Normalized Weighting Schemes for Image Interpolation Algorithms
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Pythagorean Theorem and Normalization
2.2. Normalized Weighting Schemes
2.2.1. Tetragonal Area
2.2.2. Minimum Side-based Diameter
2.2.3. Hypotenuse-based Radius
2.2.4. Preliminary Results
2.3. Virtual Pixel Length-based Normalized Weighting Schemes
2.3.1. Virtual Pixel Length-based Height
2.3.2. Virtual Pixel Length for Hypotenuse-based Radius
2.4. Dataset
2.5. IQA Metrics
2.5.1. FR-IQA Metrics
2.5.2. Speed Metrics
3. Results and Discussions
3.1. Objective Image Interpolation Quality Assessment
3.2. Subjective Image Interpolation Quality Assessment
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Elhag, T. On the normalization of interval and fuzzy weights. Fuzzy Sets Syst. 2006, 157, 2456–2471. [Google Scholar] [CrossRef]
- Pavlacka, O. On various approaches to normalization of interval and fuzzy weights. Fuzzy Sets Syst. 2014, 243, 110–130. [Google Scholar] [CrossRef]
- González, R.; Woods, R. Digital Image Processing, 3rd ed.; Pearson: Waltham Abbey, UK, 2007; p. 85. [Google Scholar]
- Daniel, F.; Julia, K. A Student’s Guide to the Mathematics of Astronomy; Cambridge University Press: Cambridge, UK, 2013; p. 35. [Google Scholar]
- Sally, J.; Sally, P. Chapter 3: Pythagorean triples. In Roots to Research: A Vertical Development of Mathematical Problems; American Mathematical Society Bookstore: Providence, RI, USA, 2007; p. 63. [Google Scholar]
- Sadiq, A.; Almohammad, T.; Khadri, R.A.; Ahmed, A.A.; Lloret, J. An Energy-Efficient Cross-Layer approach for cloud wireless green communications. In Proceedings of the 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), Valencia, Spain, 8–11 May 2017; pp. 230–234. [Google Scholar]
- Fu, H.; Yang, L.; Zhou, C. A computer-aided geometric approach to inverse kinematics. J. Robot. Syst. 1998, 15, 131–143. [Google Scholar]
- Rukundo, O. Optimal Methods Research on Grayscale Image Interpolation; China National Knowledge Infrastructure CNKI, TP391.41: Beijing, China, 2012. [Google Scholar]
- Sheppard, W. Interpolation. In Encyclopædia Britannica. 14, 11th ed.; Chisholm, H., Ed.; Cambridge University Press: Cambridge, UK, 1911; pp. 706–710. [Google Scholar]
- Rukundo, O. Evaluation of Rounding Functions in Nearest-Neighbour Interpolation. Int. J. Comput. Methods 2021, 18, 2150024. [Google Scholar] [CrossRef]
- Rukundo, O. Effects of Image Size on Deep Learning. arXiv 2021, arXiv:2101.11508. [Google Scholar]
- Tian, Q.C.; Wen, H.; Zhou, C.; Chen, W. A fast edge-directed interpolation algorithm. In International Conference on Neural Information Processing, LNCS; Huang, T.W., Zeng, Z.G., Li, C.D., Lueng, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7665, pp. 398–405. [Google Scholar]
- Khan, S.; Lee, D.; Khan, M.A.; Siddiqui, M.F.; Zafar, R.F.; Memon, K.H.; Mujtaba, G. Image Interpolation via Gradient Correlation-Based Edge Direction Estimation. Sci. Program. 2020, 2020, 5763837. [Google Scholar] [CrossRef]
- Huang, Z.; Cao, L. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Opt. Lasers Eng. 2020, 130, 106090. [Google Scholar] [CrossRef]
- Lee, Y.; Yu, N.; Tsai, C. An image-upscaling engine for 1080p to 4k using gradient-based interpolation. Int. J. Electron. 2020, 107, 1386–1405. [Google Scholar] [CrossRef]
- Xu, G.; Ling, R.; Deng, L.; Wu, Q.; Ma, W. Image interpolation via gaussian-sinc interpolators with partition of unity. Computers. Mater. Contin. 2020, 62, 309–319. [Google Scholar] [CrossRef]
- Zulkifli, N.A.B.; Karim, S.A.A.; Shafie, A.B.; Sarfraz, M.; Ghaffar, A.; Nisar, K.S. Image Interpolation Using a Rational Bi-Cubic Ball. Mathematics 2019, 7, 1045. [Google Scholar] [CrossRef] [Green Version]
- Rukundo, O.; Wu, K.; Cao, H. Image Interpolation Based on The Pixel Value Corresponding to The Smallest Absolute Difference. In Proceedings of the 4th International Workshop on Advanced Computational Intelligence, Wuhan, China, 19–21 October 2011; pp. 434–437. [Google Scholar]
- Rukundo, O.; Maharaj, B. Optimization of Image Interpolation based on Nearest Neighbour Algorithm. In Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISAPP 2014), Lisbon, Portugal, 5–8 January 2014; pp. 641–647. [Google Scholar]
