Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context
Abstract
:1. Introduction
2. Background
2.1. Unmanned Aircraft across the Years
2.2. Classification of UAV
3. Latin America and Colombia
3.1. Emergency
3.2. Monitoring and Inspection
3.3. Earth Sciences
3.4. Environmental
3.5. Defemse and Security
4. Current Regulations for UAS
- Class A: The operation of the UAS is allowed under the limitations established by UAEAC RAC 91, Appendix 13, and it has a maximum take-off weight between 250 g and 25 kg; it does not require authorization due to its low risk.
- Class B: This kind of UAS exceeds the maximum take-off weight and is up to 150 kg; therefore, UAEAC always requires authorization, even though its operation may involve low risk.
- Class C: This last classification of UAS corresponds to aircraft that exceed 150 kg at maximum take-off weight and are used to overfly international airspace or transportation for which, for now, their operation in Colombian airspace is not authorized. The authorization for this type of UAS is only for scientific research and development and is highly restrictive from UAEAC [73].
5. Opportunities and Alternatives
5.1. Some General Applications
5.2. Electrical Sector Applications
5.3. Proposed Re-Categorization
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2014, 2, 69–85. [Google Scholar] [CrossRef]
- Kharchenko, V.; Prusov, D. Analysis of unmanned aircraft systems application in the civil field. Transportation 2012, 27, 335–343. [Google Scholar] [CrossRef]
- Huttunen, M. Civil unmanned aircraft systems and security: The European approach. J. Transp. Saf. Secur. 2019, 12, 83–101. [Google Scholar] [CrossRef] [Green Version]
- Research and Markets. Global UAV Drones Market Report 2022: The Historical Significance and the Current Day Developments—Forecast to 2026. 19 January 2022. Available online: https://www.prnewswire.com/news-releases/global-uav-drones-market-report-2022-the-historical-significance-and-the-current-day-developments—forecast-to-2026-301463721.html (accessed on 20 July 2022).
- Sánchez Jiménez, G.; Mulero Valenzuela, M.; Saumeth Cadavid, E. Vehículos Aéreos no Tripulados en Latinoamérica; Technical Report—Information & Design Solutions, S.L.; ISSUU: Palo Alto, CA, USA, 2013. [Google Scholar]
- Silva, D.M.P.F.; de Oliveira, L.F.F.; Macedo, M.G.M.; Filho, C.J.A.B. On the Analysis of a Swarm Intelligence Based Coordination Model for Multiple Unmanned Aerial Vehicles. In Proceedings of the 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, Fortaleza, Brazil, 16–19 October 2012; pp. 208–213. [Google Scholar] [CrossRef]
- Alves Ribeiro, V.H.; Reynoso-Meza, G.; dos Santos Coelho, L. Multi-Objective Model Selection for Unmanned Aerial Vehicles Automatic Target Recognition Systems. IFAC-PapersOnLine 2017, 50, 11607–11612. [Google Scholar] [CrossRef]
- Lee, G.O.; Vasco, L.; Márquez, S.; Zuniga-Moya, J.C.; Van Engen, A.; Uruchima, J.; Ponce, P.; Cevallos, W.; Trueba, G.; Trostle, J.; et al. A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Neglected Trop. Dis. 2021, 15, e0009679. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Bonilla, M.; Meza-Leandro, A.S.; Esquivel-Segura, E.A.; Arias-Aguilar, D.; Tapia-Arenas, A.; Meléndez, F.M. Uso de vehículos aéreos no tripulados (VANTs) para el monitoreo y manejo de los recursos naturales: Una síntesis. Rev. Tecnol. Marcha 2020, 33, 77–88. [Google Scholar] [CrossRef]
