A Comprehensive Classification Method for the Pore Permeability of Deep-Mine Sandstone Used to Guide Grouting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Experimental Methods
3. Results and Analysis
3.1. Pore Structure
3.1.1. Pore Types
3.1.2. Pore Throat Types
3.1.3. Sizes of Pores and Pore Throats
3.1.4. Pore Connectivity and Permeability
3.2. Factors Influencing the Pore Structure
3.2.1. Sedimentation
3.2.2. Diagenesis
3.2.3. Tectonism
4. Discussion
4.1. Classification and Quantitative Evaluation of Pore Permeability
4.1.1. Determination of Classification and Evaluation Parameters
4.1.2. Category Classification
4.1.3. Subcategory Classification
4.1.4. Comprehensive Classification and Quantitative Evaluation
4.2. Grouting Recommendations for Different Sandstone Subcategories
4.3. Application of Classified Grouting in Engineering
4.4. Exploration of a New Pore-Expanding Permeation Grouting Technique in Future Research
5. Summary and Conclusions
- Primary intergranular pores are common in the Jurassic sandstone (100% probability of appearance in the sandstone) and comprise 2.5–9.0% of the sandstone visual area. The Jurassic sandstone is dominated by necking pore throats (average pore throat radii of 0.74–4.93 µm); thus, the sandstone has good connectivity, high porosity and permeability and a good correlation between porosity and permeability. In general, the Jurassic sandstone is a medium- to low-permeability sandstone.
- The primary intergranular pores in the Permian sandstone are much lower in number (10–50% probability of appearance in the sandstone), comprise 0.1–3.5% of the sandstone visual area, and have a large deviation in their distribution. These pore features are an important reason for the low porosity and permeability of the Permian sandstone. The pore throats in the Permian sandstone are small and fine (average pore throat radii of 0.04–0.62 µm) and feature laminated shapes and curved lamellar shapes. These pore throat features are another reason for the poor pore connectivity and low permeability. Therefore, the Permian sandstone is a tight sandstone with a low to ultralow permeability.
- The direct factor affecting the permeability and groutability of sandstone is the pore structure of sandstone, and the main factors affecting the pore structure of sandstone are sedimentation and diagenesis. Sedimentation is an initial factor affecting the pore structure of deep-mine sandstone in the Southwest Shandong coalfield, and a comparative analysis of sandstone composition, structure and other characteristic indicators shows that the sorting coefficient is the most critical evaluation indicator reflecting the influence of sedimentation in this rock. Diagenesis is a later but more important factor affecting the pore structure of deep-mine sandstone in the Southwest Shandong coalfield. Differences in the comprehensive diagenetic coefficient of two of the studied categories of sandstone are highly consistent with the differences in their pore structure and physical properties, which indicates that diagenesis has the most important impact on the pore structure and that the comprehensive diagenesis coefficient is the best evaluation indicator reflecting the intensity of diagenesis.
- According to the five representative evaluation indicators, namely, permeability, porosity, average pore throat radius, comprehensive diagenetic coefficient and sorting coefficient, and using the multi-indicator comprehensive evaluation method based on permeability, the pore structure of deep-mine sandstone in the Southwest Shandong coalfield is divided into four subcategories (I1, I2, II1, and II2) belonging to two categories (I and II); of these subcategories, I1 has medium pores and pore throats that are suitable for grouting with microfine cement based slurry; I2 has medium-small pores and fine pore throats; II1 has medium-small pores and fine pore throats or small pores and microthroats; both I2 and II1 are suitable for grouting with chemical slurry; and II2 has micropores and microthroats that are unable to be grouted.