- Rukundo, O.; Pedersen, M.; Hovde, Ø. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy. Comput. Math. Methods Med. 2017, 2017, 9813165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukundo, O.; Schmidt, S. Aliasing Artefact Index for Image Interpolation Quality Assessment. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 7 November 2018; Volume 108171E. [Google Scholar]
- Rukundo, O. Half-Unit Weighted Bilinear Algorithm for Image Contrast Enhancement in Capsule Endoscopy. In Proceedings of the SPIE 10615, Ninth International Conference on Graphic and Image Processing (ICGIP 2017), Qingdao, China, 10 April 2018; Volume 106152Q. [Google Scholar]
- Rukundo, O.; Schmidt, E.; Ramm, O. Software Implementation of Optimized Bicubic Interpolated Scan Conversion in Echocardiography. arXiv 2020, arXiv:2005.11269, 1–10. [Google Scholar]
- Rukundo, O. Effects of Empty Bins on Image Upscaling in Capsule Endoscopy. In Proceedings of the SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017), Hong Kong, China, 21 July 2017; Volume 104202P. [Google Scholar]
- Rucka, M.; Wojtczak, E.; Zielińska, M. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics. Measurement 2020, 154, 107494. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, W.; Li, L.; Chang, C.; Wang, X. An efficient general data hiding scheme based on image interpolation. J. Inf. Secur. Appl. 2020, 54, 102584. [Google Scholar] [CrossRef]
- Wang, X.; Jia, X.; Zhou, W.; Qin, X.; Guo, H. Correction for color artifacts using the RGB intersection and the weighted bilinear interpolation. Appl. Opt. 2019, 58, 8083–8091. [Google Scholar] [CrossRef]
- Hassan, F.; Gutub, A. Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimed. Tools Appl. 2020, 79, 30087–30109. [Google Scholar] [CrossRef]
- Jiang, C.; Li, H.; Zhou, S.; Yu, J.; Chen, L.; Xie, X. Image interpolation model based on packet losing network. Multimed. Tools Appl. 2020, 79, 25785–25800. [Google Scholar] [CrossRef]
- De Feis, I.; Masiello, G.; Cersosimo, A. Optimal Interpolation for Infrared Products from Hyperspectral Satellite Imagers and Sounders. Sensors 2020, 20, 2352. [Google Scholar] [CrossRef] [PubMed]
- Moraes, T.; Amorim, P.; Da Silva, J.V.; Pedrini, H. Medical image interpolation based on 3D Lanczos filtering. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 294–300. [Google Scholar] [CrossRef]
- Huang, W.; Liu, J. Robust Seismic Image Interpolation with Mathematical Morphological Constraint. IEEE Trans. Image Process. 2020, 29, 819–829. [Google Scholar] [CrossRef]
- Song, G.; Qin, C.; Zhang, K.; Yao, X.; Bao, F.; Zhang, Y. Adaptive Interpolation Scheme for Image Magnification Based on Local Fractal Analysis. IEEE Access 2020, 8, 34326–34338. [Google Scholar] [CrossRef]
- Murad, M.; Bilal, M.; Jalil, A.; Ali, A.; Mehmood, K.; Khan, B. Efficient Reconstruction Technique for Multi-Slice CS-MRI Using Novel Interpolation and 2D Sampling Scheme. IEEE Access 2020, 8, 117452–117466. [Google Scholar] [CrossRef]
- Ji, J.; Zhong, B.; Ma, K. Image Interpolation Using Multi-Scale Attention-Aware Inception Network. IEEE Trans. Image Process. 2020, 29, 9413–9428. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Chen, S. An effective bilinear interpolation-based iterative chroma subsampling method for color images. Multimed. Tools Appl. 2022, 81, 32191–32213. [Google Scholar] [CrossRef]
- Yu, L.; Liu, K.; Orchard, M.T. Orchard, Manifold-Inspired Single Image Interpolation. arXiv 2021, arXiv:2108.00145. [Google Scholar]
- Gao, C.; Zhou, R.; Li, X. Quantum color image scaling based on bilinear interpolation. Chin. Phys. B 2022. [Google Scholar] [CrossRef]
- Sadaghiani, A.; Sheikhaei, S.; Forouzandeh, B. Image Interpolation Based on 2D-DWT with Novel Regularity-Preserving Algorithm Using RLS Adaptive Filters. Int. J. Image Graph. 2022, 2350039. [Google Scholar] [CrossRef]
- Occorsio, D.; Ramella, G.; Themistoclakis, W. Image Scaling by de la Vallée-Poussin Filtered Interpolation. J. Math. Imaging Vis. 2022, 1–29. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, Z.; Tian, Y.; Yu, Z.; Zhang, Y.; Ma, J. Interpolation-based nonrigid deformation estimation under manifold regularization constraint. Pattern Recognit. 2022, 128, 128695. [Google Scholar] [CrossRef]