- Stankovic, M.; Hasanbeigi, A.; Neftenov, N. Use of 4IR Technologies in Water and Sanitation in Latin America and the Caribbean; Technical Report; Inter-American Development Bank: Washington, DC, USA, 2020. [Google Scholar]
- Chaves, A.N.; Cugnasca, P.S.; Jose, J. Adaptive search control applied to Search and Rescue operations using Unmanned Aerial Vehicles (UAVs). IEEE Lat. Am. Trans. 2014, 12, 1278–1283. [Google Scholar] [CrossRef]
- Briceño, C.; Noel, M.F.; Chácara, C.; Aguilar, R. Integration of non-destructive testing, numerical simulations, and simplified analytical tools for assessing the structural performance of historical adobe buildings. Constr. Build. Mater. 2021, 290, 123224. [Google Scholar] [CrossRef]
- Vargas-Ramírez, N.; Paneque-Gálvez, J. The Global Emergence of Community Drones (2012–2017). Drones 2019, 3, 76. [Google Scholar] [CrossRef]
- Castellanos-Sanabria, Y.A.; Rodríguez-Pirateque, G.W. UAV systems for multipurpose heterogeneous networks: A review of design, development and performance. Aeronaut. Aerosp. Open Access J. 2020, 4, 121–140. [Google Scholar] [CrossRef]
- da Cruz, E.P.F. A Comprehensive Survey in Towards to Future FANETs. IEEE Lat. Am. Trans. 2018, 16, 876–884. [Google Scholar] [CrossRef]
- Berra, E.F.; Peppa, M.V. Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 533–538. [Google Scholar] [CrossRef]
- Sánchez Pinzón, B.F.; Tapia Ortega, J.R.; Rosa, P. Drones: Aspectos generales y aplicaciones sociales. Vis. Electron. 2016, 10, 262–273. [Google Scholar] [CrossRef]
- Grupo ENEL. La Innovación Que Llega Volando. 2019. Available online: https://www.enel.com.co/es/historias/a201908-la-innovacion-que-llega-volando.html (accessed on 28 September 2022).
- Ackroyd, J.A.D. Sir George Cayley, the father of aeronautics Part 2. Cayley’s aeroplanes. Notes Rec. R. Soc. Lond. 2002, 56, 333–348. [Google Scholar] [CrossRef]
- Sobolev, D.A. Du temple and Mozhaiskii: Was either of them the first to flight test an aeroplane? Hist. Technol. 1994, 11, 393–401. [Google Scholar] [CrossRef]
- Justin, F. The History of Drones (Drone History Timeline from 1849 to 2019). 2020. Available online: https://www.dronethusiast.com/history-of-drones/ (accessed on 28 September 2022).
- Alwateer, M.; Loke, S.W. Emerging Drone Services: Challenges and Societal Issues. IEEE Technol. Soc. Mag. 2020, 39, 47–51. [Google Scholar] [CrossRef]
- Loquercio, A.; Kaufmann, E.; Ranftl, R.; Dosovitskiy, A.; Koltun, V.; Scaramuzza, D. Deep Drone Racing: From Simulation to Reality With Domain Randomization. IEEE Trans. Robot. 2020, 36, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mitka, E.; Mouroutsos, S. Classification of drones. Am. J. Eng. Res. 2017, 6, 36–41. [Google Scholar]
- Villagrán, C.; Hinojosa, L.F. History of the forests of southern South America, II: Phytogeographical analysis. Rev. Chil. Hist. Nat. 1997, 70, 241–267. [Google Scholar]
- Sánchez Zoque, L.M. Talleres de Mapeo Humanitario en Mocoa, Putumayo, Colombia. 2017. Available online: https://openstreetmapcolombia.github.io/2017/05/07/taller-mapeo-mocoa/ (accessed on 20 July 2022).
- United Nations. Population. 2022. Available online: https://www.un.org/en/global-issues/population (accessed on 20 July 2022).
