Surface Quality Evolution Model and Consistency Control Method of Large Shaft Multi-Pass Grinding
Abstract
:1. Introduction
2. Surface Quality Indexes and Influencing Factors
2.1. Surface Quality Indexes
2.2. Analysis of Surface Quality Influencing Factors
3. Surface Quality Evolution Model Based on Elman Neural Network
4. Consistency Control Method of Surface Quality in Rough Machining
4.1. The Principle of Consistency Control Method of Surface Quality
4.2. The Compensation Method to Guarantee the Actual Grinding Depth
5. Case Study
5.1. Experimental Set Up
5.2. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chybowski, L.; Nozdrzykowski, K.; Grzadziel, Z.; Jakubowski, A.; Przetakiewicz, W. Method to increase the accuracy of large crankshaft geometry measurements using counterweights to minimize elastic deformations. Appl. Sci. 2020, 10, 4722. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Wang, L.P.; Jiang, S.; Li, H.Y.; Li, X.K. The development of time-dependent compensation model for roller CVC profile generation in precision grinding. Int. J. Adv. Manuf. Technol. 2021, 114, 1671–1684. [Google Scholar] [CrossRef]
- Patel, D.K.; Goyal, D.; Pabla, B.S. Optimization of parameters in cylindrical and surface grinding for improved surface finish. R. Soc. Open Sci. 2018, 5, 171906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Y.; Zhang, G.B.; Ran, Y.; Wang, Z.C.; Wang, W. Multi-objective optimization for grinding parameters of 20CrMnTiH gear with ceramic microcrystalline corundum. Materials 2019, 12, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Z.; Liu, Y.; Chu, X.M.; He, Y.M.; Zhang, W. Calculation model for surface roughness of face gears by disc wheel grinding. Int. J. Mach. Tool. Manu. 2017, 123, 76–88. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Chen, Y.Y.; Zhou, G.M.; Lv, Q.J.; Zhang, Z.Z.; Tang, W.; Liu, Y. Roughness model for tooth surfaces of spiral bevel gears under grinding. Mech. Mach. Theory. 2016, 104, 17–30. [Google Scholar] [CrossRef]
- Zhou, X.; Xi, F. Modeling and predicting surface roughness of the grinding process. Int. J. Mach. Tool. Manu. 2022, 42, 969–977. [Google Scholar] [CrossRef]
- Jiang, J.L.; Ge, P.Q.; Hong, J. Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction. Int. J. Adv. Manuf. Technol. 2013, 67, 1035–1052. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Paul, S. Numerical modelling of surface topography in superabrasive grinding. Int. J. Adv. Manuf. Technol. 2008, 39, 29–38. [Google Scholar] [CrossRef]
- Yu, H.D.; Wang, M.X.; Xu, J.K.; Chen, G.J.; Dai, B.; Wang, S. Research on surface roughness prediction model of ultrasonic assisted grinding by response surface method. Solid State Phenom. 2021, 324, 66–71. [Google Scholar] [CrossRef]
- Zhu, C.M.; Gu, P.; Wu, Y.Y.; Liu, D.H.; Wang, X.K. Surface roughness prediction model of SiCp/Al composite in grinding. Int. J. Mech. Sci. 2019, 155, 98–109. [Google Scholar] [CrossRef]
- Kwak, J.S.; Sim, S.B.; Jeong, Y.D. An analysis of grinding power and surface roughness in external cylindrical grinding of hardened SCM440 steel using the response surface method. Int. J. Mach. Tool. Manu. 2006, 46, 304–312. [Google Scholar] [CrossRef]
- Alao, A.R.; Konneh, M. Application of Taguchi and Box-Behnken designs for surface roughness in precision grinding of silicon. Int. J. Precis. Technol. 2011, 2, 21–38. [Google Scholar] [CrossRef]
- Caydas, U.; Ekici, S. Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 2012, 23, 639–650. [Google Scholar] [CrossRef]