- Unlike fractures, sandstone pores have a complex structure and poor connectivity, which results in a large evaluation error by a single permeability indicator and great difficulties in pore permeation grouting. This paper presents a comprehensive classification method for the evaluation of sandstone pore permeability from the perspective of grouting, which is helpful for selecting the grouting method and parameters correctly and improving the grouting effect. The results of the present study can theoretically inform the exploration of a new pore-expanding permeation grouting technique in future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Structural Logistics Scheme of This Study
Appendix B. Stratigraphic Texture and Sampling Horizon
Appendix C. Experimental Devices and Samples
Appendix D. Attachment of Table A1, Table A2, Table A3, Table A4, Table A5, Table A6 and Table A7
Sample No. | K (mD) | Փ (%) | Rave (µm) | C (%) | So (%) |
---|---|---|---|---|---|
Z1 | 102.1700 | 21.16 | 4.568 | 7.69 | 0.72 |
Z23 | 94.0540 | 20.36 | 4.93 | 6.17 | 0.79 |
Z38 | 70.9000 | 20.38 | 3.814 | 5.23 | 0.76 |
Z29 | 49.6370 | 21.16 | 4.116 | 5.19 | 0.78 |
Z27 | 43.8370 | 20.26 | 3.797 | 4.57 | 0.85 |
Z24 | 10.6520 | 17.82 | 3.623 | 6.12 | 1.05 |
Z31 | 7.6076 | 18.25 | 2.517 | 4.83 | 1.09 |
Z12 | 5.6690 | 17.50 | 1.128 | 3.65 | 1.11 |
Z9 | 5.5626 | 17.58 | 2.324 | 3.90 | 1.16 |
Z30 | 3.9094 | 17.10 | 1.642 | 4.47 | 1.21 |
Z25 | 2.7078 | 16.49 | 1.531 | 4.68 | 1.19 |
Z32 | 2.3820 | 16.66 | 1.423 | 2.87 | 1.20 |
Z46 | 2.1500 | 18.56 | 1.321 | 3.09 | 1.26 |
Z11 | 1.6010 | 13.10 | 1.296 | 3.38 | 1.35 |
Z41 | 0.8980 | 16.83 | 0.789 | 2.85 | 1.25 |
Z42 | 0.7270 | 16.62 | 0.756 | 3.69 | 1.25 |
Z13 | 0.7020 | 15.30 | 0.738 | 5.11 | 1.23 |
X9-1 | 0.6713 | 9.88 | 0.622 | 1.67 | 1.51 |
A0 | 0.4220 | 12.00 | 0.588 | 2.23 | 1.55 |
X3 | 0.3033 | 9.33 | 0.424 | 1.79 | 1.53 |
A4 | 0.2197 | 10.67 | 0.344 | 1.73 | 1.52 |
A1 | 0.2117 | 9.33 | 0.4 | 2.16 | 1.56 |
T8 | 0.0751 | 9.27 | 0.331 | 1.74 | 1.53 |
S12 | 0.0594 | 9.44 | 0.175 | 1.78 | 1.60 |
S18 | 0.0527 | 9.23 | 0.167 | 1.96 | 1.56 |
S22 | 0.0474 | 9.37 | 0.153 | 1.63 | 1.52 |
A5 | 0.0462 | 8.63 | 0.342 | 1.64 | 1.63 |
S16 | 0.0323 | 10.11 | 0.151 | 1.63 | 1.53 |
S10 | 0.0277 | 8.18 | 0.149 | 1.58 | 1.57 |
S11 | 0.0276 | 7.73 | 0.146 | 1.60 | 1.56 |
S17 | 0.0259 | 8.89 | 0.143 | 1.92 | 1.47 |
S19 | 0.0255 | 7.17 | 0.139 | 1.83 | 1.54 |
S15 | 0.0220 | 6.43 | 0.137 | 1.58 | 1.85 |
S20 | 0.0208 | 6.78 | 0.129 | 1.46 | 1.86 |
T4 | 0.0162 | 5.27 | 0.128 | 0.33 | 2.65 |
T3 | 0.0135 | 7.18 | 0.095 | 0.70 | 2.03 |
T13 | 0.0110 | 5.88 | 0.104 | 1.52 | 1.88 |
T2 | 0.0096 | 4.37 | 0.102 | 0.48 | 1.96 |
T21 | 0.0070 | 6.45 | 0.078 | 1.37 | 1.83 |
A9 | 0.0051 | 3.02 | 0.044 | 1.38 | 1.83 |
A7 | 0.0049 | 2.84 | 0.049 | 1.31 | 1.97 |
H11 | 0.0037 | 5.29 | 0.051 | 0.41 | 1.93 |
H6-2 | 0.0010 | 2.21 | 0.048 | 0.40 | 1.96 |
Sample No. | Pd (MPa) | Rmax (µm) | P50 (MPa) | R50 (µm) | α (%) | CV (%) | Rave (µm) |
---|---|---|---|---|---|---|---|
Z1 | 0.11 | 6.682 | 0.131 | 5.601 | 0.684 | 0.247 | 4.568 |
Z23 | 0.089 | 8.258 | 0.13 | 5.644 | 0.597 | 0.174 | 4.93 |
Z38 | 0.11 | 6.682 | 0.157 | 4.673 | 0.571 | 0.6 | 3.814 |
Z29 | 0.072 | 10.208 | 0.176 | 4.183 | 0.403 | 0.550 | 4.116 |
Z27 | 0.11 | 6.682 | 0.11 | 6.682 | 0.568 | 0.684 | 3.797 |
Z24 | 0.089 | 8.258 | 0.177 | 4.155 | 0.439 | 0.589 | 3.623 |
Z31 | 0.089 | 8.258 | 0.258 | 2.849 | 0.305 | 0.958 | 2.517 |
Z12 | 0.207 | 3.551 | 0.207 | 3.551 | 0.318 | 2.097 | 1.128 |
Z9 | 0.089 | 8.258 | 0.463 | 1.587 | 0.281 | 1.331 | 2.324 |
Z30 | 0.119 | 5.643 | 0.399 | 1.457 | 0.271 | 1.321 | 1.642 |
Z25 | 0.121 | 5.573 | 0.423 | 1.209 | 0.433 | 1.465 | 1.531 |
Z32 | 0.203 | 5.496 | 0.498 | 1.196 | 0.321 | 1.945 | 1.423 |
Z46 | 0.212 | 5.339 | 0.604 | 1.128 | 0.239 | 1.854 | 1.321 |
Z11 | 0.138 | 5.326 | 0.659 | 1.115 | 0.243 | 1.708 | 1.296 |
Z41 | 0.224 | 3.093 | 0.668 | 1.102 | 0.334 | 2.342 | 0.789 |
Z42 | 0.310 | 2.387 | 0.679 | 1.090 | 0.323 | 2.324 | 0.756 |
Z13 | 0.312 | 2.356 | 0.687 | 1.070 | 0.313 | 2.226 | 0.738 |