- Sánchez, W.A. COHA Report: Drones in Latin America; Technical Report; COHA: Washington, DC, USA, 2014. [Google Scholar]
- Jardini, M.G.M.; Jardini, J.A.; Crispino, F.; Simões, A.J.M.; Souza, J.M.S.D.; Santos, W.L.D. Vegetation detection close to transmission lines using cloud data points from lidar in Brazil. In Proceedings of the Modelling, Simulation and Identification/858: Intelligent Systems and Control, Calgary, AB, Canada, 16–17 July 2018; ACTAPRESS: Calgary, AB, Canada, 2018; pp. 163–168. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, A.D.P.; de Sousa, G.C.L.; Maués, L.M.F. Using digital image processing and Unmanned Aerial Vehicle (UAV) for identifying ceramic cladding detachment in building facades. Ambiente 2022, 22, 199–213. [Google Scholar] [CrossRef]
- Martinez, J.G.; Masoud, G.; Alarcón, L.F. UAV Integration in Current Construction Safety Planning and Monitoring Processes: Case Study of a High-Rise Building Construction Project in Chile. J. Manag. Eng. 2020, 36, 05020005. [Google Scholar] [CrossRef]
- Vargas-Ramírez, N.; Paneque-Gálvez, J. Desafíos normativos para el uso comunitario de drones en México. Investig. Geogr. 2020, 102, 1–14. [Google Scholar] [CrossRef]
- Llugsi Cañar, R.; Lupera, P.; Chango, R.; Ledesma, F.; Suarez, A. Estudio básico del comportamiento ambiental en la caldera del volcán inactivo Pululahua utilizando un sistema de adquisición y procesamiento de datos basado en UAV. Rev. Politics 2019, 43, 29–36. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Gordillo-Salinas, V.M.; Flores-Magdaleno, H.; Ortiz-Solorio, C.A.; Arteaga-Ramírez, R. Evaluation of nitrogen status in a wheat crop using unmanned aerial vehicle images. Chil. J. Agric. Res. 2021, 81, 408–419. [Google Scholar] [CrossRef]
- Rodríguez Bianco, G.; Triñanes Morixe, I. Uso de un UAV para Estimar la Altura del Forraje. Master’s Thesis, Universidad de la República, Montevideo, Uruguay, 2018. [Google Scholar]
- Easdale, M.H.; Umaña, F.; Raffo, F.; Fariña, C.; Bruzzone, O. Evaluación de pastizales patagónicos con imágenes de satélites y de vehículos aéreos no tripulados. Ecol. Austral. 2019, 29, 306–314. [Google Scholar] [CrossRef] [Green Version]
- González Musso, R.F.; Rabino, A.L.; Azzaro, F. Uso de un Vehículo Aéreo No Tripulado (VANT) como método de monitoreo de la sanidad forestal en plantaciones de coníferas en Patagonia Norte, Argentina Quebracho. Rev. Cienc. For. 2020, 28, 88–99. [Google Scholar]
- Estrada Zúñiga, A.C.; Vásquez, J.Ñ. Detección e identificación de comunidades vegetales altoandinas, Bofedal y Tolar de Puna Seca mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos no Tripulados”. Sci. Agropecu. 2021, 12, 291–301. [Google Scholar] [CrossRef]
- Oviedo Bayas, B.; Silva Castro, K.F.; Zhuma Mera, E. Red de drones autónomos utilizando una arquitectura de red para uso alternativo de levantamiento de información agrícola a pequeña escala. Conrado 2021, 17, 69–80. [Google Scholar]
- López Ortiz, M.J.; Mencia, E.; Jara Céspedes, A.J.; Manabe, A.; Fleitas, F. Vehículo Aéreo No Tripulado (VANT) una herramienta para la conservación de las áreas silvestres protegidas del Paraguay. Rev. Cient. UCSA 2020, 7, 14–17. [Google Scholar] [CrossRef]
- Jorge, L.A.C.; Brandão, Z.N.; Inamasu, R.Y. Insights and recommendations of use of UAV platforms in precision agriculture in Brazil. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI, Amsterdam, The Netherlands, 23–25 September 2014; Volume 9239, pp. 313–330. [Google Scholar] [CrossRef]
- Vargas, V.S.; Lange, V.D. Sistema aéreo de medición de gases contaminantes basado en un UAV, resultados preliminares. Acta Nova 2015, 7, 194–212. [Google Scholar]
- Castellanos, G.; Deruyck, M.; Martens, L.; Joseph, W. System Assessment of WUSN Using NB-IoT UAV-Aided Networks in Potato Crops. IEEE Access 2020, 8, 56823–56836. [Google Scholar] [CrossRef]
- Jaimes, L.G.; Calderon, J.M. An UAV-based incentive mechanism for Crowdsensing with budget constraints. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, M.A.; Alvi, B.A.; Safi, A.; Khan, I.U. Drones for good in smart cities: A review. In Proceedings of the International Conference on Electrical, Electronics, Computers, Communication, Mechanical and Computing (EECCMC), Vaniyambadi, India, 28–29 January 2018; Volume 28. [Google Scholar]
- Corporación de la Industria Aeronáutica Colombiana S.A.—CIAC. Fabricación ART Quimbaya. Available online: https://www.ciac.gov.co/productos-y-servicios/proyectos/ (accessed on 28 September 2022).
