Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurement of Arterial Occlusion Pressure
2.4. Data Analysis
3. Results
4. Discussion
4.1. Differences in AOP with Different Cuff Inflation Protocols
4.2. Limb Differences in Arterial Occlusion Pressure
4.3. Sex Differences in Arterial Occlusion Pressure
4.4. Reliability of AOP Measurements
4.5. Study Limitations
4.6. Directions for Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loenneke, J.P.; Wilson, J.M.; Marin, P.J.; Zourdos, M.C.; Bemben, M.G. Low intensity blood flow restriction training: A meta-analysis. Eur. J. Appl. Physiol. 2012, 112, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Staunton, C.A.; May, A.K.; Brandner, C.R.; Warmington, S.A. Haemodynamics of aerobic and resistance blood flow restriction exercise in young and older adults. Eur. J. Appl. Physiol. 2015, 115, 2293–2302. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Fahs, C.A.; Wilson, J.M.; Bemben, M.G. Blood flow restriction: The metabolite/volume threshold theory. Med. Hypotheses 2011, 77, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Loenneke, J.P.; Ye, X.; Bemben, D.A.; Beck, T.W.; Larson, R.D.; Bemben, M.G. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. Muscle Nerve 2017, 56, E126–E133. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with blood flow restriction: An updated evidence-based approach for enhanced muscular development. Sports Med. 2015, 45, 313–325. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Allen, K.M.; Mouser, J.G.; Thiebaud, R.S.; Kim, D.; Abe, T.; Bemben, M.G. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur. J. Appl. Physiol. 2015, 115, 397–405. [Google Scholar] [CrossRef]
- Day, D. Personalized blood flow restriction therapy: How, when and where can it accelerate rehabilitation after surgery? Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 2511–2513. [Google Scholar] [CrossRef]
- Mattocks, K.T.; Jessee, M.B.; Mouser, J.G.; Dankel, S.J.; Buckner, S.L.; Bell, Z.W.; Owens, J.G.; Abe, T.; Loenneke, J.P. The application of blood flow restiction: Lessons from the laboratory. Curr. Sports Med. Rep. 2018, 17, 129–134. [Google Scholar] [CrossRef]
- Vopat, B.G.; Vopat, L.M.; Bechtold, M.M.; Hodge, K.A. Blood flow restriction therapy: Where we are and where we are going. J. Am. Acad. Orthop. Surg. 2020, 28, e493–e500. [Google Scholar] [CrossRef]
- Wortman, R.J.; Brown, S.M.; Savage-Elliott, I.; Finley, Z.J.; Mulcahey, M.K. Blood flow restriction training for athletes. Am. J. Sport. Med. 2021, 49, 1938–1944. [Google Scholar] [CrossRef]
- Kelly, M.; Cipriano, K.J.; Bane, E.M.; Murtaugh, B.T. Blood flow restriction training in athletes. Curr. Phys. Med. Rehabil. Rep. 2020, 8, 329–341. [Google Scholar] [CrossRef]
- Pignanelli, C.; Christiansen, D.; Burr, J.F. Blood flow restriction training and the high-performance athlete: Science to application. J. Appl. Physiol. 2021, 130, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J. Exercise and blood flow restriction. J. Strength Cond. Res. 2013, 27, 2914–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iida, H.; Takano, H.; Meguro, K.; Asada, K.; Oonuma, H.; Morita, T.; Kurano, M.; Sakagami, F.; Uno, K.; Hirose, K.; et al. Hemodynamic and autonomic nervous responses to the restriction of femoral blood flow by KAATSU. Int. J. KAATSU Train. Res. 2005, 1, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Iida, H.; Kurano, M.; Takano, H.; Kubota, N.; Morita, T.; Meguro, K.; Sato, Y.; Abe, T.; Yamazaki, Y.; Uno, K.; et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur. J. Appl. Physiol. 2007, 100, 275–285. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Pujol, T.J. The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength Cond. J. 2009, 31, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; de Souza, E.; Machado, M.; Dudeck, J.E.; Wilson, J.M. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin. Physiol. Funct. Imaging 2014, 34, 317–321. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; Naimo, M.A. Practical blood flow restriction training increases acute determinants on hypertrophy without increasing indices of muscle damage. J. Strength Cond. Res. 2013, 27, 3068–3075. [Google Scholar] [CrossRef]
- Abe, T.; Mouser, J.G.; Dankel, S.J.; Bell, Z.W.; Buckner, S.L.; Mattocks, K.T.; Jessee, M.B.; Loenneke, J.P. A method to standarize the blood flow restriction pressure by an elastic cuff. Scand. J. Med. Sci. Sports 2019, 29, 329–335. [Google Scholar]
- Hunt, J.E.; Stodart, C.; Ferguson, R.A. The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction. Eur. J. Appl. Physiol. 2016, 116, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Meister, C.B.; Kutianski, F.A.T.; Carstens, L.C.; Andrade, S.L.F.; Rodacki, A.L.F.; Martins de Souza, R. Effects of two programs of metabolic resistance training on strength and hypertrophy. Fisioterpia em Movimento 2016, 29, 147–155. [Google Scholar] [CrossRef]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J.; Emmett, J.; Owen, J.D. Hypertrophic and strength response to eccentric resistance training with blood flow restriction. Int. J. Sport. Sci. 2015, 10, 919–931. [Google Scholar] [CrossRef]
- Sumide, T.; Sakuraba, K.; Sawaki, K.; Ohmura, H.; Tamura, Y. Effect of resistance exercise training combined with relatively low vascular occlusion. J. Sci. Med. Sport 2009, 12, 107–112. [Google Scholar] [CrossRef]
- Wernbom, M.; Augustsson, J.; Thomee, R. Effects of vascular occlusion on muscular endurance in dynamic knee extension exercise at different submaximal loads. J. Strength Cond. Res. 2006, 20, 372–377. [Google Scholar] [CrossRef] [PubMed]
- McEwen, J.A.; Owens, J.G.; Jeyasurya, J. Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? J. Med. Biol. Eng. 2019, 39, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeltal rehabilitations: A systematic review and meta analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Patterson, S.D.; Hughes, L.; Warmington, S.; Burr, J.; Scotts, B.R.; Owens, J.; Abe, T.; Nielsen, J.L.; Libardi, C.A.; Laurentino, G.; et al. Blood flow restriction exercise: Considerations of methodology, application, and safety. Front. Physiol. 2019, 10, 533. [Google Scholar] [CrossRef]
- Crossley, K.W.; Porter, D.A.; Ellsworth, J.; Caldwell, T.; Feland, J.B.; Mitchell, U.H.; Johnson, A.W.; Egget, D.; Gifford, J.R. Effect of cuff pressure on blood flow during blood flow-restricted rest and exercise. Med. Sci. Sports Exerc. 2019, 52, 746–753. [Google Scholar] [CrossRef]
- Bezerra deMorais, A.T.; Cerqueira, M.S.; Sales, R.M.; Rocha, T.; Galvao de Moura Filho, A. Upper limbs total occlusion pressure assessment: Doppler ultrasound reproducibility and determination of predictive variables. Clin. Physiol. Funct. Imaging 2017, 37, 437–441. [Google Scholar] [CrossRef]
- Karanasios, S.; Koutri, C.; Moutzouri, M.; Xergia, S.A.; Sakellari, V.; Gioftsos, G. The effect of body position and the reliability of upper limb arterial occlusion pressure using a handheld doppler ultrasound for blood flow restriction training. Sports Health Multidiscip. Approach 2021, 14, 717–724. [Google Scholar] [CrossRef]
- Mouser, J.G.; Ade, C.J.; Black, C.D.; Bemben, D.A.; Bemben, M.G. Brachial blood flow under relative levels of blood flow restriction in decreased in a nonlinear fashion. Clin. Physiol. Funct. Imaging 2018, 38, 425–430. [Google Scholar] [CrossRef]