X9-1 | 0.207 | 3.551 | 1.646 | 0.446 | 0.175 | 2.486 | 0.622 |
A0 | 0.312 | 2.356 | 1.621 | 0.453 | 0.249 | 2.651 | 0.588 |
X3 | 0.312 | 2.356 | 1.823 | 0.403 | 0.18 | 3.592 | 0.424 |
A4 | 0.63 | 1.167 | 2.409 | 0.305 | 0.295 | 4.621 | 0.344 |
A1 | 0.311 | 2.363 | 2.382 | 0.309 | 0.169 | 4.847 | 0.4 |
T8 | 0.312 | 2.356 | 4.826 | 0.152 | 0.14 | 6.874 | 0.331 |
S12 | 0.63 | 1.167 | 5.097 | 0.144 | 0.15 | 9.929 | 0.175 |
S18 | 0.65 | 1.154 | 5.125 | 0.14 | 0.14 | 8.254 | 0.167 |
S22 | 0.67 | 1.142 | 5.254 | 0.138 | 0.16 | 7.145 | 0.153 |
A5 | 0.312 | 2.356 | 5.232 | 0.14 | 0.145 | 6.622 | 0.342 |
S16 | 0.69 | 1.137 | 5.367 | 0.136 | 0.17 | 9.235 | 0.151 |
S10 | 0.71 | 1.124 | 5.482 | 0.132 | 0.15 | 6.278 | 0.149 |
S11 | 0.73 | 1.113 | 5.542 | 0.129 | 0.21 | 6.986 | 0.146 |
S17 | 0.75 | 1.104 | 5.632 | 0.126 | 0.15 | 9.942 | 0.143 |
S19 | 0.77 | 1.097 | 5.764 | 0.121 | 0.18 | 9.956 | 0.139 |
S15 | 0.78 | 1.053 | 5.843 | 0.111 | 0.19 | 9.924 | 0.137 |
S20 | 0.79 | 1.121 | 5.976 | 0.102 | 0.24 | 9.053 | 0.129 |
T4 | 0.312 | 2.356 | 15.558 | 0.047 | 0.054 | 15.525 | 0.128 |
T3 | 1.268 | 0.58 | 9.756 | 0.075 | 0.165 | 16.675 | 0.095 |
T13 | 0.63 | 1.167 | 24.621 | 0.03 | 0.089 | 18.382 | 0.104 |
T2 | 1.268 | 0.58 | 8.851 | 0.083 | 0.177 | 13.42 | 0.102 |
T21 | 1.268 | 0.58 | 15.087 | 0.049 | 0.135 | 18.514 | 0.078 |
A9 | 2.55 | 0.288 | 27.197 | 0.027 | 0.152 | 30.134 | 0.044 |
A7 | 1.268 | 0.58 | 33.861 | 0.022 | 0.084 | 31.533 | 0.049 |
H11 | 1.268 | 0.58 | 27.23 | 0.025 | 0.094 | 29.35 | 0.051 |
H6-2 | 1.268 | 0.58 | 63.111 | 0.012 | 0.083 | 34.228 | 0.048 |
Sample No. | Φo (%) | C1 (%) | C2 (%) | C3 (%) | C (%) |
---|---|---|---|---|---|
Z1 | 40.1537 | 57.66 | 47.06 | 17.32 | 7.69 |
Z23 | 40.8230 | 55.91 | 55.56 | 19.98 | 6.17 |
Z38 | 40.1699 | 63.90 | 55.17 | 17.54 | 5.23 |
Z29 | 40.3168 | 65.28 | 35.71 | 23.87 | 5.19 |
Z27 | 39.9933 | 62.49 | 53.33 | 12.42 | 4.57 |
Z24 | 40.1537 | 65.13 | 42.86 | 10.55 | 6.12 |
Z31 | 40.6514 | 68.02 | 38.46 | 6.35 | 4.83 |
Z12 | 39.7113 | 48.38 | 68.29 | 18.32 | 3.65 |
Z9 | 37.6253 | 75.55 | 32.61 | 7.53 | 3.90 |
Z30 | 40.1537 | 63.89 | 55.17 | 12.89 | 4.47 |
Z25 | 40.1537 | 75.10 | 50.00 | 15.24 | 4.68 |
Z32 | 40.6514 | 79.09 | 70.59 | 8.17 | 2.87 |
Z46 | 39.1135 | 87.22 | 40.00 | 8.31 | 3.09 |
Z11 | 37.3493 | 58.50 | 70.97 | 19.45 | 3.38 |
Z41 | 39.2007 | 88.52 | 44.44 | 26.46 | 2.85 |
Z42 | 39.2154 | 88.52 | 44.44 | 7.11 | 3.69 |
Z13 | 39.5582 | 66.88 | 68.70 | 31.04 | 5.11 |
X9-1 | 33.5619 | 64.25 | 83.33 | 42.37 | 1.67 |
A0 | 32.6476 | 66.31 | 81.82 | 91.01 | 2.23 |
X3 | 32.7753 | 67.96 | 85.71 | 49.87 | 1.79 |
A4 | 34.2240 | 83.93 | 90.91 | 39.12 | 1.73 |
A1 | 36.6514 | 79.09 | 58.82 | 41.87 | 2.16 |
T8 | 33.4237 | 73.07 | 77.78 | 35.42 | 1.74 |
S12 | 35.2225 | 75.87 | 94.12 | 105.20 | 1.78 |
S18 | 35.5895 | 74.71 | 88.89 | 64.40 | 1.96 |
S22 | 35.9758 | 81.93 | 92.31 | 72.18 | 1.63 |
A5 | 34.9591 | 84.27 | 90.91 | 25.07 | 1.64 |
S16 | 35.8773 | 83.28 | 83.33 | 57.33 | 1.63 |
S10 | 35.4960 | 76.90 | 97.56 | 17.91 | 1.58 |
S11 | 35.5895 | 76.68 | 96.39 | 27.62 | 1.60 |
S17 | 36.4882 | 82.19 | 92.31 | 80.65 | 1.92 |
S19 | 35.7801 | 79.04 | 93.33 | 81.86 | 1.83 |
S15 | 35.6842 | 74.78 | 77.78 | 90.63 | 1.58 |
S20 | 35.5895 | 76.12 | 82.35 | 56.45 | 1.46 |
T4 | 29.5613 | 72.94 | 100.00 | 58.82 | 0.33 |
T3 | 32.2131 | 71.75 | 98.90 | 23.12 | 0.70 |
T13 | 33.0909 | 87.91 | 100.00 | 37.36 | 1.52 |
T2 | 32.6056 | 71.48 | 96.77 | 86.21 | 0.48 |
T21 | 34.9591 | 91.42 | 100.00 | 30.40 | 1.37 |
A9 | 34.9505 | 85.69 | 100.00 | 14.76 | 1.38 |
A7 | 35.5053 | 71.27 | 98.04 | 12.45 | 1.31 |
H11 | 35.8773 | 91.64 | 100.00 | 98.21 | 0.41 |
H6-2 | 36.0756 | 91.68 | 100.00 | 80.81 | 0.40 |
Sample No. | So (%) | D1 (%) | D2 (%) | D3 (%) | D4 (%) | Clay Matrix (%) |
---|---|---|---|---|---|---|
Z1 | 0.68 | 10.32 | 89.31 | 10.70 | 8.16 | 2.00 |
Z23 | 0.79 | 4.11 | 91.35 | 8.66 | 7.26 | 2.00 |
Z38 | 0.76 | 8.53 | 86.56 | 13.34 | 9.29 | 5.00 |
Z29 | 0.78 | 7.50 | 87.37 | 12.64 | 9.06 | 3.00 |
Z27 | 0.85 | 6.59 | 82.44 | 17.55 | 12.31 | 4.00 |
Z24 | 0.95 | 5.01 | 82.47 | 17.53 | 11.59 | 4.00 |
