An Adaptive Degree of Freedom Condensation Algorithm for Simulating Transient Temperature, Applied to an Asphalt-Concrete Core Wall
Abstract
:1. Introduction
2. Methodology
2.1. DOFs Condensation of Transient Heat-Conduction Problem
2.2. Error Estimator
2.3. Mesh-Coarsening Criterion
2.4. Establishment of the Transformation Matrix
2.5. Adaptive DOFs Condensation of Transient Heat-Conduction Problem
- Establish the initial coarse mesh according to the practical problem of transient heat conduction.
- Considering the requirements of the problem, the user presets the refinement process of the coarse mesh and establishes the initial computational mesh. Then, the program obtains the shape function components between the different levels of the elements.
- Begin the transient temperature-field calculation using the initial computational mesh.
- Calculate the global error of the current time step by error evaluation. When the global error is less than the prespecified tolerance value, judge whether the coarsening criterion is met. Define the DOFs that meet the coarsening criterion as slave DOFs, while the rest are master DOFs.
- Assemble the transformation matrix according to the shape function component and the information of master and slave DOFs.
- Calculate the new FEM basic equation according to the transformation matrix and solve for the unknown variable of master DOFs.
- Solve for the unknown variable of slave DOFs using the transformation matrix according to the solution of the unknown variable of master DOFs.
- Continue to compute the solution of the next time step.
3. Numerical Example
3.1. Example 1
3.2. Example 2
3.3. Example 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOF | Degree of freedom |
FEM | Finite element method |
ADOF-FEM | Adaptive degree of freedom—finite element method |
SVM | Separation of variables method |
RMSE | Root mean square error |
References
- ICOLD. Asphalt-Concrete Cores for Embankment Dams; Bulletin 179; International Commission on Large Dams: Paris, France, 2018. [Google Scholar]
- Höeg, K. Asphaltic Concrete Cores for Embankment Dams; Norwegian Geotechnical Institute: Oslo, Norway, 1993. [Google Scholar]
- Pircher, W.; Schwab, H. Design, construction, and behavior of the asphaltic concrete core wall of the Finstertal Dam. In Proceedings of the 16th Congress of the International Commission on Large Dams, San Francisco, CA, USA, 13–17 June 1988; Calif. ICOLD Press: Paris, France, 1988; Volume 2, pp. 901–924. [Google Scholar]
- Wang, W.; Höeg, K.; Zhang, Y. Design and performance of the Yele asphalt-core rockfill dam. Can. Geotech. J. 2010, 47, 1365–1381. [Google Scholar] [CrossRef]
- Feng, S.; Wang, W.; Hu, W.; Deng, Y.; Yang, J.; Wu, S.; Zhang, C.; Höeg, K. Design and performance of the Quxue asphalt-core rockfill dam. Soils Found. 2020, 60, 1036–1049. [Google Scholar] [CrossRef]
- Chen, S.; Gu, C.; Lin, C.; Zhang, K.; Zhu, Y. Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement. Eng. Comput. 2020, 37, 1943–1959. [Google Scholar] [CrossRef]
- Lin, C.; Li, T.; Chen, S.; Yuan, L.; van Gelder, P.; Yorke-Smith, N. Long-term viscoelastic deformation monitoring of a concrete dam: A multi-output surrogate model approach for parameter identification. Eng. Struct. 2022, 266, 114553. [Google Scholar] [CrossRef]
- Kim, Y.R. Modeling of Asphalt Concrete; McGraw-Hill Education: New York, NY, USA, 2009. [Google Scholar]
- Ning, Z.; Liu, Y.; Wang, W. Compressive Behavior of Hydraulic Asphalt Concrete under Different Temperatures and Strain Rates. J. Mater. Civ. Eng. 2021, 33, 04021013. [Google Scholar] [CrossRef]
- Smesnik, M.; Krstic, S.; Guven, S.; Verdianz, M. Asphalt core embankment dams in turkey–dam design, core material and construction. In Proceedings of the ICOLD—European Club Symposium, Crete, Greece, 2–4 October 2019; pp. 1–10. [Google Scholar]