- Federal Aviation Administration. Code of Federal Regulation. PART 107—Small Unmanned Aircraft Systems; Federal Aviation Administration: Washington, DC, USA, 2016.
- Ogan, R.T.; Lott, D.; Paden, W. Electrical Transmission Line Inspection using Unmanned Aircraft. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. Que Establece los Requerimientos para Operar un Sistema de Aeronave Pilotada a Distancia (RPAS) en el Espacio Aéreo Mexicano; NORMA Oficial Mexicana NOM-107-SCT3-2019; Diario Oficial de la Federación: Mexico City, Mexico, 2019. [Google Scholar]
- Dirección General de Aeronautica Civil—Guatemala. Regulaciones de Aviación Civil de Guatemala; Technical Report RAC-101; Dirección General de Aeronautica Civil—Guatemala: Ciudad, Guatemala, 2013. [Google Scholar]
- Instituto Nicaragüense de Aeronáutica Civil—INAC. Restricción para uso de Drones en Nicaragua. Available online: https://www.inac.gob.ni/2014/11/restriccion-para-uso-de-drones/ (accessed on 28 September 2022).
- Instituto Nicaragüense de Aeronáutica Civil—INAC. ¿Qué son los Drones? Available online: https://www.inac.gob.ni/2015/11/que-son-los-drones/ (accessed on 28 September 2022).
- Autoridad de Aviación Civil (AAC)—El Salvador. RAC VANT: Regulación de los Vehículos Aéreos No Tripulados; Technical Report; Autoridad de Aviación Civil (AAC)—El Salvador: San Salvador, El Salvador, 2021. [Google Scholar]
- Agencia Hondureña de Aeronáutica Civil. Registro de Operadores y Limitaciones de Operación de Sistemas de Aeronaves Pilotadas a Distancia (RPAS); Technical Report; Agencia Hondureña de Aeronáutica Civil: Tegucigalpa, Honduras, 2016. [Google Scholar]
- Dirección General de Aviacion Civil—Costa Rica. Operaciones con Sistema de Aeronave Piloteada a Distancia (RPAS); Technical Report; Dirección General de Aviacion Civil—Costa Rica: San José, Costa Rica, 2021. [Google Scholar]
- Department of Civil Aviation, Belize. Drone Requirements for International and Local Drone Operators. Available online: https://www.civilaviation.gov.bz/index.php/drones (accessed on 28 September 2022).
- Autoridad Aeronática Civil—Panamá. Requisitos para Operaciones de Aeronaves Pilotadas a Distancia; Technical Report; Autoridad Aeronática Civil—Panamá: Panama City, Panama, 2016. [Google Scholar]
- Ministerio del Poder Popular para el Transporte, Venezuela. Legislación Venezolana en Materia de Aeronaves Pilotadas a Distancia (RPAS). Available online: https://www.inac.gob.ve/wp-content/uploads/2017/09/Informe-RPA-FINAL.pdf (accessed on 29 September 2022).
- Dirección General de Aviación Civil—Ecuador. Resolución Nro. DGAC-DGAC-2020-0110-R Operación de Aeronaves Pilotadas a Distancia (RPAs); Technical Report; Aviación Civil—Ecuador: Quito, Ecuador, 2020. [Google Scholar]
- Dirección General de Aeronáutica Civil—Chile. Normas para la Obtención de Certificado de Operador Aéreo (AOC); Technical Report; Dirección General de Aeronáutica Civil: Santiago, Chile, 2021. [Google Scholar]
- Dirección General de Aeronática Civil—Chile. Operaciones de Aeronaves Pilotadas a Distancia (RPAS) en Asuntos de Interés Público, que se Efectúen Sobre áreas Pobladas; Technical Report; Dirección General de Aeronática Civil: Santiago, Chile, 2020. [Google Scholar]
- Ministerio de Transportes y Comunicaciones—Perú. MTC: Conoce los Requisitos Para Operar un Drone. 2019. Available online: https://www.gob.pe/institucion/mtc/noticias/50511-mtc-conoce-los-requisitos-para-operar-un-drone (accessed on 28 September 2022).
