Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Blue Light and UV Light Equipment
2.2. Experimental Setup
2.3. Cells and Virus Preparation
2.4. TCID50
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randall, T.; Cedric, S.; Tartar, A. Murray, Vaccine Tracker. 1 February 2022. Available online: https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ (accessed on 20 January 2023).
- What is Ultraviolet Radiation? 11 July 2017. Available online: https://www.canada.ca/en/health-canada/services/sun-safety/what-is-ultraviolet-radiation.html (accessed on 20 January 2023).
- Woo, H.; Beck, E.; Boczek, A.; Carlson, M.; Brinkman, E.; Linden, G.K. Efficacy of Inactivation of Human Enteroviruses by Dual-Wavelength Germicidal Ultraviolet (UV-C) Light Emitting Diodes (LEDs). Water 2019, 11, 1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ultraviolet (UV) Radiation. 19 August 2020. Available online: https://www.fda.gov/radiation-emitting-products/tanning/ultraviolet-uv-radiation (accessed on 20 January 2023).
- Matthew, M. Testing the Effects of UV-C Radiation on Materials. Int. Surf. Technol. 2021, 14, 46–47. [Google Scholar]
- Childress, J.; Roberts, J.; King, T. Disinfection with Far-UV (222 nm Ultraviolet Light). 2020. Available online: https://www.boeing.com/confident-travel/research/CAP-3_Disinfection_with_Far-UV.html (accessed on 20 January 2023).
- Buonanno, M.; Welch, D.; Shuryak, I. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020, 10, 10285. [Google Scholar] [CrossRef]
- David, W.; Buonanno, M.; Grilj, V.; Shuryak, I.; Crickmore, C.; Bigelow, A.; Randers-Pehrson, G.; Johnson, G.; Brenner, J.D. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 2018, 8, 2752. [Google Scholar]
- Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 8 January 2023).
- Rat, P.; Olivier, E.; Dutot, M. SARS-CoV-2 vs. SARS-CoV-1 management: Antibiotics and inflammasome modulators potential. Eur. Rev. Med. Pharmacol. Sci. 2020, 14, 7880–7885. [Google Scholar] [CrossRef]
- Fatimab, K.; Mohammada, T.; Singh, I.; Singh, A.; Atif, M.; Hariprasad, G.; Hasan, M.G. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165878. [Google Scholar]
- Simmons, G.; Reeves, J.; Rennekamp, A.; Amberg, S.; Piefer, A.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA 2004, 101, 4240–4245. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, G.; You, Y.; Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 2005, 571, 19–31. [Google Scholar] [CrossRef]
- Oguma, K.O.; Katayama, H.; Ohgaki, S. Photoreactivation of Escherichia coli after Low- or Medium-Pressure UV Disinfection Determined by an Endonuclease Sensitive Site Assay. J. Clin. Microbiol. 2022, 68, 6029–6035. [Google Scholar] [CrossRef] [Green Version]
- Hessling, M.; Haag, R.; Sieber, N.; Vatter, P. The impact of far-UVC radiation (200–230 nm) on pathogens, cells, skin, and eyes—A collection and analysis of a hundred years of data. GMS Hyg. Infect. Control 2021, 16, Doc07. [Google Scholar]
- Irving, D.; Lamprou, D.A.; Maclean, M.; MacGregor, S.J.; Anderson, J.G.; Grant, M.H. A comparison study of the degradative effects and safety implications of UVC and 405 nm germicidal light sources for endoscope storage. Polym. Degrad. Stab. 2016, 133, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Murrell, L.J.; Hamilton, E.; Johnson, H.B. Influence of a visible-light continuous environmental disinfection system on microbial contamination and surgical site infections in an orthopedic operating room. Am. J. Infect. Control 2019, 47, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclean, M.; Murdoch, L.E.; MacGregor, S.; Anderson, J.G. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem. Photobiol. 2013, 89, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, L.E.; Mckenzie, K.; Maclean, M.; Macgregor, S.; Andersonj, J.G. Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 2013, 117, 519–527. [Google Scholar] [CrossRef]
- Tomb, R.M.; Maclean, M.; Coia, J.E. New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405 nm Light Against Feline calicivirus as a Model for Norovirus Decontamination. Food Environ. Virol. 2017, 9, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Ho, D.T.D.T.; Ahran, K.; Nameun, K. Effect of blue light emitting diode on viral hemorrhagic septicemia in olive flounder (Paralichthys olivaceus). Aquaculture 2020, 521, 735019. [Google Scholar] [CrossRef]
- Tianhong, D.; Asheesh, G.; Clinton, M.K. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. Updates 2012, 15, 223–236. [Google Scholar]
- Bumah, V.V.; Aboualizadeh, E.; Masson-Meyers, D.S. Spectrally resolved infrared microscopy and chemometric tools to reveal the interaction between blue light (470 nm) and methicillin-resistant Staphylococcus aureus. J. Photochem. Photobiol. 2016, 167, 150–157. [Google Scholar] [CrossRef]
- Rathnasinghe, R.; Jangra, S.; Miorin, L.; Schotsaert, M.; Yahnke, C.; Garc, A. The Virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus. Sci. Rep. 2021, 11, 19470. [Google Scholar] [CrossRef]
- Claus, H. Ozone Generation by Ultraviolet Lamps. Photochem. Photobiol. 2021, 97, 471–476. [Google Scholar] [CrossRef]
- DIEHL Aviation. Available online: https://www.diehl.com/aviation/de/portfolio/cabin-lighting/ (accessed on 25 March 2022).