- Tafuna’i, N.D.; Hunter, I.; Johnson, A.W.; Fellingham, G.W.; Vehrs, P.R. Differences in femoral artery occlusion pressure between sexes and dominant and non-dominant legs. Medicina 2021, 57, 863. [Google Scholar] [CrossRef] [PubMed]
- Evin, H.A.; Mahoney, S.J.; Wagner, M.; Bond, C.W.; MacFadden, L.N.; Noonan, B.C. Limb occlusion pressure for blood flow restricted exercise: Variability and relations with participant characteristics. Phys. Ther. Sport 2021, 47, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bell, Z.W.; Dankel, S.J.; Mattocks, K.T.; Buckner, S.L.; Jessee, M.B.; Mouser, J.G.; Abe, T.; Loenneke, J.P. An investigation into setting the blood flow restriction pressure based on perception of tightness. Physiol. Meas. 2018, 39, 105006. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.W.; Dankel, S.J.; Buckner, S.L.; Counts, B.R.; Mouser, J.G.; Abe, T.; Laurentino, G.C.; Loenneke, J.P. The influence of time on determining blood flow restriction pressure. J. Sci. Med. Sport 2017, 20, 777–780. [Google Scholar] [CrossRef]
- Jessee, M.B.; Buckner, S.L.; Dankel, S.J.; Counts, B.R.; Abe, T.; Loenneke, J.P. The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med. 2016, 46, 913–921. [Google Scholar] [CrossRef]
- Laurentino, G.; Loenneke, J.P.; Mouser, J.G.; Buckner, S.L.; Counts, B.R.; Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Iared, W.; Tavares, L.D.; et al. Validity of the handheld doppler to determine lower-limb blood flow restriction pressure for exercise protocols. J. Strength Cond. Res. 2018, 34, 2693–2696. [Google Scholar] [CrossRef] [PubMed]
- Mattocks, K.T.; Jessee, M.B.; Counts, B.R.; Buckner, S.L.; Grant Mouser, J.; Dankel, S.J.; Laurentino, G.C.; Loenneke, J.P. The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiol. Behav. 2017, 171, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Mouser, J.G.; Dankel, S.J.; Jessee, M.B.; Mattocks, K.T.; Buckner, S.L.; Counts, B.R.; Loenneke, J.P. A tale of three cuffs: The hemodynamics of blood flow restriction. Eur. J. Appl. Physiol. 2017, 117, 1493–1499. [Google Scholar] [CrossRef]
- Mouser, J.G.; Laurentino, G.C.; Dankel, S.J.; Buckner, S.L.; Jessee, M.B.; Counts, B.R.; Mattocks, K.T.; Loenneke, J.P. Blood flow in humans following low-load exercise with and without blood flow restriction. Appl. Physiol. Nutr. Metab. 2017, 42, 1165–1171. [Google Scholar] [CrossRef]
- Sieljacks, P.; Knudsen, L.; Wernbom, M.; Vissing, K. Body position influences arterial occlusion pressure: Implications for the standardization of pressure during blood flow restricted exercise. Eur. J. Appl. Physiol. 2018, 118, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Singer, T.J.; Stavres, J.; Elmer, S.J.; Kilgas, M.A.; Pollock, B.S.; Kearney, S.G.; McDaniel, J. Knee extension with blood flow restriction: Impact of cuff pressure on hemodynamics. Eur. J. Appl. Physiol. 2020, 120, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Spitz, R.W.; Chatakondi, R.N.; Bell, Z.W.; Wong, V.; Dankel, S.J.; Abe, T.; Loenneke, J.P. The impact of cuff width and biological sex on cuff prefference and the percieve discomfort to blood-flow-restricted exercise. Physiol. Meas. 2019, 40, 055001. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.; Abe, T.; Chatakondi, R.N.; Bell, Z.W.; Spitz, R.W.; Dankel, S.J.; Loenneke, J.P. The influence of biological sex and cuff width on muscle swelling, echo intensity, and the fatigue response to blood flow restricted exercise. J. Sports Sci. 2019, 37, 1865–1873. [Google Scholar] [CrossRef]