- Ministerio de Transportes y Comunicaciones—Perú. Ley que Regula el Uso y las Operaciones de los Sistemas de Aeronaves Pilotadas a Distancia (RPAS); Technical Report 30740; Plataforma digital única del Estado Peruano: Lima, Peru, 2018.
- Dirección Nacional de Aviación e Infraestructura Aeronáutica—Uruguay. Resolución 291-2014; Technical Report; Dirección Nacional de Aviación e Infraestructura Aeronáutica: Montevideo, Uruguay, 2014. [Google Scholar]
- Dirección Nacional de Aeronáutica Civil—Paraguay. Reglamento de Aeronaves Pilotadas a Distancia (RPA) y Sistemas de Aeronaves Pilotadas a Distancia (RPAS); Technical Report; Dirección Nacional de Aeronáutica Civil: Asunción, Paraguay, 2017. [Google Scholar]
- Dirección General de Aeronáutica Civil—Bolivia. Regulación para el Uso de Aeronáves no Tripuladas (RPAs); Technical Report; Dirección General de Aeronáutica Civil: La Paz, Bolivia, 2020. [Google Scholar]
- Administración Nacional de Aviación Civil. Reglamento de Vehículos Aéreos no Tripulados (VANT) y de Sistemas de Vehículos Aéreos no Tripulados (SVANT); Technical Report; Ministerio de Transporte: Buenos Aires, Argentina, 2020. [Google Scholar]
- Agência Nacional de Aviação Civil—Brazil. Regulamento Brasileiro da Aviação Civil Especial—Requisitos Gerais para Aeronaves Não Tripuladas de Uso Civil; Technical Report; Agência Nacional de Aviação Civil (ANAC): Brasília, Brazil, 2021. [Google Scholar]
- European Union Aviation Safety Agengy—EASA. Easy Access Rules for Unmanned Aircraft Systems (Regulations (EU) 2019/947 and 2019/945). Available online: https://www.easa.europa.eu/en/document-library/easy-access-rules/easy-access-rules-unmanned-aircraft-systems-regulations-eu (accessed on 28 September 2022).
- Drone Laws. Drone Laws in Asian Countries. Available online: https://drone-laws.com/drone-laws-in-asian-countries-2/ (accessed on 28 September 2022).
- Aeronáutica Civil—Colombia. ABECÉ: Reglamentación y Manejo de Drones en Colombia; Aeronáutica Civil: Bogotá, Colombia, 2022. [Google Scholar]
- Reglamentos Aeronáuticos de Colombia. Unidad Administrativa Especial de Aeronáutica Civil—Colombia; Technical Report; Unidad Administrativa Especial de Aeronáutica Civil: Bogotá, Colombia, 2020. [Google Scholar]
- Tariq, R.; Rahim, M.; Aslam, N.; Bawany, N.; Faseeha, U. DronAID: A Smart Human Detection Drone for Rescue. In Proceedings of the 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT (HONET-ICT), Islamabad, Pakistan, 8–10 October 2018; pp. 33–37. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. Disaster Region Coverage Using Drones: Maximum Area Coverage and Minimum Resource Utilisation. Drones 2022, 6, 96. [Google Scholar] [CrossRef]
- Stolfi, D.H.; Brust, M.R.; Danoy, G.; Bouvry, P. SuSy-EnGaD: Surveillance System Enhanced by Games of Drones. Drones 2022, 6, 13. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, X.; Paull, D.; Zhang, J.; Farooq, A.; Chen, X.; Islam, M.N. A Drone-Based Sensing System to Support Satellite Image Analysis for Rice Farm Mapping. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9376–9379. [Google Scholar] [CrossRef]