Z31 | 1.06 | 2.26 | 87.31 | 12.70 | 8.88 | 3.00 |
Z12 | 1.11 | 8.27 | 78.46 | 21.33 | 13.62 | 8.00 |
Z9 | 1.16 | 11.65 | 62.86 | 36.81 | 25.09 | 12.00 |
Z30 | 1.21 | 3.90 | 83.09 | 16.91 | 9.48 | 5.00 |
Z25 | 1.19 | 1.99 | 79.30 | 20.70 | 11.75 | 12.00 |
Z32 | 1.20 | 1.58 | 85.41 | 14.60 | 8.97 | 12.00 |
Z46 | 1.26 | 1.572 | 67.222 | 32.78 | 21.74 | 10.00 |
Z11 | 1.35 | 29.59 | 80.87 | 18.84 | 11.64 | 12.00 |
Z41 | 1.25 | 4.40 | 70.13 | 29.81 | 20.00 | 10.00 |
Z42 | 1.25 | 3.48 | 69.46 | 30.55 | 19.85 | 10.00 |
Z13 | 1.23 | 10.31 | 80.13 | 19.84 | 11.76 | 7.00 |
X9-1 | 1.81 | 32.80 | 64.38 | 35.06 | 25.65 | 5.00 |
A0 | 1.95 | 44.72 | 71.84 | 27.23 | 19.95 | 6.00 |
X3 | 1.93 | 39.88 | 68.94 | 30.22 | 21.76 | 6.00 |
A4 | 1.72 | 29.15 | 63.10 | 36.35 | 26.45 | 8.00 |
A1 | 1.66 | 27.34 | 67.74 | 32.07 | 21.94 | 8.00 |
T8 | 1.83 | 49.17 | 77.04 | 22.21 | 15.39 | 10.00 |
S12 | 1.60 | 32.37 | 70.28 | 29.43 | 19.88 | 8.00 |
S18 | 1.56 | 30.29 | 70.34 | 29.36 | 19.43 | 8.00 |
S22 | 1.52 | 17.90 | 60.42 | 39.40 | 26.93 | 12.00 |
A5 | 1.63 | 31.79 | 69.70 | 29.82 | 20.18 | 10.00 |
S16 | 1.53 | 26.00 | 68.51 | 31.45 | 21.17 | 10.00 |
S10 | 1.57 | 32.29 | 72.42 | 27.40 | 17.57 | 5.00 |
S11 | 1.56 | 28.82 | 69.01 | 30.48 | 20.91 | 8.00 |
S17 | 1.47 | 27.46 | 73.26 | 26.65 | 17.11 | 10.00 |
S19 | 1.54 | 31.74 | 72.75 | 27.24 | 17.19 | 10.00 |
S15 | 1.85 | 27.15 | 67.59 | 32.31 | 21.18 | 5.00 |
S20 | 1.86 | 30.73 | 71.99 | 27.71 | 17.57 | 12.00 |
T4 | 2.65 | 28.68 | 64.27 | 35.72 | 25.17 | 5.00 |
T3 | 2.03 | 31.66 | 55.15 | 44.05 | 33.96 | 5.00 |
T13 | 1.88 | 27.47 | 53.50 | 45.71 | 35.06 | 6.00 |
T2 | 1.96 | 31.86 | 57.54 | 41.61 | 30.93 | 5.00 |
T21 | 1.83 | 0.00 | 35.99 | 64.02 | 52.64 | 12.00 |
A9 | 1.83 | 25.84 | 62.43 | 36.99 | 26.13 | 8.00 |
A7 | 1.97 | 20.73 | 59.133 | 40.87 | 28.77 | 4.00 |
H11 | 1.93 | 19.12 | 56.62 | 42.92 | 29.85 | 12.00 |
H6-2 | 1.96 | 12.76 | 54.82 | 45.16 | 32.61 | 10.00 |
Subcategories | Main Lithological Characteristics |
---|---|
I1 | Mainly a medium to fine sandstone, very well sorted, with an interparticle space filling rate of 47–67%; the filling materials are siliceous and calcareous cement and clay matrix; most particle contacts are point contacts, with a few line contacts. |
I2 | Mainly a fine sandstone, well sorted, with an interparticle space filling rate of 50–88%; the filling materials are siliceous and calcareous cement and clay matrix; most particle contacts are point contacts, with a few line contacts. |
II1 | Heterogranular sandstone composed of medium and fine sandstone, moderately sorted, with an interparticle space filling rate of 88–98%; the filling materials are siliceous cement, a little calcareous cement and clay matrix; most particle contacts are line contacts, with a few point contacts. |
II2 | Heterogranular sandstone composed of fine silt sandstone, poorly sorted, with an interparticle space filling rate of 86–100%; the filling materials are siliceous cement, a little calcareous cement and clay matrix; all particle contacts are line contacts and convex–concave contacts. |
Subcategories | Main Type of Pore and Its Interconnection |
---|---|
I1 | The primary intergranular pores are most common, followed by the intragranular dissolution pores of feldspar; very good connectivity. |
I2 | The primary intergranular pores are most common, followed by the intragranular dissolution pores of feldspar, with a few residual intergranular pores; good connectivity. |
II1 | Large reduction in primary intergranular pores and a large distribution deviation; residual intergranular pores, intergranular dissolution pores and intragranular dissolution pores are common; bad connectivity. |
II2 | Mainly micropores, with a few primary intergranular pores and intergranular dissolution pores but many intragranular pores; very bad connectivity. |
Subcategories | Characteristics |
---|---|
I1 | Lower left distribution, skewed to coarse pore throats; very centralized pore throat distribution; few fine pore throats with diameters smaller than 1.6 µm, peak of coarse pore throats with diameters of 4 to 6 µm has a higher peak; nearly all of the pores throats contribute to permeability. |