- Hughes, L.; Jeffries, O.; Waldron, M.; Rosenblatt, B.; Gissane, C.; Paton, B.; Patterson, S.D. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ 2018, 6, e4697. [Google Scholar] [CrossRef] [Green Version]
- Loenneke, J.P.; Thiebaud, R.S.; Fahs, C.A.; Rossow, L.M.; Abe, T.; Bemben, M.G. Blood flow restriction does not result in prolonged decrements in torque. Eur. J. Appl. Physiol. 2013, 113, 923–931. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Fahs, C.A.; Rossow, L.M.; Sherk, V.D.; Thiebaud, R.S.; Abe, T.; Bemben, D.A.; Bemben, M.G. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 2012, 112, 2903–2912. [Google Scholar] [CrossRef]
- Barnett, B.E.; Dankel, S.J.; Counts, B.R.; Nooe, A.L.; Abe, T.; Loenneke, J.P. Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clin. Physiol. Funct. Imaging 2016, 36, 436–440. [Google Scholar] [CrossRef]
- Counts, B.R.; Dankel, S.J.; Barnett, B.E.; Kim, D.; Mouser, J.G.; Allen, K.M.; Thiebaud, R.S.; Abe, T.; Bemben, M.G.; Loenneke, J.P. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve 2016, 53, 438–445. [Google Scholar] [CrossRef]
- Brandner, C.R.; Kidgell, D.J.; Warmington, S.A. Unilateral bicep curl hemodynamics: Low-pressure continuous vs. high-pressure intermittent blood flow restriction. Scand. J. Med. Sci. Sports 2015, 25, 770–777. [Google Scholar] [CrossRef]
- Jessee, M.B.; Buckner, S.L.; Mouser, J.G.; Mattocks, K.T.; Loenneke, J.P. Letter to the editor: Applying the blood flow restriction pressure: The elephant in the room. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H132–H133. [Google Scholar] [CrossRef] [PubMed]
- Spitz, R.W.; Bell, Z.W.; Wong, V.; Vianna, R.B.; Chatakondi, R.N.; Abe, T.; Loenneke, J.P. The position of the cuff bladder has a large impact on the pressure needed for blood flow restriction. Physiol. Meas. 2020, 41, 01NT01. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, M.J.; May, A.K.; Warmington, S.A. Is there a rationale for the cuff pressures prescribed for blood flow restriction exercise? A systematic review. Scand. J. Med. Sci. Sports 2020, 30, 1318–1336. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.R.; Pearson, J. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults. J. Physiol. 1969, 204, 63–66. [Google Scholar]
- Katch, V.L.; Katch, F.I. A simple anthropometric method for calculating segmental leg limb volume. Res. Q. 1974, 45, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Perrin, M.; Guez, J.J. Edema and leg volume: Methods of assessment. Angiology 2000, 51, 9–12. [Google Scholar] [PubMed]
- Stranden, E. A comparison between surface measurements and water displacement volumetry for the quantification of leg edema. J. Oslo City Hosp. 1981, 31, 153–155. [Google Scholar]
- Katch, V.L.; Michael, E.D.; Amuchie, F.A. The use of body weight and girth measurements in predicting segmental leg volumne of females. Hum. Biol. 1973, 45, 293–303. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadephia, PA, USA, 2018. [Google Scholar]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Blood flow restricted exercise for athletes: A review of available evidence. J. Sci. Med. Sport 2016, 19, 360–367. [Google Scholar] [CrossRef]
Males (n = 20) | Females (n = 20) | Difference | p-Value | |
---|---|---|---|---|
Age (yrs) | 23.0 ± 1.5 | 21.6 ± 1.4 | 1.4 ± 0.5 * | 0.005 |
Height (cm) | 179.3 ± 6.4 | 167.8 ± 7.5 | 11.5 ± 2.2 * | 0.001 |
Body Mass (kg) | 82.1 ± 11.7 | 61.6 ± 6.7 | 20.4 ± 3.0 * | 0.001 |
BMI (kg/m2) | 25.6 ± 4.1 | 21.8 ± 1.9 | 3.7 ± 1.0 * | 0.001 |
SBP (mmHg) | 116.3 ± 8.8 | 112.6 ± 7.8 | 3.6 ± 2.6 | 0.177 |
DBP (mmHg) | 76.5 ± 6.8 | 75.2 ± 5.1 | 1.2 ± 1.9 | 0.514 |