- Atherton, J.; MacArthur, A.; Hakala, T.; Maseyk, K.; Robinson, I.; Liu, W.; Honkavaara, E.; Porcar-Castell, A. Drone Measurements of Solar-Induced Chlorophyll Fluorescence Acquired with a Low-Weight DFOV Spectrometer System. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8834–8836. [Google Scholar] [CrossRef] [Green Version]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Loke, S.; Alwateer, M. Decision-Making for Drone Services in Urban Environments: A Simulated Study on Clients’ Satisfaction and Profit Maximisation. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 550–557. [Google Scholar] [CrossRef]
- Herrera, D.; Imamura, H. Design of facial recognition system implemented in an unmanned aerial vehicle for citizen security in Latin America. ITM Web Conf. 2019, 27, 04002. [Google Scholar] [CrossRef]
- Corte, A.P.D.; da Cunha Neto, E.M.; Rex, F.E.; Souza, D.; Behling, A.; Mohan, M.; Sanquetta, M.N.I.; Silva, C.A.; Klauberg, C.; Sanquetta, C.R.; et al. High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD). Drones 2022, 6, 48. [Google Scholar] [CrossRef]
- Murdoch, S.; Reynoso, S. Design and Implementation of a MPPT circuit for a Solar UAV. IEEE Lat. Am. Trans. 2013, 11, 108–111. [Google Scholar] [CrossRef]
- Adib, A.; Afridi, K.K.; Amirabadi, M.; Fateh, F.; Ferdowsi, M.; Lehman, B.; Lewis, L.H.; Mirafzal, B.; Saeedifard, M.; Shadmand, M.B.; et al. E-Mobility—Advancements and Challenges. IEEE Access 2019, 7, 165226–165240. [Google Scholar] [CrossRef]
- Goh, C.S.; Kuan, J.R.; Yeo, J.H.; Teo, B.S.; Danner, A. A 100% solar-powered quadcopter with monocrystalline silicon cells. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 2829–2834. [Google Scholar] [CrossRef]
- Davies, L.; Bolam, R.C.; Vagapov, Y.; Anuchin, A. Review of Unmanned Aircraft System Technologies to Enable Beyond Visual Line of Sight (BVLOS) Operations. In Proceedings of the 2018 X International Conference on Electrical Power Drive Systems (ICEPDS), Novocherkassk, Russia, 3–6 October 2018; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Grando, R.B.; Pinheiro, P.M.; Bortoluzzi, N.P.; da Silva, C.B.; Zauk, O.F.; Piñeiro, M.O.; Aoki, V.M.; Kelbouscas, A.L.S.; Lima, Y.B.; Drews, P.L.J.; et al. Visual-based Autonomous Unmanned Aerial Vehicle for Inspection in Indoor Environments. In Proceedings of the 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), Natal, Brazil, 9–12 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Beke, É.; Bódi, A.; Katalin, T.G.; Kovács, T.; Maros, D.; Gáspár, L. The Role of Drones in Linking Industry 4.0 and ITS Ecosystems. In Proceedings of the 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2018; pp. 000191–000198. [Google Scholar] [CrossRef]
- Perreault, M.; Behdinan, K. Delivery Drone Driving Cycle. IEEE Trans. Veh. Technol. 2021, 70, 1146–1156. [Google Scholar] [CrossRef]
- Sharma, V.; Choudhary, G.; Ko, Y.; You, I. Behavior and Vulnerability Assessment of Drones-Enabled Industrial Internet of Things (IIoT). IEEE Access 2018, 6, 43368–43383. [Google Scholar] [CrossRef]
- Vattapparamban, E.; Güvenç, İ.; Yurekli, A.İ.; Akkaya, K.; Uluağaç, S. Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 216–221. [Google Scholar] [CrossRef]
- Altawy, R.; Youssef, A.M. Security, Privacy, and Safety Aspects of Civilian Drones: A Survey. ACM Trans. Cyber-Phys. Syst. 2016, 1, 1–25. [Google Scholar] [CrossRef]
- Jung, N.J.; Choi, M.H.; Lim, C.W. Development of Drone Operation System for Diagnosis of Transmission Facilities. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 2817–2821. [Google Scholar] [CrossRef]