- Liu, Y.; Song, S.Y.; Zhang, Y.D.; Li, W.; Xiao, G.J. Prediction of surface roughness of abrasive belt brinding of superalloy material based on RLSOM-RBF. Materials 2022, 14, 5701. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, D.; Balasz, B.; Rypina, L. Modelling of surface roughness and grinding forces using artificial neural networks with assessment of the ability to data generalization. Int. J. Adv. Manuf. Technol. 2018, 94, 1335–1347. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Li, B.Z.; Yang, J.G.; Liang, S. Modeling and optimization of alloy steel 20CrMnTi grinding process parameters based on experiment investigation. Int. J. Adv. Manuf. Technol. 2018, 95, 1859–1873. [Google Scholar] [CrossRef]
- Zhang, G.J.; Liu, C.Y.; Min, K.; Liu, H.; Ni, F.L. A GAN-BPNN-based surface roughness measurement method for robotic grinding. Machines 2022, 10, 1026. [Google Scholar] [CrossRef]
- Yin, G.Q.; Wang, J.H.; Guan, Y.Y.; Wang, D.; Sun, Y. The prediction model and experimental research of grinding surface roughness based on AE signal. Int. J. Adv. Manuf. Technol. 2022, 120, 6693–6705. [Google Scholar] [CrossRef]
- Yonehara, M.; Matsui, T.; Kihara, K.; Isono, H.; Kijima, A.; Sugibayashi, T. Evaluation method of surface texture by surface roughness based on geometrical product specifications (GPS). Mater. Trans. 2004, 45, 1019–1026. [Google Scholar] [CrossRef]
- Son, J.; Lee, H. Preliminary study on polishing SLA 3D-printed ABS-like resins for surface roughness and glossiness reduction. Micromachines 2020, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Yavus, H.; Ozkahraman, T.; Demirdag, S. Polishing experiments on surface quality of building stone tiles. Constr. Bulid. Mater. 2011, 25, 1707–1711. [Google Scholar] [CrossRef]
- Assender, H.; Bliznyuk, V.; Porfyrakis, K. How surface topography relates to materials properties. Science 2002, 297, 973–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Y.; Li, X.K.; Tian, C.C.; Yang, X.D.; Zhang, Y.; Liu, X.L.; Rong, Y.M. The simulation and experimental study of glossiness formation in belt sanding and polishing processes. Int. J. Adv. Manuf. Technol. 2017, 90, 199–209. [Google Scholar] [CrossRef]
Level | ap (μm) | Nwheel (r/min) | Nshaft (r/min) | f (mm/min) |
---|---|---|---|---|
1 | 0 | 550 | 60 | 800 |
2 | 2 | 700 | 70 | 1000 |
3 | 3.5 | 850 | 80 | 1200 |
4 | 5 | 1000 |
Nwheel (r/min) | 550 | 700 | 850 | 1000 |
---|---|---|---|---|
Standard deviations (A) | 1.35 | 0.64 | 0.73 | 1.23 |
Models | Grinding Depth | Previous Grinding Surface Quality | Average Prediction Error of Surface Roughness | Average Prediction Error of Glossiness |
---|---|---|---|---|
Proposed model | Actual | Considered | 5.5% | 5.1% |
Model 1 | Nominal | Considered | 12.4% | 13.2% |
Model 2 | Actual | Ignored | 15.3% | 16.8% |
Model 3 | Nominal | Ignored | 24.2% | 25.3% |
Grinding Stage | ap (μm) | Nwheel (r/min) | Nshaft (r/min) | f (mm/min) | Grinding Pass |
---|---|---|---|---|---|
Rough | 5 | 1000 | 80 | 1200 | 3 |
Semi-finish | 3 | 900 | 70 | 1050 | 2 |
Finish | 2 | 800 | 70 | 1000 | 2 |
Spark-out | 0 | 800 | 60 | 1000 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Fu, S.; Wang, D.; Li, X. Surface Quality Evolution Model and Consistency Control Method of Large Shaft Multi-Pass Grinding. Appl. Sci. 2023, 13, 1502. https://doi.org/10.3390/app13031502
Wang L, Fu S, Wang D, Li X. Surface Quality Evolution Model and Consistency Control Method of Large Shaft Multi-Pass Grinding. Applied Sciences. 2023; 13(3):1502. https://doi.org/10.3390/app13031502
Chicago/Turabian StyleWang, Liping, Shuailei Fu, Dong Wang, and Xuekun Li. 2023. "Surface Quality Evolution Model and Consistency Control Method of Large Shaft Multi-Pass Grinding" Applied Sciences 13, no. 3: 1502. https://doi.org/10.3390/app13031502
APA StyleWang, L., Fu, S., Wang, D., & Li, X. (2023). Surface Quality Evolution Model and Consistency Control Method of Large Shaft Multi-Pass Grinding. Applied Sciences, 13(3), 1502. https://doi.org/10.3390/app13031502