MAP (mmHg) | 90.1 ± 6.4 | 87.7 ± 5.2 | 2.4 ± 1.8 | 0.204 |
Heart Rate (bpm) | 70.9 ± 8.5 | 73.1 ± 10.3 | 2.1 ± 2.9 | 0.477 |
Males (n = 20) | Females (n = 20) | Difference | p-Value | |
---|---|---|---|---|
Thigh Skinfold (mm) | ||||
Dominant Leg | 23.3 ± 11.3 | 26.0 ± 5.7 | 2.7 ± 2.8 | 0.337 |
Non-dominant Leg | 23.6 ± 10.6 | 25.7 ± 5.6 | 2.1 ± 2.7 | 0.434 |
Difference | −0.30 ± 3.4 | 0.25 ± 1.7 | −0.4 ± 0.8 | 0.592 |
Thigh Circumference (cm) | ||||
Dominant Leg | 59.6 ± 5.5 | 56.0 ± 2.9 | −3.7 ± 1.4 | 0.012 |
Non-dominant Leg | 59.2 ± 5.2 | 55.6 ± 3.2 | −3.6 ± 1.4 | 0.012 |
Difference | 0.43 ± 1.6 | 0.37 ± 0.9 | −0.06 ± 0.4 | 0.893 |
Thigh Volume (m3) | ||||
Dominant Leg | 0.236 ± 0.051 | 0.211 ± 0.034 | −0.024 ± 0.014 | 0.079 |
Non-Dominant Leg | 0.227 ± 0.047 | 0.205 ± 0.031 | −0.022 ± 0.012 | 0.043 |
Difference | 0.009 ± 0.022 | 0.006 ± 0.010 | −0.003 ± 0.007 | 0.684 |
Continuous Cuff Inflation | Incremental Cuff Inflation | Difference | p-Value | |
---|---|---|---|---|
MALES | ||||
Dominant Leg (n = 20) | 209.4 ± 29.4 | 208.5 ± 27.1 | 0.9 ± 10.2 | 0.682 |
Non-dominant Leg (n = 20) | 206.2 ± 31.5 | 204.6 ± 30.5 | 1.6 ± 8.2 | 0.394 |
Difference | 3.2 ± 42.8 | 3.9 ± 38.2 | ||
Combined Legs (n = 40) | 207.8 ± 30.1 | 206.5 ± 28.8 | 1.3 ± 9.1 | 0.383 |
FEMALES | ||||
Dominant Leg (n = 20) | 211.3 ± 57.8 | 210.5 ± 53.8 | 0.8 ± 8.1 | 0.643 |
Non-dominant Leg (n = 20) | 203.5 ± 48.3 | 207.0 ± 50.2 | −3.4 ± 8.1 | 0.073 |
Difference | 7.8 ± 43.4 | 3.5 ± 42.1 | ||
Combined Legs (n = 40) | 207.4 ± 52.7 | 208.7 ± 51.4 | −1.3 ± 8.3 | 0.327 |
SEX DIFFERENCES | ||||
Dominant Leg (n = 20) | 1.9 ± 14.5 | 2.0 ± 13.5 | ||
Non-dominant Leg (n = 20) | −2.6 ± 12.9 | 2.4 ± 13.1 | ||
COMBINED MALES/FEMALES | ||||
Dominant Leg (n = 40) | 210.4 ± 45.2 | 209.5 ± 42.2 | 0.9 ± 9.1 | 0.534 |
Non-Dominant Leg (n = 40) | 204.8 ± 40.3 | 205.8 ± 41.1 | −0.9 ± 8.4 | 0.493 |
Difference | 5.5 ± 42.6 | 3.7 ± 39.7 | ||
Combined Legs (n = 80) | 207.6 ± 42.6 | 207.6 ± 41.4 | −0.01 ± 8.7 | 0.990 |
Continuous Cuff Inflation | Incremental Cuff Inflation | |
---|---|---|
MALES | ||
First Measurement (n = 20) | 215.5 ± 35.7 | 198.1 ± 22.2 |
Second Measurement (n = 20) | 214.6 ± 33.6 | 196.7 ± 19.7 |
Difference | 0.9 ± 5.4 | 1.3 ± 6.2 |
FEMALES | ||
First Measurement (n = 20) | 207.5 ± 51.4 | 209.8 ± 54.3 |
Second Measurement (n = 20) | 207.4 ± 50.1 | 210.6 ± 58.2 |
Difference | −0.4 ± 7.9 | −0.8 ± 11.8 |
COMBINED MALES/FEMALES | ||
First Measurement (n = 40) | 211.3 ± 43.7 | 203.9 ± 41.4 |
Second Measurement (n = 40) | 211.0 ± 42.3 | 203.6 ± 43.5 |
Difference | 0.3 ± 6.7 | 0.3 ± 9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vehrs, P.R.; Blazzard, C.; Hart, H.C.; Kasper, N.; Lacey, R.; Lopez, D.; Richards, S.; Eggett, D.L. Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females. Appl. Sci. 2023, 13, 1438. https://doi.org/10.3390/app13031438
Vehrs PR, Blazzard C, Hart HC, Kasper N, Lacey R, Lopez D, Richards S, Eggett DL. Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females. Applied Sciences. 2023; 13(3):1438. https://doi.org/10.3390/app13031438
Chicago/Turabian StyleVehrs, Pat R., Chase Blazzard, Hannah C. Hart, Nicole Kasper, Ryan Lacey, Daniela Lopez, Shay Richards, and Dennis L. Eggett. 2023. "Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females" Applied Sciences 13, no. 3: 1438. https://doi.org/10.3390/app13031438
APA StyleVehrs, P. R., Blazzard, C., Hart, H. C., Kasper, N., Lacey, R., Lopez, D., Richards, S., & Eggett, D. L. (2023). Comparison of Two Cuff Inflation Protocols to Measure Arterial Occlusion Pressure in Males and Females. Applied Sciences, 13(3), 1438. https://doi.org/10.3390/app13031438