I2 | Slightly lower left distribution, slightly skewed to coarse pore throats; centralized pore throat distribution, with few fine pore throats with diameters smaller than 1.0 µm; peak of coarse pore throats with diameters of 1 to 4 µm has a higher peak; most pores and pore throats contribute to permeability. |
II1 | Slightly upper right distribution, slightly skewed to fine pore throats; discrete pore throat distribution, with few fine pore throats with diameters smaller than 0.063 µm; peak of coarse pore throats with diameters of 0.63 µm has a low peak; about half of these pore throats contribute to permeability, but there is a considerable variability. |
II2 | Upper right distribution, skewed to fine pore throats; very discrete pore throat distribution, with few coarse pore throats with diameters larger than 0.40 µm; peak of coarse pore throats with diameters of 0.1 µm with a lower peak; very few pores throats contribute to permeability. |
References
- Ranjith, P.; Zhao, J.; Ju, M.G.; De Silva, R.; Rathnaweera, T.; Bandara, A. Opportunities and Challenges in Deep Mining: A Brief Review. Engineering 2017, 3, 546–551. [Google Scholar] [CrossRef]
- Muller, R.A.; Finsterle, S.; Grimsich, J.; Baltzer, R.; Muller, E.A.; Rector, J.W.; Payer, J.; Apps, J. Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes. Energies 2019, 12, 2052. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Duan, H.Y.; Li, X.B.; Li, Z.H.; Zhou, Z.L.; Li, T.B. Effects of seepage-induced erosion on nonlinear hydraulic properties of broken red sandstones. Tunn. Undergr. Space Technol. 2019, 91, 102993. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, X.W.; Xu, Y.S. Groundwater environment and related potential engineering disasters of deep underground space in Shanghai. Bull. Eng. Geol. Environ. 2022, 81, 203. [Google Scholar] [CrossRef]
- Wang, H.L.; Xu, W.Y.; Jia, C.J.; Cai, M.; Meng, Q.X. Experimental Research on Permeability Evolution with Microcrack Development in Sandstone under Different Fluid Pressures. J. Geotech. Geoenviron. Eng. 2016, 142, 04016014. [Google Scholar] [CrossRef]
- Wei, Y.C.; Jia, Z.K.; Cao, D.Y.; Yu, C. Development Trend of the Coal Bed Exploration Type Division. Adv. Comput. Environ. Sci. 2012, 142, 9–15. [Google Scholar]
- Peng, T.; Zhang, H.C.; Shen, S.H.; Ren, Z.Q. Comprehensive Evaluation and Analysis of Water-Inrush Source in Wolonghu Coal Mine. Adv. Mat. Res. 2014, 1025–1026, 926–929. [Google Scholar] [CrossRef]
- Yin, H.Y.; Shi, Y.L.; Niu, H.G.; Xie, D.L.; Wei, J.C.; Lefticariu, L.; Xu, S.X. A GIS-based model of potential groundwater yield zonation for a sandstone aquifer in the Juye Coalfield, Shangdong, China. J. Hydrol. 2018, 557, 434–447. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wu, J.W.; Wang, G.T.; Shen, S.H.; Xu, G.L. Combination of GIS and AHP methods to predict water abundance of sandstone aquifer in coal seam roof. J. Eng. Sci. Technol. Rev. 2018, 11, 48–53. [Google Scholar]
- Wang, S.J.; Feng, J.; Hou, E.K.; Huang, K.J.; Xu, W.F.; Duan, H.J. Microscopic pore structure types of sandstone and its effects on aquifer water abundance: Taking in Ningtiaota coal mine as an example. J. China Coal Soc. 2020, 45, 3236–3244. [Google Scholar]
- China National Standard. Code for Acceptance of Shaft Sinking and Drifting of Coal Mine of China, GB 50213-2010; China Planning Press: Beijing, China, 2010. [Google Scholar]
- Qiao, W.G.; Meng, Q.B.; Lin, D.G. Grouting and water sealing plan and its application to main shaft of Tangkou coal mine. Coal Sci. Technol. 2010, 38, 19–21. [Google Scholar]
- Qian, Z.W.; Jiang, Z.Q.; Guan, Y.Z. Study on the Processes of Water and Grout Seepage in Porous Media Using Resistivity Method. Geotech. Test. J. 2019, 42, 1359–1369. [Google Scholar] [CrossRef]
- Kenyon, W.E.; Howard, J.J.; Sezginer, A. Pore Size Distribution and NMR in Microporous Cherty Sandstones. Presented at the SPWLA 30th Annual Logging Symposium, Denver, CO, USA, 11–14 June 1989. [Google Scholar]
