google Scholar]
- Bonnici, C.J.; Coles-Kemp, L. Principled electronic consent management: A preliminary research framework. In Proceedings of the 2010 International Conference on Emerging Security Technologies, Canterbury, UK, 6–7 September 2010; pp. 119–123. [Google Scholar]
- Li, H.; Lu, M.; Hsu, S.C.; Gray, M.; Huang, T. Proactive behavior-based safety management for construction safety improvement. Saf. Sci. 2015, 75, 107–117. [Google Scholar] [CrossRef]
- Boniface, C.; Fouad, I.; Bielova, N.; Lauradoux, C.; Santos, C. Security analysis of subject access request procedures: How to authenticate data subjects safely when they request for their data. In Privacy Technologies and Policy: 7th Annual Privacy Forum, APF 2019, Rome, Italy, 13–14 June 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Proceedings 7; pp. 182–209. [Google Scholar]
- Oetzel, M.C.; Spiekermann, S. A systematic methodology for privacy impact assessments: A design science approach. Eur. J. Inf. Syst. 2014, 23, 126–150. [Google Scholar] [CrossRef]
- Yang, R.; Wakefield, R.; Lyu, S.; Jayasuriya, S.; Han, F.; Yi, X.; Yang, T.; Amarasinghe, G.; Chen, S. Public and private blockchain in construction business process and information integration. Autom. Constr. 2020, 118, 103276. [Google Scholar] [CrossRef]
- Makhdoom, I.; Zhou, I.; Abolhasan, M.; Lipman, J.; Ni, W. PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. Secur. 2020, 88, 101653. [Google Scholar] [CrossRef]
- Politou, E.; Casino, F.; Alepis, E.; Patsakis, C. Blockchain mutability: Challenges and proposed solutions. IEEE Trans. Emerg. Top. Comput. 2019, 9, 1972–1986. [Google Scholar] [CrossRef]
- Pan, X.; Zhong, B.; Sheng, D.; Yuan, X.; Wang, Y. Blockchain and deep learning technologies for construction equipment security information management. Autom. Constr. 2022, 136, 104186. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, K.S.; Kim, D.S.; Jang, S.J.; Hong, K.H.; Yoo, S.-W. Characteristics of Work-related Musculoskeletal Disorders in Korea and Their Work-relatedness Evaluation. J. Korean Med. Sci. 2010, 25, S77–S86. [Google Scholar] [CrossRef]
- Dong, X.S.; Betit, E.; Dale, A.M.; Barlet, G.; Wei, Q. Trends of Musculoskeletal Disorders and Interventions in the Construction Industry. 2019. Available online: https://stacks.cdc.gov/view/cdc/86273 (accessed on 16 October 2023).
- Khando, K.; Gao, S.; Islam, S.M.; Salman, A. Enhancing employees information security awareness in private and public organisations: A systematic literature review. Comput. Secur. 2021, 106, 102267. [Google Scholar] [CrossRef]
- Tapscott, D.; Tapscott, A. How blockchain will change organizations. MIT Sloan Manag. Rev. 2017, 58, 10. [Google Scholar]
- Kobsa, A. Privacy-enhanced personalization. Commun. ACM 2007, 50, 24–33. [Google Scholar] [CrossRef]
- Cranor, L.F. Necessary but not sufficient: Standardized mechanisms for privacy notice and choice. J. Telecomm. High Tech. L. 2012, 10, 273. [Google Scholar]
- Johnson, V.R. Cybersecurity, Identity Theft, and the Limits of Tort Liability. South Carol. Law Rev. 2005, 57, 255. [Google Scholar]
- Ahmad, S. Green human resource management: Policies and practices. Cogent Bus. Manag. 2015, 2, 1030817. [Google Scholar] [CrossRef]
- Clough, R.H.; Sears, G.A.; Sears, S.K.; Segner, R.O.; Rounds, J.L. Construction Contracting: A Practical Guide to Company Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Siegel, K.M. Protecting the Most Valuable Corporate Asset: Electronic Data, Identity Theft, Personal Information, and the Role of Data Security in the Information Age. Penn. St. L. Rev. 2006, 111, 779. [Google Scholar]