- Ding, J.; Colegrove, P.; Mehnen, J.; Ganguly, S.; Almeida, P.S.; Wang, F.; Williams, S. Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Comput. Mater. Sci. 2011, 50, 3315–3322. [Google Scholar] [CrossRef] [Green Version]
- Compton, B.G.; Post, B.K.; Duty, C.E.; Love, L.; Kunc, V. Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites. Addit. Manuf. 2017, 17, 77–86. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Pang, Z. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt. Laser Technol. 2018, 98, 23–32. [Google Scholar] [CrossRef]
- Fetni, S.; Enrici, T.M.; Niccolini, T.; Tran, H.S.; Dedry, O.; Duchêne, L.; Mertens, A.; Habraken, A.M. Thermal model for the directed energy deposition of composite coatings of 316L stainless steel enriched with tungsten carbides. Mater. Des. 2021, 204, 109661. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Irwin, J.; Michaleris, P. Thermomechanical modeling of additive manufacturing large parts. J. Manuf. Sci. Eng. 2014, 136, 061007. [Google Scholar] [CrossRef]
- Hajializadeh, F.; Ince, A. Finite element–based numerical modeling framework for additive manufacturing process. Mater. Des. Process. Commun. 2019, 1, e28. [Google Scholar] [CrossRef] [Green Version]
- Montevecchi, F.; Venturini, G.; Grossi, N.; Scippa, A.; Campatelli, G. Finite Element mesh coarsening for effective distortion prediction in Wire Arc Additive Manufacturing. Addit. Manuf. 2017, 18, 145–155. [Google Scholar] [CrossRef]
- Ren, K.; Chew, Y.; Zhang, Y.; Bi, G.; Fuh, J. Thermal analyses for optimal scanning pattern evaluation in laser aided additive manufacturing. J. Mater. Process. Technol. 2019, 271, 178–188. [Google Scholar] [CrossRef]
- Staten, M.L.; Benzley, S.; Scott, M. A methodology for quadrilateral finite element mesh coarsening. Eng. Comput. 2008, 24, 241–251. [Google Scholar] [CrossRef]
- Shepherd, J.F.; Dewey, M.W.; Woodbury, A.C.; Benzley, S.E.; Staten, M.L.; Owen, S.J. Adaptive mesh coarsening for quadrilateral and hexahedral meshes. Finite Elem. Anal. Des. 2010, 46, 17–32. [Google Scholar] [CrossRef]
- Kirk, B.S.; Peterson, J.W.; Stogner, R.H.; Carey, G.F. libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 2006, 22, 237–254. [Google Scholar] [CrossRef]
- Baiges, J.; Bayona, C. Refficientlib: An Efficient Load-Rebalanced Adaptive Mesh Refinement Algorithm for High-Performance Computational Physics Meshes. SIAM J. Sci. Comput. 2017, 39, C65–C95. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.A.; Caicedo, M.A.; Cervera, M.; Chiumenti, M.; Baiges, J. A multi-criteria h-adaptive finite-element framework for industrial part-scale thermal analysis in additive manufacturing processes. Eng. Comput. 2022, 38, 4791–4813. [Google Scholar] [CrossRef]
- Li, C.; Denlinger, E.R.; Gouge, M.F.; Irwin, J.E.; Michaleris, P. Numerical verification of an Octree mesh coarsening strategy for simulating additive manufacturing processes. Addit. Manuf. 2019, 30, 100903. [Google Scholar] [CrossRef]
- Qu, Z.Q. Model Order Reduction Techniques; Springer: London, UK, 2004. [Google Scholar] [CrossRef]
- Guyan, R.J. Reduction of stiffness and mass matrices. AIAA J. 1965, 3, 380. [Google Scholar] [CrossRef]
- Henshell, R.D.; Ong, J.H. Automatic masters for eigenvalue economization. Earthq. Eng. Struct. Dyn. 1974, 3, 375–383. [Google Scholar] [CrossRef]
- Leung, A.Y.T. An accurate method of dynamic condensation in structural analysis. Int. J. Numer. Methods Eng. 1978, 12, 1705–1715. [Google Scholar] [CrossRef]
- Archer, G.C. A technique for the reduction of dynamic degrees of freedom. Earthq. Eng. Struct. Dyn. 2000, 30, 127–145. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS Mechanical APDL Theory Reference; ANSYS, Inc.: San Jose, CA, USA, 2020. [Google Scholar]
- Llau, A.; Jason, L.; Dufour, F.; Baroth, J. Adaptive zooming method for the analysis of large structures with localized nonlinearities. Finite Elem. Anal. Des. 2015, 106, 73–84. [Google Scholar] [CrossRef]
