Thermodynamic Modeling of Formation Enthalpies of Amorphous and Crystalline Phases in Zr, Nd, and Ce-Substituted Fe-Si Systems
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Song, X.; Jia, W.; Xiao, A.; Yuan, T.; Ma, T. Identifications of SmCo5 and Smn+1Co5n−1-type phases in 2:17-type Sm-Co-Fe-Cu-Zr permanent magnets. Scr. Mater. 2020, 182, 1–5. [Google Scholar] [CrossRef]
- Tang, X.; Lia, J.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K. Improved coercivity and squareness in bulk hot-deformed Nd–Fe–B magnets by two-step eutectic grain boundary diffusion process. Acta Mater. 2021, 203, 116479. [Google Scholar] [CrossRef]
- Abuin, M.; Turgut, Z.; Aronhime, N.; Keylin, V.; Leary, A.; Degeorge, V.; Horwath, J.; Semiatin, S.L.; Laughlin, D.E.; McHenry, M.E. Determination of pressure effects on the α→γ phase transition and size of Fe in Nd-Fe-B spring exchange magnets. Metall. Mater. Trans. A 2015, 46, 5002–5010. [Google Scholar] [CrossRef]
- Li, X.; Yao, Q.; Lu, Z.; Ma, L.; Du, Y.; Wang, J.; Zhou, H.; Rao, G. Atomic Mobilities in Liquid and fcc Nd-Fe-B systems and their application in the design of quenching Nd2Fe14B alloys. Metall. Mater. Trans. A 2021, 52, 2948–2958. [Google Scholar] [CrossRef]
- Haider, S.K.; Ngo, H.M.; Kim, D.; Kang, Y.S. Enhancement of anisotropy energy of SmCo5 by ceasing the coupling at 2c sites in the crystal lattice with Cu substitution. Sci. Rep. 2021, 11, 10063. [Google Scholar] [CrossRef]
- Hirayama, Y.; Miyake, T.; Hono, K. Rare-Earth lean hard magnet compound NdFe12N. JOM 2015, 67, 1344–1349. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. The partitioning of Dy and Tb in NdFeB magnets: A first-principles study. J. Appl. Phys. 2012, 111, 07A701. [Google Scholar] [CrossRef]
- Zhou, T.; Qu, P.; Pan, W.; Liu, R.; Li, M.; Ur Rehman, S.; Zhong, Z.; Xie, G. Sintered NdFeB magnets with Tb-Dy double-layer core/shell structure were fabricated by double alloy method and grain boundary diffusion. J. Alloys Compd. 2021, 856, 158191. [Google Scholar] [CrossRef]
- Solzi, M.; Pareti, L.; Moze, O.; David, W.I.F. Magnetic anisotropy and crystal structure of intermetallic compounds of the ThMn12 structure. J. Appl. Phys. 1988, 64, 5084–5087. [Google Scholar] [CrossRef]
- Coey, J.M.D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Harashima, Y.; Fukazawa, T.; Kino, H.; Miyake, T. Effect of R-site substitution and the pressure on stability of RFe12: A first-principles study. J. Appl. Phys. 2018, 124, 163902. [Google Scholar] [CrossRef]
- Fukazawa, T.; Harashima, Y.; Miyake, T. First-principles study on the stability of (R, Zr)(Fe, Co, Ti)12 against 2-17 and unary phases (R=Y, Nd, Sm). Phys. Rev. Mater. 2022, 6, 054404. [Google Scholar] [CrossRef]
- Buschow, K.H.J. Structure and properties of some novel ternary Fe-rich rare-earth intermetallics (invited). J. Appl. Phys. 1988, 64, 3130–3135. [Google Scholar] [CrossRef]
- De Mooij, D.B.; Buschow, K.H.J. Some novel ternary ThMn12-type compounds. J. Less-Common. Met. 1988, 136, 207–215. [Google Scholar] [CrossRef]
- Solzi, M.; Xue, R.H.; Pareti, L. Magnetic anisotropy and first-order magnetization processes in Sm(Fe1−xCox)10M2 (M = Ti, Si) compounds. J. Magn. Magn. Mater. 1990, 88, 44–50. [Google Scholar] [CrossRef]
- Yücel, A.; Elmali, A.; Çakır, R.; Elerman, Y. Competing magnetic interactions in Dy1−xSmxFe10Si2 compounds. Solid State Commun. 2005, 135, 745–748. [Google Scholar] [CrossRef]
- Zhou, C.; Pinkerton, F.E.; Herbst, J.F. High Curie temperature of Co-Fe-Si compound with ThMn12 structure. Scr. Mater. 2015, 95, 66–69. [Google Scholar] [CrossRef]
- Gabay, A.M.; Hadjipanayis, G.C. Mechanochemical synthesis of magnetically hard anisotropic RFe10Si2 powders with R representing combinations of Sm, Ce and Zr. J. Magn. Magn. Mater. 2017, 422, 43–48. [Google Scholar] [CrossRef]
- Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G. Structure and magnetic properties of Sm1−xZrxFe10Si2 (x = 0.9–0.6) alloys. IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 903, 12033. [Google Scholar] [CrossRef]
- Gabay, A.; Hadjipanayis, G. ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1-xCexFe10Si2 alloys. J. Alloys Compd. 2016, 657, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Barandiaran, J.M.; Martin-Cid, A.; Schonhobel, A.M.; Garitaonandia, J.S.; Gjoka, M.; Niarchos, D.; Makridis, S.; Pasko, A.; Aubert, A.; Mazaleyrat, F.; et al. Nitrogenation and sintering of (Nd-Zr)Fe10Si2 tetragonal compounds for permanent magnets applications. J. Alloys Compd. 2019, 784, 996–1002. [Google Scholar] [CrossRef]
- Bhatt, J.; Jiang, W.; Junhai, X.; Qing, W.; Dong, C.; Murty, B.S. Optimization of bulk metallic glass forming compositions in Zr–Cu–Al system by thermodynamic modeling. Intermetallics 2007, 15, 716–721. [Google Scholar] [CrossRef]
- De Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals; De Boer, F.R., Pettifor, D.G., Eds.; North Holland: Amsterdam, the Netherlands, 1988; Volume 1. [Google Scholar]
- Bakker, H. Enthalpies in Alloys: Miedema’s Semi-Empirical Model; Materials Science Foundations 1; Trans Tech Publications Ltd.: Zurich, Switzerland, 1998. [Google Scholar]
- Śniadecki, Z.; Narojczyk, J.W.; Idzikowski, B. Calculation of glass forming ranges in the ternary Y-Cu-Al system and its sub-binaries based on geometric and Miedema’s models. Intermetallics 2012, 26, 72–77. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Estimation of the migration enthalpy and entropy for cation vacancy motion in alkali halides with the NaCl-type structure. Phys. Rev. B 1977, 15, 2348–2351. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Calculation of the formation entropy of vacancies due to anharmonic effects. Phys. Rev. B 1977, 15, 4111–4114. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Negative activation volumes of defects in solids. Phys. Rev. B 1980, 21, 4898–4899. [Google Scholar] [CrossRef]
- Varotsos, C.; Lazaridou, M.; Alexopoulos, K.; Varotsos, P. Comments on “The Temperature and Pressure Dependence of Disaccommodation in a Manganese Zinc Ferrite Single Crystal”. Jpn. J. Appl. Phys. 1985, 24, 781. [Google Scholar] [CrossRef]
- Takeuchi, a.; Inoue, A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Trans. Japan Instig. Met. 2000, 41, 1372–1378. [Google Scholar] [CrossRef]
- Toop, G.W. Predicting ternary activities using binary data. Trans. Metall. Soc. AIME 1965, 233, 850–855. [Google Scholar]
- Ouyang, Y.; Zhong, X.; Du, Y.; Jin, Z.; He, Y.; Yuan, Z. Formation enthalpies of Fe–Al–RE ternary alloys calculated with a geometric model and Miedema’s theory. J. Alloys Compd. 2006, 416, 148–154. [Google Scholar] [CrossRef]
- Śniadecki, Z. Glass-forming ability of Fe-Ni alloys substituted by group V and VI transition metals (V, Nb, Cr, Mo) studied by thermodynamic modeling. Metall. Mater. Trans. A 2020, 51, 4777–4785. [Google Scholar] [CrossRef]
- Śniadecki, Z. The influence of 3d and 4d transition metals on the glass forming ability of ternary FeCo-based alloys. Metall. Mater. Trans. A 2021, 52, 1861–1868. [Google Scholar] [CrossRef]
- Kołodziej, M.; Śniadecki, Z. The formation of structural disorder in FeNi-based alloys—Theoretical approach. Mater. Lett. 2022, 326, 132917. [Google Scholar] [CrossRef]
- Mansoori, G.A.; Carnahan, N.F.; Starling, K.E.; Leland, T.W., Jr. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 1971, 54, 1523–1525. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G. (Eds.) Smithells Metals Reference Book, 7th ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 1992. [Google Scholar]
- Gębara, P.; Śniadecki, Z. Structure, magnetocaloric properties and thermodynamic modeling of enthalpies of formation of (Mn,X)-Co-Ge (X = Zr, Pd) alloys. J. Alloys Compd. 2019, 796, 153–159. [Google Scholar] [CrossRef]