- Al-Zaben, N.; Onik, M.M.H.; Yang, J.; Lee, N.Y.; Kim, C.S. General data protection regulation complied blockchain architecture for personally identifiable information management. In Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17 August 2018; pp. 77–82. [Google Scholar]
- Yi, X.; Wu, J. Research on safety management of construction engineering personnel under “big data+ artificial intelligence”. Open J. Bus. Manag. 2020, 8, 1059–1075. [Google Scholar] [CrossRef]
- Chanal, P.M.; Kakkasageri, M.S. Security and privacy in IOT: A survey. Wirel. Pers. Commun. 2020, 115, 1667–1693. [Google Scholar] [CrossRef]
- Safa, N.S.; Mitchell, F.; Maple, C.; Azad, M.A.; Dabbagh, M. Privacy Enhancing Technologies (PETs) for connected vehicles in smart cities. Trans. Emerg. Telecommun. Technol. 2022, 33, e4173. [Google Scholar] [CrossRef]
- Curzon, J.; Almehmadi, A.; El-Khatib, K. A survey of privacy enhancing technologies for smart cities. Pervasive Mob. Comput. 2019, 55, 76–95. [Google Scholar] [CrossRef]
- Bhanot, R.; Hans, R. A review and comparative analysis of various encryption algorithms. Int. J. Secur. Its Appl. 2015, 9, 289–306. [Google Scholar] [CrossRef]
- Cachin, C.; Camenisch, J.; Freire-Stögbuchner, E.; Lehmann, A. Updatable tokenization: Formal definitions and provably secure constructions. In Financial Cryptography and Data Security: 21st International Conference, FC 2017, Sliema, Malta, 3–7 April 2017, Revised Selected Papers; Springer International Publishing: Cham, Switzerland, 2017; pp. 59–75. [Google Scholar]
- Murthy, S.; Bakar, A.A.; Rahim, F.A.; Ramli, R. A comparative study of data anonymization techniques. In Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019; pp. 306–309. [Google Scholar]
- David, A.; Zarli, A.; Mirarchi, C.; Naville, N.; Perissich, L. DigiPLACE: Towards a reference architecture framework for digital platforms in the EU construction sector. In ECPPM 2021–eWork and eBusiness in Architecture, Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2021; pp. 511–518. [Google Scholar]
- Smallwood, R.F. Information Governance: Concepts, Strategies and Best Practices; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Voss, W.G. Cross-border data flows, the GDPR, and data governance. Wash. Int. Law J. 2019, 29, 485. [Google Scholar] [CrossRef]
- Kuperberg, M. Blockchain-Based Identity Management: A Survey from the enterprise and ecosystem perspective. IEEE Trans. Eng. Manag. 2020, 67, 1008–1027. [Google Scholar] [CrossRef]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Mougayar, W. The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Shabir, M.Y.; Iqbal, A.; Mahmood, Z.; Ghafoor, A. Analysis of classical encryption techniques in cloud computing. Tsinghua Sci. Technol. 2016, 21, 102–113. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, P.; Li, H.; Zhong, B.; Fung, I.W.; Lee, Y.Y.R. Blockchain Technology in the Construction Industry: Current Status, Challenges, and Future Directions. J. Constr. Eng. Manag. 2022, 148, 03122007. [Google Scholar] [CrossRef]
- Monrat, A.A.; Schelén, O.; Andersson, K. A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access 2019, 7, 117134–117151. [Google Scholar] [CrossRef]
- Lu, W.; Wu, L.; Zhao, R. Rebuilding trust in the construction industry: A blockchain-based deployment framework. Int. J. Constr. Manag. 2023, 23, 1405–1416. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin v0. 1 Released. The Mail Archive, 9. 2009. Available online: https://www.mail-archive.com/[email protected]/msg10142.html (accessed on 15 May 2023).
