Effects of Metal Concentration, pH, and Temperature on the Chlorophyll Derivative Content, Green Colour, and Antioxidant Activity of Amaranth (Amaranthus viridis) Purees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Stabilisation of Amaranth Purees
2.4. Physicochemical Properties
2.4.1. Determination of Colour
2.4.2. Extraction and Determination of Total Chlorophylls
2.4.3. Preparation of Amaranth Puree Extracts for Antioxidant Activity Measurements
2.4.4. Free Radical DPPH Assay Measurements
2.4.5. FRAP Assays for the Antioxidant Activity Study
2.5. Identification of Chlorophylls and Their Derivatives in Fresh, Zn-, and Cu-Amaranth Purees Using Reversed-Phase High-Performance Liquid Chromatography (HPLC)
2.5.1. Extraction of Chlorophylls and Chlorophyll Derivatives
2.5.2. Chromatographic Separation and Identification of Chlorophylls and Chlorophyll Derivatives
2.5.3. Preparation of Calibration Curves for Chlorophylls a and b Determined using HPLC
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chlorophyll Content of Amaranth Leaves
3.2. Stabilisation Process of Chlorophylls
3.2.1. Effect of CuSO4 and ZnCl2 Concentrations
3.2.2. Effect of pH
3.2.3. Effect of Temperature
3.3. Antioxidant Activities of Cu- and Zn-Amaranth Purees
3.3.1. Effect of Metal Concentration
3.3.2. Effect of pH
3.3.3. Effect of Temperature
3.4. Identification of Chlorophylls and Their Derivatives in Fresh, Cu-, and Zn-Amaranth Purees Using Reversed-Phase HPLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarker, U.; Hossain, M.M.; Oba, S. Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Sci. Rep. 2020, 10, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegbejo, J.O. Nutritional value and utilization of Amaranthus (Amaranthus spp.)—A Review. Bayero J. Pure Appl. Sci. 2013, 6, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Achigan-Dako, E.G.; Sogbohossou, O.E.D.; Maundu, P. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Amin, I.; Norazaidah, Y.; Hainida, K.I.E. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem. 2006, 94, 47–52. [Google Scholar] [CrossRef]
- Vivek, P.; Prabhakaran, S.; Shankar, S.R. Assessment of nutritional value in selected edible greens based on the chlorophyll content in leaves. Res. Plant Biol. 2013, 3, 45–49. [Google Scholar]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Genotypic variability for nutrient, antioxidant, yield and yield contributing traits in vegetable amaranth. J. Food Agric. Environ. 2014, 12, 168–174. [Google Scholar]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 67–76. [Google Scholar] [CrossRef]
- Hosikian, A.; Lim, S.; Halim, R.; Danquah, M.K. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng. 2010, 2010, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schoefs, B. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends Food Sci. Technol. 2002, 13, 361–371. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Sinnecker, P. Chlorophylls: Properties, biosynthesis, degradation and functions. In Food Colorants: Chemical and Functional Properties; Socaciu, C., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 25–45. [Google Scholar]
- Schwartz, S.J.; Lorenzo, T.V. Chlorophylls in foods. Crit. Rev. Food Sci. Nutr. 1990, 29, 1–17. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Erge, H.S.; Karadeniz, F.; Koca, N.; Soyer, Y. Effect of heat treatment on chlorophyll degradation and color loss in green peas. Gida Derg. 2008, 33, 225–233. [Google Scholar]