- Fei, Y.; Shan, Z.; Salvador, E.; Kaoru, K.H. Implementing bilinear interpolation with quantum images. Digit. Signal Process. 2021, 117, 103149. [Google Scholar]
- Tavoosi, J.; Zhang, C.; Mohammadzadeh, A.; Mobayen, S.; Mosavi, A. Medical Image Interpolation Using Recurrent Type-2 Fuzzy Neural Network. Front. Neuroinform. 2021, 15, 667375. [Google Scholar] [CrossRef] [PubMed]
- Romano, Y.; Isidoro, J.; Milanfar, P. RAISR: Rapid and Accurate Image Super Resolution. IEEE Trans. Comput. Imaging 2017, 3, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In FComputer Vision, ECCV; Leet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 8692. [Google Scholar]
- Rukundo, O. Non-extra Pixel Interpolation. Int. J. Image Graph. 2020, 20, 2050031. [Google Scholar] [CrossRef]
- Rukundo, O.; Schmidt, S. Stochastic Rounding for Image Interpolation and Scan Conversion. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 13–22. [Google Scholar] [CrossRef]
- Rukundo, O.; Schmidt, S. Effects of Rescaling Bilinear Interpolant on Image Interpolation Quality. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 2 November 2018; Volume 1081715. [Google Scholar]
- Rukundo, O.; Schmidt, S. Extrapolation for Image Interpolation. In Proceedings of the SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 2 November 2018; Volume 108171F. [Google Scholar]
- Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 2006, 15, 2226–2238. [Google Scholar] [CrossRef]
- Li, X.; Orchard, M.T. Orchard: New edge-directed interpolation. IEEE Trans. Image Process. 2001, 10, 1521–1527. [Google Scholar]
- Rukundo, O.; Huang, M.; Cao, H. Optimization of Bilinear Interpolation Based on Ant Colony Algorithm. In Proceedings of the 2nd International Conference Electrical and Electronics Engineering, Macao, China, 1–2 December 2011; pp. 571–580. [Google Scholar]
- Rukundo, O.; Cao, H. Advances on Image Interpolation Based on Ant Colony Algorithm; SpringerPlus: Berlin/Heidelberg, Germany, 2016; Volume 5, p. 403. [Google Scholar]
- Rukundo, O.; Cao, H. Nearest Neighbor Value Interpolation. Int. J. Adv. Comput. Sci. Appl. 2012, 3, 25–30. [Google Scholar]
- Rukundo, O. Effects of Improved-Floor Function on the Accuracy of Bilinear Interpolation Algorithm. Comput. Inf. Sci. 2015, 8, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Mittag, U.; Kriechbaumer, A.; Rittweger, J. A novel interpolation approach for the generation of 3D-geometric digital bone models from image stacks. J. Musculoskelet. Neuronal Interact. 2017, 17, 86–96. [Google Scholar]
- Wang, Y.; Zhang, Z.; Guo, B. 3D image interpolation based on directional coherence. In Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), Kauai, HI, USA, 9–10 December 2001; pp. 195–202. [Google Scholar]
- Quadrilaterals. Available online: https://www.mathsisfun.com/quadrilaterals.html (accessed on 1 November 2020).
- List of Geometry and Trigonometry Symbols, Math Vault. Available online: https://mathvault.ca/hub/higher-math/math-symbols/geometry-trigonometry-symbols/ (accessed on 1 November 2020).
- USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/database.php (accessed on 8 November 2020).
- Modified-USC-SIPI-Image-Database. Available online: https://github.com/orukundo/Modified-USC-SIPI-Image-Database (accessed on 8 November 2020).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
TN | TB | TC | MD | HR | AT | AC | |
---|---|---|---|---|---|---|---|
2 x | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
4 x | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
MD | HR | AT | AC | |
---|---|---|---|---|
2 x | 0 | 2 | 1 | 1 |
4 x | 1 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukundo, O. Normalized Weighting Schemes for Image Interpolation Algorithms. Appl. Sci. 2023, 13, 1741. https://doi.org/10.3390/app13031741
Rukundo O. Normalized Weighting Schemes for Image Interpolation Algorithms. Applied Sciences. 2023; 13(3):1741. https://doi.org/10.3390/app13031741
Chicago/Turabian StyleRukundo, Olivier. 2023. "Normalized Weighting Schemes for Image Interpolation Algorithms" Applied Sciences 13, no. 3: 1741. https://doi.org/10.3390/app13031741
APA StyleRukundo, O. (2023). Normalized Weighting Schemes for Image Interpolation Algorithms. Applied Sciences, 13(3), 1741. https://doi.org/10.3390/app13031741