- Saah, A.E.N.; Choi, J.H. Blockchain technology in the AEC industry: Scientometric analysis of research activities. J. Build. Eng. 2023, 72, 106609. [Google Scholar] [CrossRef]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Penzes, B.; KirNup, A.; Gage, C.; Dravai, T.; Colmer, M. Blockchain Technology in the Construction Industry: Digital Transformation for High Productivity; Institution of Civil Engineers (ICE): London, UK, 2018. [Google Scholar]
- Gupta, M. Blockchain for Dummies; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Li, J.; Kassem, M. Applications of distributed ledger technology (DLT) and Blockchain-enabled smart contracts in construction. Autom. Constr. 2021, 132, 103955. [Google Scholar] [CrossRef]
- Giancaspro, M. Is a ‘smart contract’ really a smart idea? Insights from a legal perspective. Comput. Law Secur. Rep. 2017, 33, 825–835. [Google Scholar] [CrossRef]
- Rahardja, U.; Hidayanto, A.N.; Lutfiani, N.; Febiani, D.A.; Aini, Q. Immutability of Distributed Hash Model on Blockchain Node Storage. Sci. J. Inform. 2021, 8, 137–143. [Google Scholar] [CrossRef]
- Nanayakkara, S.; Perera, S.; Bandara, D.; Weerasuriya, T.; Ayoub, J. Blockchain technology and its potential for the construction industry. In Proceedings of the AUBEA Conference 2019, Noosa, QLD, Australia, 6–8 November 2019; pp. 662–672. [Google Scholar]
- Wiatt, R.G. From the mainframe to the blockchain. Strateg. Financ. 2019, 100, 26–35. [Google Scholar]
- Yaqoob, I.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y. Blockchain for healthcare data management: Opportunities, challenges, and future recommendations. Neural Comput. Appl. 2022, 34, 11475–11490. [Google Scholar] [CrossRef]
- Shah, T.; Jani, S. Applications of Blockchain Technology in Banking & Finance; Parul CUniversity: Vadodara, India, 2018. [Google Scholar]
- Liu, H.; Han, S.; Zhu, Z. Blockchain technology toward smart construction: Review and future directions. J. Constr. Eng. Manag. 2023, 149, 03123002. [Google Scholar] [CrossRef]
- Wu, L.; Lu, W.; Zhao, R.; Xu, J.; Li, X.; Xue, F. Using blockchain to improve information sharing accuracy in the onsite assembly of modular construction. J. Manag. Eng. 2022, 38, 04022014. [Google Scholar] [CrossRef]
- Sheth, H.; Dattani, J. Overview of blockchain technology. Asian J. Converg. Technol. (AJCT) 2019. [Google Scholar] [CrossRef]
- Guegan, D. Public Blockchain versus Private Blockhain. 2017. Available online: https://shs.hal.science/halshs-01524440/document (accessed on 16 October 2023).
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Yellick, J. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the 13th EuroSys Conference 2018, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Baliga, A.; Subhod, I.; Kamat, P.; Chatterjee, S. Performance evaluation of the quorum blockchain platform. arXiv 2018, arXiv:1809.03421. [Google Scholar]
- Mohanty, D. R3 Corda for Architects and Developers: With Case Studies in Finance, Insurance, Healthcare, Travel, Telecom, and Agriculture; Apress: New York, NY, USA, 2019. [Google Scholar]
- Mostarda, L.; Pinna, A.; Sestili, D.; Tonelli, R. Performance Analysis of a BESU Permissioned Blockchain. In International Conference on Advanced Information Networking and Applications; Springer International Publishing: Cham, Switzerland, 2023; pp. 279–291. [Google Scholar]
- Panda, S.K.; Daliyet, S.P.; Lokre, S.S.; Naman, V. Distributed Ledger Technology in the Construction Industry Using Corda. In The New Advanced Society: Artificial Intelligence and Industrial Internet of Things Paradigm; Scrivener Publishing LLC.: Austin, TX, USA, 2022; pp. 15–41. [Google Scholar]