- Schwarz, L.G.; Krizek, R.J. Evolving Morphology of Early Age Microfine Cement Grout. In Advances in Grouting and Ground Modification; ASCE: Reston, VA, USA, 2000; Volume 104. [Google Scholar]
- Fleury, M.; Santerre, Y.; Vincent, B. Carbonate Rock Typing from NMR Relaxation Measurements. Presented at the 48th Annual Logging Symposium, Austin, TX, USA, 3–6 June 2007. [Google Scholar]
- Valori, A.; Ali, F.; AlZoukani, A.; Taherian, R. NMR Measurements for Pore Size Mapping at Fine Scale. In Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 19–22 January 2014. [Google Scholar]
- Fiorelli, G.L.; Winter, A.; Koroishi, E.T. Characterization of Coquinas and Dolomites Integrating Electrical Resistivity, Nuclear Magnetic Resonance (NMR) and Porosimetry by Mercury Intrusion (MICP). In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab Emirates, 14–16 September 2015. [Google Scholar]
- Standardization Administration of China. Core Analysis Method: GB/T29172-2012; Petroleum Industry Press: Beijing, China, 2012. [Google Scholar]
- China Petroleum and Natural Gas Industries Standard. Measurement Method for Rock Pore Volume Compressibility, SY/T 5815-2016; Petroleum Industry Press: Beijing, China, 2010. [Google Scholar]
- Ma, Y.; Pan, Z.J.; Zhong, N.N.; Connell, L.D.; Down, D.I.; Lin, W.L.; Zhang, Y. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China. Fuel 2016, 180, 106–115. [Google Scholar] [CrossRef]
- Gehne, S.; Benson, P.M. Permeability and permeability anisotropy in Crab Orchard sandstone: Experimental insights into spatio-temporal effects. Tectonophysics 2017, 712, 589–599. [Google Scholar] [CrossRef]
- Liu, C.; Yin, G.Z.; Li, M.H.; Deng, B.Z.; Song, Z.L.; Liu, Y.B.; Yin, S.Y. Shale permeability model considering bedding effect under true triaxial stress conditions. J. Nat. Gas Sci. Eng. 2019, 68, 102908. [Google Scholar] [CrossRef]
- Everett, D.H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 1972, 31, 577–638. [Google Scholar] [CrossRef]
- Hodot, B.B. Coal and Gas Outburst (Chinese Translation); China Industry Press: Beijing, China, 1996; pp. 27–30. [Google Scholar]
- Xiong, J.; Liu, X.; Liang, L. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Yan, Q.; Li, Y.L.; Zhang, Y.F. Grading evaluation of pore throats in a tight sandstone reservoir: A case study of the Gao 3 section reservoir in the Qijia area of the Songliao Basin. Arab. J. Geosci. 2019, 12, 661. [Google Scholar] [CrossRef]
- Yin, D.Y.; Wang, D.Q.; Zhou, Y.Z.; Zhang, C.L. Pore Structure Characteristics of Ultra-Low Permeability Reservoirs. Nat. Resour. Res. 2020, 30, 451–462. [Google Scholar] [CrossRef]
- Lu, S.F.; Li, J.Q.; Xiao, D.S.; Xue, H.T.; Zhang, P.F.; Li, J.J.; Chen, F.W.; Huang, W.B.; Wang, M.; Li, W.H.; et al. Research Progress of Microscopic Pore—Throat Classification and Grading Evaluation of Shale Reservoirs: A Minireview. Energy Fuels 2022, 36, 4677–4690. [Google Scholar] [CrossRef]
- Xi, K.L.; Cao, Y.C.; Beyene, G.H.; Zhu, R.K.; Jens, J.; Knut, B.; Zhang, X.X.; Helge, H. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Mar. Pet. Geol. 2016, 76, 1–15. [Google Scholar] [CrossRef]
- Nelson, P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Wang, Z.Y.; Chen, J.; Pang, X.J.; Wang, S.C.; Zhou, Z.L.; He, Z.B.; Qin, Z.Q.; Fan, X.Q. A review on pore structure characterization in tight sandstones. Earth Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Islam, M.A. Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. J. Asian Earth Sci. 2009, 35, 89–100. [Google Scholar] [CrossRef]
- Ajdukiewicz, J.M.; Lander, R.H. Sandstone reservoir quality prediction: The state of the art. AAPG Bull. 2010, 94, 1083–1091. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Chai, Y.; Ran, Y.; Zhang, X.T. Depositional and Diagenetic Controls on Pore Structure of Tight Gas Sandstone Reservoirs: Evidence from Lower Cretaceous Bashijiqike Formation in Kelasu Thrust Belts, Kuqa Depression in Tarim Basin of West China. Resour. Geol. 2014, 65, 55–75. [Google Scholar] [CrossRef]