- Choi, H.; Koo, G.; Kim, B.J.; Woo Kim, S. Real-time Power Line Detection Network using Visible Light and Infrared Images. In Proceedings of the 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ), Dunedin, New Zealand, 2–4 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Toth, J.; Gilpin-Jackson, A. Smart view for a smart grid—Unmanned Aerial Vehicles for transmission lines. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Michalec, D. Unmanned Aerial Systems: Current State of the Technology and Relevance to Rural Electric Utilities. In Proceedings of the 2016 IEEE Rural Electric Power Conference (REPC), Westminster, CO, USA, 15–18 May 2016; pp. 102–110. [Google Scholar] [CrossRef]
- Prasad, D.S.; Reddy, B.S. Study on Corona Activity Using an Image Processing Approach. IEEE Trans. Ind. Appl. 2017, 53, 4008–4014. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, T.; Gong, S.; Li, L.; Bai, D.; Zheng, R. Image Correction Technology Supporting Power Device Monitoring. In Proceedings of the 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen, China, 13–15 July 2018; pp. 260–264. [Google Scholar] [CrossRef]
- Aljohani, O.; Abu-Siada, A. Application of digital image processing to detect transformer bushing faults and oil degradation using FRA polar plot signature. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 428–436. [Google Scholar] [CrossRef]
- Elizondo, M.; Vallem, M.; Samaan, N.; Makarov, Y.; Vyakaranam, B.; Nguyen, T.; Muñoz, C.; Herrera, R.; Midence, D.; Shpitsberg, A. Transmission reinforcements in the Central American regional power system. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Ferreira, R.; Corredor, P.H.; Rudnick, H.; Cifuentes, X.; Barroso, L. Electrical Expansion in South America: Centralized or Distributed Generation for Brazil and Colombia. IEEE Power Energy Mag. 2019, 17, 50–60. [Google Scholar] [CrossRef]
- Adabo, G.J. Unmanned aircraft system for high voltage power transmission lines of Brazilian electrical system. Auvsi’S Unmanned Syst. 2013, 2, 1556–1563. [Google Scholar]
- Kumar, V.M.; Nageswara Rao, B.; Farooq, S. A Detailed Review on Pin Fin Heat Sink International. J. Energy Power Eng. 2016, 10, 1006–1015. [Google Scholar] [CrossRef]
- Caparó Acurio, J.W.; Lay-Siu Su-Mund, D.K. Statkraft: Inspector Drone. Master’s Thesis, Universidad de Piura, Piura, Peru, 2019. [Google Scholar]
- ENEL. Drones y Cámaras Termográficas HD, las Nuevas Tecnologías que Utiliza Enel Distribución. Available online: https://www.enel.cl/es/conoce-enel/prensa/news/d201905-drones-y-camaras-termograficas-hd-tecnologias-enel-distribucion.html (accessed on 28 September 2022).
- IT NOW. ETESA Incorpora Drones para Inspección y Diseño Eléctrico. 2019. Available online: https://www.itnow.connectab2b.com/post/etesa-incorpora-drones-para-inspecci%C3%B3n-y-dise%C3%B1o-el%C3%A9ctrico (accessed on 28 September 2022).
- Agence France-Presse (AFP). Los mil Usos de los Drones en América Latina. Available online: https://www.revistalideres.ec/lideres/usos-drones-americalatina-industria-mercado.html (accessed on 28 September 2022).
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the Current State of UAV Regulations. Remote Sens. 2017, 9, 459. [Google Scholar] [CrossRef]
- Grupo de Energía de Bogotá. La Tecnología de Drones Despegó en Transmisión del GEB. Available online: https://www.grupoenergiabogota.com/transmision/revista-inergia/sostenibilidad/la-tecnologia-de-drones-despego-en-transmision-del-geb (accessed on 28 September 2022).