- Edelenbos, M.; Christensen, L.P.; Grevsen, K. HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.). J. Agric. Food Chem. 2001, 49, 4768–4774. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.R.; Park, J.; Jung, S.K.; Chang, Y.H. Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. Food Chem. 2018, 245, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, M.G.; Böhm, V.; Courtney, P.D.; Schwartz, S.J. Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J. Food Sci. 2002, 67, 2589–2595. [Google Scholar] [CrossRef]
- Ngo, T.; Zhao, Y. Retaining Green Pigments on Thermally Processed Peels-on Green Pears. J. Food Sci. 2005, 70, C568–C574. [Google Scholar] [CrossRef]
- Ngo, T.; Zhao, Y. Formation of Zinc-Chlorophyll-Derivative Complexes in Thermally Processed Green Pears (Pyrus communis L.). J. Food Sci. 2007, 72, C397–C404. [Google Scholar] [CrossRef]
- Guzmán, G.R.; Dorantes, A.L.; Hernández, U.H.; Hernández, S.H.; Ortiz, A.; Mora, E.R. Effect of zinc and copper chloride on the color of avocado puree heated with microwaves. Innov. Food Sci. Emerg. Technol. 2002, 3, 47–53. [Google Scholar] [CrossRef]
- Porrarud, S.; Pranee, A. Microencapsulation of Zn-chlorophyll pigment from Pandan leaf by spray drying and its characteristic. Int. Food Res. J. 2010, 17, 1031–1042. [Google Scholar]
- Chaiwanichsiri, S.; Dharmsuriya, N.; Sonthornvit, N.; Janjarasskul, T. Process improvement to preserve the color of instant pennywort Centella asiatica (Linn. ) Urban. J. Sci. Res. Chula. Univ. 2000, 25, 233–243. [Google Scholar]
- Canjura, F.L.; Watkins, R.H.; Schwartz, S.J. Color Improvement and Metallo-chlorophyll Complexes in Continuous Flow Aseptically Processed Peas. J. Food Sci. 1999, 64, 987–990. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, J.; Pan, Z.; Cheng, Y.; Zhang, Y.; Li, N. Effect of heat treatment, pH, sugar concentration, and metal ion addition on green color retention in homogenized puree of Thompson seedless grape. LWT-Food Sci. Technol. 2014, 55, 595–603. [Google Scholar] [CrossRef]
- Ngo, T.X. Understanding the Principles and Procedures to Retain Green and Red Pigments in Thermally Processed Peels-on Pears (Pyrus Communis L.). Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2008. [Google Scholar]
- Senklang, P.; Anprung, P. Optimizing Enzymatic Extraction of Zn–Chlorophyll Derivatives from Pandan Leaf Using Response Surface Methodology. J. Food Process. Preserv. 2010, 34, 759–776. [Google Scholar] [CrossRef]
- Tonucci, L.H.; Von Elbe, J.H. Kinetics of the formation of zinc complexes of chlorophyll derivatives. J. Agric. Food Chem. 1992, 40, 2341–2344. [Google Scholar] [CrossRef]
- Salama, M.F.; Moharram, H.A. Relationship between colour improvement and metallo-chlorophyll complexes during blanching of peas and broccoli. Alex. J. Food Sci. Technol. 2007, 4, 11–18. [Google Scholar]
- Rahayuningsih, E.; Pamungkas, M.S.; Olvianas, M.; Putera, A.D.P. Chlorophyll extraction from suji leaf (Pleomele angustifolia Roxb.) with ZnCl2 stabilizer. J. Food Sci. Technol. 2018, 55, 1028–1036. [Google Scholar] [CrossRef]
- FDA. Listing of Color Additives Exempt from Certification; Sodium Copper Chlorophyllin; Food and Drug Administration: Silver Spring, MD, USA, 2002; pp. 35429–35431. [Google Scholar]
- EFSA. Scientific Opinion on re-evaluation of copper complexes of chlorophylls (E 141(i)) and chlorophyllins (E 141(ii)) as food additives. EFSA J. 2015, 13, 4151. [Google Scholar]
- Soldatović, T. Mechanism of interactions of Zinc(II) and Copper(II) complexes with small biomolecules. In Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry; Intechopen: London, UK, 2018. [Google Scholar]