- Graton, L.C.; Fraser, H.J. Systematic packing of spheres—With particular relation to porosity and permeability. J. Geol. 1935, 43, 785–909. [Google Scholar] [CrossRef]
- Beard, D.; Weyl, P. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bull. 1973, 57, 349–369. [Google Scholar]
- Scherer, M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bull. 1987, 71, 485–491. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, L.; Zhang, Z. Depositional facies, diagenesis and their impact on the reservoir quality of Silurian sandstones from Tazhong area in central Tarim basin, Western China. J. Asian Earth Sci. 2008, 33, 42–60. [Google Scholar] [CrossRef]
- Xi, K.L.; Cao, Y.C.; Wang, Y.Z.; Beyene, G.H.; Zhang, X.X.; Zhang, J.H.; Jin, J.H. Diagenesis and porosity-permeability evolution of low permeability reservoirs: A case study of Jurassic Sangonghe Formation in Block 1, central Junggar Basin, NW China. Pet. Explor. Dev. 2015, 42, 475–485. [Google Scholar] [CrossRef]
- Lundegard, P.D. Sandstones porosity loss—A big picture view of the importance of compaction. J. Sediment. Res. 1992, 62, 250–260. [Google Scholar] [CrossRef]
- Ozkan, A.; Cumella, S.P.; Milliken, K.L.; Laubach, S.E. Prediction of lithofacies and reservoir quality using well logs, Late Cretaceous Williams Fork Formation, Mamm Creek field, Piceance Basin, Colorado. AAPG Bull. 2011, 95, 1699–1724. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Wang, S.N.; Zheng, Y.Q.; Wu, H.; Zhang, Y.C. Research status and advances in the diagenetic facies of clastic reservoirs. Adv. Earth. Sci. 2013, 28, 39–50. [Google Scholar]
- Zhu, P.; Dong, Y.; Chen, M.; Li, Z.; Han, B.; Wang, J.; Cui, Y. Quantitative evaluation of pore structure from mineralogical and diagenetic information extracted from well logs in tight sandstone reservoirs. J. Nat. Gas Sci. Eng. 2020, 80, 103376. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, L.R.; Yang, X.J.; Li, C.T. Diagenetic evolution modes of the deep formation of Jiyang Sub-basin, Paleogene. Acta Sedimentol. Sin. 2012, 30, 46–63. [Google Scholar]
- Ramm, M. Reservoir quality and its relationship to facies and provenance in Middle to Upper Jurassic sequences, northeastern North Sea. Clay Miner. 2000, 35, 77–94. [Google Scholar] [CrossRef]
- Schmid, S.; Worden, R.H.; Fisher, Q. Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland. Mar. Pet. Geol. 2004, 21, 299–315. [Google Scholar] [CrossRef]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Cook, J.E.; Goodwin, L.B.; Boutt, D.F. Systematic diagenetic changes in the grain-scale morphology and permeability of a quartz-cemented quartz arenite. AAPG Bull. 2011, 95, 1067–1088. [Google Scholar] [CrossRef]
- Axelsson, M.; Gustafson, G.; Fransson, A. Stop mechanism for cementitious grouts at different water-to-cement ratios. Tunn. Undergr. Space Technol. 2008, 71, 485–491. [Google Scholar] [CrossRef]
- Mollamahmutoglu, M.; Yilmaz, Y. Engineering Properties of Medium-to-Fine Sands Injected with Microfine Cement Grout. Mar. Georesour. Geotechnol. 2011, 29, 95–109. [Google Scholar] [CrossRef]
Sandstone | Primary Pores | Secondary Pores | ||
---|---|---|---|---|
Primary | Residual | Intergranular Dissolution | Dissolution in Clay Aggregates | |
Jurassic sandstone | 2.5–9.0 | 0.1 | 0.1–0.5 | 0.5 |
Shihezi sandstone | 0.2 | 0.3–2.0 | 0.2–1.3 | 0.1–1.5 |
Shanxi sandstone | 0.1–3.5 | 0.2–1.5 | 0.1–0.8 | 0.1–0.3 |
Sandstone | Feldspar | Rock Debris | Cleavage | |||
---|---|---|---|---|---|---|
A% | B% | A% | B% | A% | B% | |
Jurassic sandstone | 88.2 | 0.5–2.5 | 5.9 | 0.2 | 0.0 | 0.0 |
Shihezi sandstone | 100.0 | 0.5–2.5 | 20.0 | 0.2–0.5 | 90.0 | 0.1–0.5 |
Shanxi sandstone | 100.0 | 0.2–1.5 | 31.2 | 0.1–0.2 | 31.2 | 0.1–0.2 |
Sizes of Pores and Pore Throats | Jurassic Sandstone | Shihezi Sandstone | Shanxi Sandstone |
---|---|---|---|
Max. visual diameter of pores D (µm) | 150 | 150 | 250 |
Main distribution range of pores size D (µm) | 10–50 | 1–50 | 1–50 |
Max. radius of throats Rmax (µm) | 10.21 | 1.17 | 3.55 |
Aver. radius of throats Rave (µm) | 0.74–4.93 | 0.13–0.55 | 0.04–0.62 |