Category | Use |
---|---|
Emergency | Search and rescue |
Natural disaster management | |
Humanitarian help | |
Ambulance aid | |
Monitoring and inspection | Real state infrastructure inspection |
Power lines inspection | |
Insurance documentation | |
Earth sciences | Archaeology documentation |
Geography documentation | |
Cartography documentation | |
Environmental | Soil moisture evaluation |
Gas level evaluation | |
Agricultural crops monitoring | |
Defense and security | Traffic surveillance |
Drug monitoring | |
Port security |
Type of Classification for Regulation | Countries |
---|---|
Use | Mexico, El Salvador, Honduras, Venezuela, Ecuador, Perú, Paraguay, Uruguay |
Takeoff mass | Costa Rica, Guatemala, Nicaragua, Panamá, Colombia, Chile, Bolivia |
Fully regulated | Argentina, Brazil |
Class A | Class B | Class C |
---|---|---|
Maximum takeoff weight 25 kg | Maximum takeoff weight 150 kg | Class C are mainly experimental aircraft in the country, so, the operations are carried out by duly recognized or authorized public, or private entities for the exclusive purposes of scientific research, innovation, and development. |
Maximum speed 80 km/h. | Maximum speed 100 km/h. | |
Visual Line of Sight (VLOS) up to 500 m, horizontally during all flights. | Visual Line of Sight (VLOS) up to 750 m, horizontally during all flights. | |
The operation cannot be directly over the public, crowds, buildings, cities, or other populated areas. | Every flight must be up to 123 m over earth or water. | |
The entire operation must be daytime only. It is only allowed at night in open spaces and unpopulated areas, free of obstacles, and the UAS must have bright lights to see it. | Visibility conditions cannot be less than 5 km from its location. | |
Every flight must be up to 123 m over earth or water. | Minimum distance from clouds is 150 m. | |
Visibility conditions cannot be less than 5 km from its location. | Its operation cannot be carried out from an aerodrome, heliport or in its vicinity within a radius of 3 km. | |
Minimum distance from clouds is 150 m. | Any operation that requires aerial works other than image capture requires authorization from the UAEAC. | |
The operation may only be carried out within Class G airspace (not regulated). | Rescue and search operations, or similar missions that hinder those carried out by authorities or rescue organizations, cannot be carried out. | |
Sprinkling activities may not be executed. | A person may only operate one UAS at a time, except for those cases in which the UAEAC authorizes swarm-type operations. | |
Its operation cannot be carried out from an aerodrome, heliport or in its vicinity within a radius of 3 km. | Animals cannot be transported. However, the UAS can be used in agricultural tasks in which certain types of live insects are used for the control of pests authorized by the UAEAC. | |
Object transport activities of any kind may not be accomplished. | Explosive, corrosive, biological risk materials, weapons, or any type of merchandise considered dangerous or prohibited may not be transported. | |
Autonomous operations will not be possible. | Operations may not be carried out less than 3.6 km from border areas or cross-border limits with neighboring states. | |
Explosive, corrosive, biological risk materials, weapons, or any type of merchandise considered dangerous or prohibited may not be transported. | In application of the general rules on the right of way and collision avoidance, a UAS must always give way to any other manned aircraft that is using the same airspace. |
Main Division | Category | Type | Classification |
---|---|---|---|
Application | Recreational | Non-Certified | Does not require a certification but requires first level of training |
Certified | Requires certification and second level of training | ||
Industrial | Class I | Requires certification and third level of training | |
Class II | Requires certification and fourth level of training | ||
Class III | Requires certification and fifth level of training | ||
Commercial | Class I | Requires certification and third level of training | |
Class II | Requires certification and fourth level of training | ||
Usage and level | Recreational | Level I | Training level required for non-certified users |
Level II | Training level required for certified users | ||
Industrial | Levels III, IV and V | Trainig level required for industrial certifications, the required level depends of the usage and aircraft type | |
Commercial | Levels III and IV | Training level required for commercial certifications, the required level depends of the usage and aircraft type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Zuluaga, G.J.; Isaza-Giraldo, L.; Zapata-Madrigal, G.D.; García-Sierra, R.; Candelo-Becerra, J.E. Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context. Appl. Sci. 2023, 13, 1801. https://doi.org/10.3390/app13031801
Sánchez-Zuluaga GJ, Isaza-Giraldo L, Zapata-Madrigal GD, García-Sierra R, Candelo-Becerra JE. Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context. Applied Sciences. 2023; 13(3):1801. https://doi.org/10.3390/app13031801
Chicago/Turabian StyleSánchez-Zuluaga, Gabriel J., Luisa Isaza-Giraldo, Germán Darío Zapata-Madrigal, Rodolfo García-Sierra, and John E. Candelo-Becerra. 2023. "Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context" Applied Sciences 13, no. 3: 1801. https://doi.org/10.3390/app13031801
APA StyleSánchez-Zuluaga, G. J., Isaza-Giraldo, L., Zapata-Madrigal, G. D., García-Sierra, R., & Candelo-Becerra, J. E. (2023). Unmanned Aircraft Systems: A Latin American Review and Analysis from the Colombian Context. Applied Sciences, 13(3), 1801. https://doi.org/10.3390/app13031801