- Mezher, A.; Jason, L.; Folzan, G.; Davenne, L. Simulation of large dimensional reinforced and prestressed concrete structures using a new adaptive static condensation method including automatic mesh partitioning. Finite Elem. Anal. Des. 2022, 202, 103718. [Google Scholar] [CrossRef]
- Zhang, Y.; Ho, S.L.; Fu, W.; Wu, H. An adaptive degrees-of-freedom finite element method for 3-D nonlinear magneto-thermal field analysis. Numer. Heat Transf. Part A Appl. 2019, 75, 523–532. [Google Scholar] [CrossRef]
- Lewis, R.W.; Nithiarasu, P.; Seetharamu, K.N. Fundamentals of the Finite Element Method for Heat and Fluid Flow; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Katona, M.C.; Zienkiewicz, O.C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme. Int. J. Numer. Methods Eng. 1985, 21, 1345–1359. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Zhu, J.Z. A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 1987, 24, 337–357. [Google Scholar] [CrossRef]
- Franca, A.S.; Haghighi, K. Adaptive Finite Element Analysis of Transient Thermal Problems. Numer. Heat Transf. Part B Fundam. 1994, 26, 273–292. [Google Scholar] [CrossRef]
- Lewis, R.W.; Huang, H.C.; Usmani, A.S.; Cross, J.T. Finite element analysis of heat transfer and flow problems using adaptive remeshing including application to solidification problems. Int. J. Numer. Methods Eng. 1991, 32, 767–781. [Google Scholar] [CrossRef]
- Denlinger, E.R. Development and Numerical Verification of a Dynamic Adaptive Mesh Coarsening Strategy for Simulating Laser Power Bed Fusion Processes. In Thermo-Mechanical Modeling of Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 199–213. [Google Scholar] [CrossRef]
- Huiping, L.; Guoqun, Z.; Shanting, N.; Chuanzhen, H. FEM simulation of quenching process and experimental verification of simulation results. Mater. Sci. Eng. A 2007, 452–453, 705–714. [Google Scholar] [CrossRef]
Time(ms) | Coarse | Refined1 | Refined2 | ||
---|---|---|---|---|---|
FEM | ADOF-FEM | FEM | ADOF-FEM | ||
Assemble global conductivity matrix | 561 | 1308 | 3081 | 5059 | 9673 |
Set DOFs | 1 | 2 | 59 | 5 | 539 |
Matrix factorization | 4171 | 12,364 | 8374 | 57,686 | 26,867 |
Solve equation | 823 | 2460 | 1758 | 4164 | 3756 |
Total | 5556 | 16,134 | 13,272 | 66,914 | 40,835 |
Position | Coarse | Refined1 | Refined2 | ||||
---|---|---|---|---|---|---|---|
FEM | FEM | ADOF-FEM | Relative | FEM | ADOF-FEM | Relative | |
RMSE | RMSE | RMSE | Difference | RMSE | RMSE | Difference | |
(0,0) | 0.8067 | 0.3886 | 0.3904 | 0.45% | 0.2850 | 0.2861 | 0.35% |
(25,0) | 0.7898 | 0.3600 | 0.3601 | 0.01% | 0.2663 | 0.2666 | 0.15% |
(50,0) | 0.5742 | 0.2929 | 0.2951 | 0.77% | 0.2258 | 0.2271 | 0.59% |
(75,0) | 0.9603 | 0.2731 | 0.2720 | −0.39% | 0.2368 | 0.2366 | −0.06% |
(100,0) | 3.0676 | 1.3934 | 1.3935 | 0.01% | 0.8351 | 0.8353 | 0.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Li, T.; Li, H.; Wang, F.; Qi, H. An Adaptive Degree of Freedom Condensation Algorithm for Simulating Transient Temperature, Applied to an Asphalt-Concrete Core Wall. Appl. Sci. 2023, 13, 1456. https://doi.org/10.3390/app13031456
Yuan L, Li T, Li H, Wang F, Qi H. An Adaptive Degree of Freedom Condensation Algorithm for Simulating Transient Temperature, Applied to an Asphalt-Concrete Core Wall. Applied Sciences. 2023; 13(3):1456. https://doi.org/10.3390/app13031456
Chicago/Turabian StyleYuan, Li, Tongchun Li, Hongen Li, Fang Wang, and Huijun Qi. 2023. "An Adaptive Degree of Freedom Condensation Algorithm for Simulating Transient Temperature, Applied to an Asphalt-Concrete Core Wall" Applied Sciences 13, no. 3: 1456. https://doi.org/10.3390/app13031456
APA StyleYuan, L., Li, T., Li, H., Wang, F., & Qi, H. (2023). An Adaptive Degree of Freedom Condensation Algorithm for Simulating Transient Temperature, Applied to an Asphalt-Concrete Core Wall. Applied Sciences, 13(3), 1456. https://doi.org/10.3390/app13031456