Sizes of Pore (µm) | Sizes of Throat (µm) | ||
---|---|---|---|
Grades of Pore Size | Diameter | Grades of Throat Size | Main Range of Radius of Pore Throat |
Large | >50 | Coarse | >5 |
Medium | 20–50 | Medium | 2–5 |
Small | 5–20 | Fine | 0.5–2 |
Micro | <5 | Micro | <0.5 |
Composition and Texture | Jurassic Sandstone | Shihezi Sandstone | Shanxi Sandstone |
---|---|---|---|
Grain size | Fine sandstone | Heterogranular sandstone | Heterogranular sandstone |
Sorting coefficient (So) | Well | Moderately to well sorted | Moderately to well sorted |
Clay matrix content (%) | Mostly 2–5, Seldom 5–12 | 5–12 | 5–12 |
Cement types | Porous | Porous, Contact | Porous, Contact |
Grains contact types | Point, Line | Line | Line, Mosaic |
Textural maturity | Secondary immaturity | Immaturity | Immaturity |
Classification Indicators | Category I | Category II | ||
---|---|---|---|---|
Range | Average | Range | Average | |
K (mD) | >0.7 | 23.83 | ≤0.7 | 0.09 |
Փ (%) | >15 | 17.95 | ≤15 | 7.50 |
Rave (µm) | >0.7 | 2.37 | ≤0.7 | 0.20 |
C (%) | >2.5 | 4.56 | ≤2.5 | 1.46 |
So | <1.4 | 1.07 | ≥1.4 | 1.73 |
Cluster Variables | Subcategory I1 | Subcategory I2 | Significance Level of Variables | ||
---|---|---|---|---|---|
Cluster Center | Cluster Range | Cluster Center | Cluster Range | ||
K (mD) | 72.12 | >40 | 3.71 | ≤40 | 100% |
Փ (%) | 20.66 | >20 | 16.82 | ≤20 | 100% |
Rave (µm) | 4.24 | >3.7 | 1.59 | ≤3.7 | 100% |
C (%) | 5.77 | >5 | 4.05 | ≤5 | 99.2% |
So | 0.78 | <1.00 | 1.20 | ≥1.00 | 100% |
Cluster Variables | Subcategory II1 | Subcategory II2 | Significance Level of Variables | ||
---|---|---|---|---|---|
Cluster Center | Cluster Range | Cluster Center | Cluster Range | ||
K (mD) | 0.15 | ≥0.025 | 0.010 | <0.025 | 97.8% |
Փ (%) | 9.28 | ≥7 | 5.07 | <7 | 100% |
Rave (µm) | 0.29 | ≥0.138 | 0.09 | <0.138 | 99.9% |
C (%) | 1.79 | ≥1.5 | 0.99 | <1.5 | 100% |
So | 1.55 | ≤1.60 | 1.98 | >1.60 | 100% |
The Representativeness of Indicator | Indicators | Category I | Category II | ||
---|---|---|---|---|---|
I1 | I2 | II1 | II2 | ||
Principal indicator | K (mD) | >40 | 0.7–40 | 0.025–0.7 | <0.025 |
Comprehensiveness | Փ (%) | >20 | 15–20 | 7–15 | <7 |
Similar test | Rave (µm) | >3.7 | 0.7–3.7 | 0.138–0.7 | <0.138 |
Diagenesis | C (%) | >5 | 2.5–5 | 1.5–2.5 | <1.5 |
Sedimentation | So | <1.00 | 1.00–1.40 | 1.40–1.60 | >1.60 |
Parameters and Recommendations | Category I | Category II | ||
---|---|---|---|---|
Subcategory I1 | Subcategory I2 | Subcategory II1 | Subcategory II2 | |
Pd (MPa) | 0.089–0.112 | 0.089–0.312 | 0.207–0.770 | 0.780–2.550 |
Rmax (µm) | 6.273–8.258 | 2.356–8.258 | 1.097–3.551 | 0.580–2.356 |
P50 (MPa) | 0.110–0.174 | 0.177–0.687 | 1.646–5.764 | 5.843–63.111 |
R50 (µm) | 4.67–6.68 | 1.070–4.155 | 0.121–0.446 | 0.012–0.111 |
Rave (µm) | 3.79–4.93 | 0.738–3.623 | 0.139–0.622 | 0.048–0.137 |
PIP (%) | >7 | 2–7 | 0.5–2 | <0.5 |
Grouting recommendations | Suspension (microfine cement) | Chemical grouting or local suspension | Chemical grouting (pore expansion needed locally) | Unable to grout |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qiao, W.; Yang, X.; Wu, Y.; Li, X.; Zhang, S. A Comprehensive Classification Method for the Pore Permeability of Deep-Mine Sandstone Used to Guide Grouting. Appl. Sci. 2023, 13, 1847. https://doi.org/10.3390/app13031847
Li Y, Qiao W, Yang X, Wu Y, Li X, Zhang S. A Comprehensive Classification Method for the Pore Permeability of Deep-Mine Sandstone Used to Guide Grouting. Applied Sciences. 2023; 13(3):1847. https://doi.org/10.3390/app13031847
Chicago/Turabian StyleLi, Yanzhi, Weiguo Qiao, Xuxu Yang, Yue Wu, Xungang Li, and Shuai Zhang. 2023. "A Comprehensive Classification Method for the Pore Permeability of Deep-Mine Sandstone Used to Guide Grouting" Applied Sciences 13, no. 3: 1847. https://doi.org/10.3390/app13031847
APA StyleLi, Y., Qiao, W., Yang, X., Wu, Y., Li, X., & Zhang, S. (2023). A Comprehensive Classification Method for the Pore Permeability of Deep-Mine Sandstone Used to Guide Grouting. Applied Sciences, 13(3), 1847. https://doi.org/10.3390/app13031847