- de Vogel, J. Green Vegetables and Colon Cancer: The Mechanism of a Protective Effect by Chlorophyll. Ph.D. Thesis, Wageningen University and Research Centre, Wageningen, The Netherlands, 2006; p. 151. [Google Scholar]
- Gomes, B.B.; Barros, S.B.M.; Andrade-Wartha, E.R.S.; Silva, A.M.O.; Silva, V.V.; Lanfer-Marquez, U.M. Bioavailability of dietary sodium copper chlorophyllin and its effect on antioxidant defence parameters of Wistar rats. J. Sci. Food Agric. 2009, 89, 2003–2010. [Google Scholar] [CrossRef]
- Ulbricht, C.; Bramwell, R.; Catapang, M.; Giese, N.; Isaac, R.; Le, T.D. An evidence-based systematic review of chlorophyll by the Natural Standard Research Collaboration. J. Diet. Suppl. 2014, 11, 198–239. [Google Scholar] [CrossRef]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and their derivatives used in food industry and medicine. Mini-Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef] [Green Version]
- Zhan, R.; Wu, J.; Ouyang, J. In vitro antioxidant activities of sodium zinc and sodium iron chlorophyllins from pine needles. Food Technol. Biotechnol. 2014, 52, 505. [Google Scholar] [CrossRef] [PubMed]
- Praveena, B.; Murthy, S. Role of photosynthetic pigments in protection against oxidative damage. Int. J. Plant Anim. Environ. Sci. 2013, 4, 167–171. [Google Scholar]
- Hsu, C.Y.; Chao, P.Y.; Hu, S.P.; Yang, C.M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Nutr. Food Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.F.M.; Karim, R.; Yusof, Y.A.; Muhammad, K. Effects of enzymatic liquefaction, drying techniques, and wall materials on the physicochemical properties, bioactivities, and morphologies of Zinc-amaranth (Amaranthus viridis L.) powders. Int. J. Food Sci 2021, 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Larrauri García, J.A.; Saura Calixto, F. Evaluation of CIE-lab colour parameters during the clarification of a sugar syrup from Mesquite pods (Prosopis Pallida L.). Int. J. Food Sci. Technol. 2000, 35, 385–389. [Google Scholar] [CrossRef]
- Costache, M.A.; Campeanu, G.; Neata, G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom. Biotechnol. Lett. 2012, 17, 7703–7708. [Google Scholar]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Canjura, F.L.; Schwartz, S.J. Separation of chlorophyll compounds and their polar derivatives by high-performance liquid chromatography. J. Agric. Food Chem. 1991, 39, 1102–1105. [Google Scholar] [CrossRef]
- Gaur, S.; Shivhare, U.; Ahmed, J. Degradation of chlorophyll during processing of green vegetables: A review. Stewart Postharvest Rev. 2006, 2, 1–8. [Google Scholar]
- Weemaes, C.A.; Ooms, V.; Loey, A.M.V.; Hendrickx, M.E. Kinetics of chlorophyll degradation and colour loss in heated broccoli juice. J. Agric. Food Chem. 1999, 47, 2404–2409. [Google Scholar] [CrossRef] [PubMed]
- Östbring, K.; Rayner, M.; Sjöholm, I.; Otterström, J.; Albertsson, P.Å.; Emek, S.C.; Erlanson-Albertsson, C. The effect of heat treatment of thylakoids on their ability to inhibit in vitro lipase/co-lipase activity. Food Funct. 2014, 5, 2157–2165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, J.W.; Marangoni, A.G. Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci. Technol. 1996, 7, 8–15. [Google Scholar] [CrossRef]
- LaBorde, L.F.; Von Elbe, J.H. Zinc complex formation in heated vegetable purees. J. Agric. Food Chem. 1990, 38, 484–487. [Google Scholar] [CrossRef]
- Lin, Z.; Schyvens, E. Influence of blanching treatments on the texture and colour of some processed vegetables and fruits. J. Food Process. Preserv. 1995, 19, 451–465. [Google Scholar] [CrossRef]
- LaBorde, L.F.; Von Elbe, J.H. Chlorophyll degradation and zinc complex formation with chlorophyll derivatives in heated green vegetables. J. Agric. Food Chem. 1994, 42, 1100–1103. [Google Scholar] [CrossRef]