- Zhong, B.; Wu, H.; Ding, L.; Luo, H.; Luo, Y.; Pan, X. Hyperledger fabric-based consortium blockchain for construction quality information management. Front. Eng. Manag. 2020, 7, 512–527. [Google Scholar] [CrossRef]
- Read, C.L. The Genesis Block. In The Bitcoin Dilemma: Weighing the Economic and Environmental Costs and Benefits; Springer International Publishing: Cham, Switzerland, 2022; pp. 29–36. [Google Scholar]
- Di Pierro, M. What is the blockchain? Comput. Sci. Eng. 2017, 19, 92–95. [Google Scholar] [CrossRef]
- Donet Donet, J.A.; Pérez-Sola, C.; Herrera-Joancomartí, J. The bitcoin P2P network. In Financial Cryptography and Data Security: FC 2014 Workshops, BITCOIN and WAHC 2014, Christ Church, Barbados, 7 March 2014; Revised Selected Papers 18; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–102. [Google Scholar]
- MacKenzie, D. Pick a nonce and try a hash. Lond. Rev. Books 2019, 41, 35–38. [Google Scholar]
- De Ocáriz Borde, H.S. An Overview of Trees in Blockchain Technology: Merkle Trees and Merkle Patricia Tries. 2022. Available online: https://www.researchgate.net/publication/358740207_An_Overview_of_Trees_in_Blockchain_Technology_Merkle_Trees_and_Merkle_Patricia_Tries (accessed on 16 October 2023).
- Jing, N.; Liu, Q.; Sugumaran, V. A blockchain-based code copyright management system. Inf. Process. Manag. 2021, 58, 102518. [Google Scholar] [CrossRef]
- Purnomo, H.; Apsari, A.E. REBA analysis for construction workers in Indonesia. J. Built Environ. Technol. Eng. 2016, 1, 104–110. [Google Scholar]
- Supanich, W.; Kulkarineetham, S.; Sukphokha, P.; Wisarnsart, P. Machine Learning-Based Exercise Posture Recognition System Using MediaPipe Pose Estimation Framework. In Proceedings of the 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; Volume 1, pp. 2003–2007. [Google Scholar]
- Guo, L.; Xie, H.; Li, Y. Data encryption based blockchain and privacy preserving mechanisms towards big data. J. Vis. Commun. Image Represent. 2020, 70, 102741. [Google Scholar] [CrossRef]
- Karia, J.; Sundararajan, M.; Raghavan, G.S. Distributed Ledger Systems to Improve Data Synchronization in Enterprise Processes. In Proceedings of the IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Nitte, India, 19–20 November 2021; pp. 41–45. [Google Scholar]
Container ID | Names |
---|---|
76f609623b6e | dev-peer0.org2.example.com-construction-chaincode |
5fcc2dcfae2c | dev-peer0.org1.example.com-construction-chaincode |
2b0446d09f92 | dev-peer0.org2.example.com-basic |
89cadb858e55 | dev-peer0.org1.example.com-basic |
e7a5f020a84f | cli |
3fc7a199eaa1 | Peer0.org2.example.com |
859c95e237d8 | Peer0.org.example.com |
442b5b213879 | couchdb0 |
d1d9090efa1f | couchdb1 |
66abe5c9301c | orderer.example.com |
d453f4b69751 | ca_orderer |
c8b1ea1a7c9b | ca_org2 |
817296bd5f4a | ca_org1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saah, A.E.N.; Yee, J.-J.; Choi, J.-H. Securing Construction Workers’ Data Security and Privacy with Blockchain Technology. Appl. Sci. 2023, 13, 13339. https://doi.org/10.3390/app132413339
Saah AEN, Yee J-J, Choi J-H. Securing Construction Workers’ Data Security and Privacy with Blockchain Technology. Applied Sciences. 2023; 13(24):13339. https://doi.org/10.3390/app132413339
Chicago/Turabian StyleSaah, Alvina Ekua Ntefua, Jurng-Jae Yee, and Jae-Ho Choi. 2023. "Securing Construction Workers’ Data Security and Privacy with Blockchain Technology" Applied Sciences 13, no. 24: 13339. https://doi.org/10.3390/app132413339