- Care222 Science. 2022. Available online: https://care222.com/care222-science/ (accessed on 25 March 2022).
- International Light Technologies. Available online: https://www.intl-lighttech.com/products/ilt2400-xsd140a (accessed on 25 March 2022).
- Ramakrishnan, M.A.; Dhanavelu, M. Influence of Reed-Muench Median Dose Calculation Method in Virology in the Millennium. Antivir. Res. 2018, 28, 16–18. [Google Scholar]
- "CLC EN 62471:2008 Photobiological Safety of Lamps and Lamp Systems," 11 September 2008. [Online]. Available online: https://standards.iteh.ai/catalog/standards/clc/a50af9ae-9590-4282-ba82-91f666fe52a7/en-62471-2008 (accessed on 20 January 2023).
- Point, S. Blue Light Hazard: Are exposure limit values protective enough for newborn infants? Radioprotection 2018, 53, 219–224. [Google Scholar] [CrossRef]
- Fields, A. The Impact of Vital Vio Antibacterial Light. 2019. Available online: https://vyv.tech/wp-content/uploads/2020/04/The-Impact-of-Vital-Vio-Technology.pdf (accessed on 20 January 2023).
- Lim, W.; Ng, K.-C.; Tsang, D.N.C. Laboratory Containment of SARS Virus; Annals of the Academy of Medicine: Singapore, 2006; Volume 35, pp. 354–360. [Google Scholar]
Light Source | Irradiance (W/cm2) | Exposure Time (s) | Dose (mJ/cm2) | Log Reduction | % |
---|---|---|---|---|---|
405 | 1.80 × 10−3 | 9600 | 17,280 | 2.84 | 99.85% |
222 | 9.18 × 10−4 | 3.27 | 3 | 2.50 | 99.68% |
254 | 3.50 × 10−3 | 3.26 | 10 | 3.17 | 99.93% |
270/280 | 3.47 × 10−5 | 288.18 | 10 | 3.34 | 99.95% |
Distance between the Virus Sample and Light Source (cm) | Irradiance of Different Light Sources (W/cm2) | |||
---|---|---|---|---|
405 nm | 222 nm | 254 nm | 270/280 nm | |
10 | 1.80 × 10−3 | 9.18 × 10−4 | 3.50 × 10−3 | 3.47 × 10−5 |
20 | 4.46 × 10−4 | 3.17 × 10−4 | 1.03 × 10−3 | 7.33 × 10−6 |
30 | 1.98 × 10−4 | 1.32 × 10−4 | 5.29 × 10−4 | 2.83 × 10−6 |
40 | 1.15 × 10−4 | 8.09 × 10−5 | 3.19 × 10−4 | 1.43 × 10−6 |
50 | 7.36 × 10−5 | 5.08 × 10−5 | 2.12 × 10−4 | 8.51 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vashishtha, K.; Xi, F.; Dharmalingam, P.; Douplik, A. Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1. Appl. Sci. 2023, 13, 1426. https://doi.org/10.3390/app13031426
Vashishtha K, Xi F, Dharmalingam P, Douplik A. Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1. Applied Sciences. 2023; 13(3):1426. https://doi.org/10.3390/app13031426
Chicago/Turabian StyleVashishtha, Kritika, Fengfeng Xi, Priya Dharmalingam, and Alexandre Douplik. 2023. "Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1" Applied Sciences 13, no. 3: 1426. https://doi.org/10.3390/app13031426
APA StyleVashishtha, K., Xi, F., Dharmalingam, P., & Douplik, A. (2023). Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1. Applied Sciences, 13(3), 1426. https://doi.org/10.3390/app13031426