- Von Elbe, J.; Schwartz, S. Colourants. Food Chem. 1996, 3, 651–723. [Google Scholar]
- Hoff, A.J.; Amesz, J. Chlorophylls; Scheer, H., Ed.; CRC Press: Boca Raton, FL, USA, 1991; p. 723. [Google Scholar]
- Scotter, M.J.; Castle, L.; Roberts, D. Method development and HPLC analysis of retail foods and beverages for copper chlorophyll (E141 [i]) and chlorophyllin (E141 [ii]) food colouring materials. Food Addit. Contam. 2005, 22, 1163–1175. [Google Scholar] [CrossRef]
- Hoshina, C.; Tomita, K.; Shioi, Y. Antioxidant activity of chlorophylls: Its structure-activity relationship. In Photosynthesis: Mechanisms Effects; Springer: Dordrecht, The Netherlands, 1998; Volume 4, pp. 3281–3284. [Google Scholar]
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.; Reid, D.; Schwartz, S.; Shoemaker, C.; Smith, D.; Sporns, P. Pigments, Colorants, Flavors, Texture, and Bioactive Food Components. In Handbook of Food Analytical Chemistry; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Leunda, M.; Guerrero, S.; Alzamora, S. Color and chlorophyll content changes of minimally processed kiwifruit. J. Food Process. Preserv. 2000, 24, 17–38. [Google Scholar] [CrossRef]
- Lim, C.K. High-Performance Liquid Chromatography and Mass Spectrometry of Porphyrins, Chlorophylls and Bilins; World Scientific Publishing Co., Pte Ltd.: Singapore, 2009. [Google Scholar]
- Gökmen, V.; Savaş Bahçeci, K.; Serpen, A.; Acar, J. Study of lipoxygenase and peroxidase as blanching indicator enzymes in peas: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. LWT-Food Sci. Technol. 2005, 38, 903–908. [Google Scholar] [CrossRef]
- Turkmen, N.; Poyrazoglu, E.S.; Sari, F.; Sedat Velioglu, Y. Effects of cooking methods on chlorophylls, pheophytins and colour of selected green vegetables. Int. J. Food Sci. Technol. 2005, 41, 281–288. [Google Scholar] [CrossRef]
- Teng, S.S.; Chen, B.H. Formation of pyrochlorophylls and their derivatives in spinach leaves during heating. Food Chem. 1999, 65, 367–373. [Google Scholar] [CrossRef]
Parameter | Amaranth with Round Leaves | Amaranth with Tapered Leaves |
---|---|---|
Chlorophyll a | 28.90 b ± 1.47 | 33.54 a ± 1.77 |
Chlorophyll b | 29.04 b ± 1.52 | 34.37 a ± 1.93 |
Total chlorophyll | 57.94 b ± 2.99 | 67.91 a ± 3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Amin, S.F.; Karim, R.; Yusof, Y.A.; Muhammad, K. Effects of Metal Concentration, pH, and Temperature on the Chlorophyll Derivative Content, Green Colour, and Antioxidant Activity of Amaranth (Amaranthus viridis) Purees. Appl. Sci. 2023, 13, 1344. https://doi.org/10.3390/app13031344
Mohd Amin SF, Karim R, Yusof YA, Muhammad K. Effects of Metal Concentration, pH, and Temperature on the Chlorophyll Derivative Content, Green Colour, and Antioxidant Activity of Amaranth (Amaranthus viridis) Purees. Applied Sciences. 2023; 13(3):1344. https://doi.org/10.3390/app13031344
Chicago/Turabian StyleMohd Amin, Siti Faridah, Roselina Karim, Yus Aniza Yusof, and Kharidah Muhammad. 2023. "Effects of Metal Concentration, pH, and Temperature on the Chlorophyll Derivative Content, Green Colour, and Antioxidant Activity of Amaranth (Amaranthus viridis) Purees" Applied Sciences 13, no. 3: 1344. https://doi.org/10.3390/app13031344
APA StyleMohd Amin, S. F., Karim, R., Yusof, Y. A., & Muhammad, K. (2023). Effects of Metal Concentration, pH, and Temperature on the Chlorophyll Derivative Content, Green Colour, and Antioxidant Activity of Amaranth (Amaranthus viridis) Purees. Applied Sciences, 13(3), 1344. https://doi.org/10.3390/app13031344