- Zhang, W.; Takeuchi, A.; Inoue, A. Amorphous Nd-Fe-Si thick ribbons and their hard magnetic properties. Mater. Trans. JIM 1997, 38, 1027–1030. [Google Scholar] [CrossRef]
- Sakurada, S.; Tsutai, A.; Sahashi, M. A study on the formation of ThMn12 and NaZn13 structures in RFe10Si2. J. Alloys Compd. 1992, 187, 67–71. [Google Scholar] [CrossRef]
- Stefański, P.; Wrzeciono, A. Structural and magnetic properties of RFe10Si2 compounds. J. Magn. Magn. Mater. 1989, 82, 125–128. [Google Scholar] [CrossRef]
- Ohashi, K.; Tawara, Y.; Osugi, R.; Shimao, M. Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure. J. Appl. Phys. 1988, 64, 5714–5716. [Google Scholar] [CrossRef]
- Gjoka, M.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G. Effect of Zr substitution on the structural and magnetic properties of the series Nd1−xZrxFe10Si2 with the ThMn12 type structure. J. Alloys Compd. 2016, 687, 240–245. [Google Scholar] [CrossRef]
- Salazar, D.; Martín-Cid, A.; Garitaonandia, J.S.; Hansen, T.C.; Barandiaran, J.M.; Hadjipanayis, G.C. Role of Ce substitution in the magneto-crystalline anisotropy of tetragonal ZrFe10Si2. J. Alloys Compd. 2018, 766, 291–296. [Google Scholar] [CrossRef]
- Dirba, I.; Harashima, Y.; Sepehri-Amin, H.; Ohkubo, T.; Miyake, T.; Hirosawa, S.; Hono, K. Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys. J. Alloys Compd. 2020, 813, 152224. [Google Scholar] [CrossRef]
- Landa, A.; Söderlind, P.; Moore, E.E.; Perron, A. Thermodynamics and Magnetism of SmFe12 Compound Doped with Co and Ni: An Ab Initio Study. Appl. Sci. 2022, 12, 4860. [Google Scholar] [CrossRef]
- Lisenko, L.A.; Ban, Z.; Gladisevskii, E.I. Investigation of the system Zr-Fe-Si. Croat. Chem. Acta 1971, 43, 113–118. [Google Scholar]
- Cui, J.; Shen, Y.; Liu, X. Experimental investigation and thermodynamic modeling of the Fe−Si−Zr system. Calphad 2019, 65, 385–401. [Google Scholar] [CrossRef]
Chemical Element | φ (V) | nws (Arb. Units) | V (10−6 m3/mol) | K (1010 Pa) | G (1010 Pa) | d (Å) |
---|---|---|---|---|---|---|
Ce | 3.18 | 1.69 | 21.62 | 2.395 | 1.197 | 3.64 |
Fe | 4.93 | 5.55 | 7.09 | 16.83 | 8.152 | 2.56 |
Nd | 3.19 | 1.73 | 20.58 | 3.268 | 1.452 | 3.64 |
Si | 4.70 | 3.38 | 8.60 | 9.888 | 3.973 | 2.34 |
Zr | 3.45 | 2.80 | 14.00 | 8.335 | 3.414 | 3.20 |
ΔHam (kJ/mol) | ΔHss (kJ/mol) | ΔHam-ss (kJ/mol) | Sσ/kB | ΔPHS (kJ/mol) | |
---|---|---|---|---|---|
ZrFe12 | −2.0 | −2.8 | 0.8 | 0.11 | −0.9 |
CeFe12 | 7.2 | 5.9 | 1.3 | 0.31 | 0.3 |
NdFe12 | 6.5 | 5.9 | 0.6 | 0.31 | 0.1 |
ZrFe10Si2 | −17.5 | −18.2 | 0.7 | 0.14 | −3.5 |
CeFe10Si2 | −8.9 | −10.3 | 1.4 | 0.36 | −5.8 |
NdFe10Si2 | −9.3 | −10.0 | 0.7 | 0.36 | −6.0 |
Zr2Fe17 | −4.6 | −3.6 | −1.0 | 0.14 | −1.6 |
Ce2Fe17 | 7.4 | 7.8 | 0.4 | 0.40 | 0.6 |
Nd2Fe17 | 6.5 | 7.8 | −1.3 | 0.40 | 0.1 |
Zr2Fe15Si2 | −16.6 | −15.7 | −0.9 | 0.17 | −4.0 |
Ce2Fe15Si2 | −5.1 | −5.0 | −0.1 | 0.44 | −5.3 |
Nd2Fe15Si2 | −5.7 | −4.7 | −1.0 | 0.44 | −5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołodziej, M.; Śniadecki, Z. Thermodynamic Modeling of Formation Enthalpies of Amorphous and Crystalline Phases in Zr, Nd, and Ce-Substituted Fe-Si Systems. Appl. Sci. 2023, 13, 1966. https://doi.org/10.3390/app13031966
Kołodziej M, Śniadecki Z. Thermodynamic Modeling of Formation Enthalpies of Amorphous and Crystalline Phases in Zr, Nd, and Ce-Substituted Fe-Si Systems. Applied Sciences. 2023; 13(3):1966. https://doi.org/10.3390/app13031966
Chicago/Turabian StyleKołodziej, Mieszko, and Zbigniew Śniadecki. 2023. "Thermodynamic Modeling of Formation Enthalpies of Amorphous and Crystalline Phases in Zr, Nd, and Ce-Substituted Fe-Si Systems" Applied Sciences 13, no. 3: 1966. https://doi.org/10.3390/app13031966
APA StyleKołodziej, M., & Śniadecki, Z. (2023). Thermodynamic Modeling of Formation Enthalpies of Amorphous and Crystalline Phases in Zr, Nd, and Ce-Substituted Fe-Si Systems. Applied Sciences, 13(3), 1966. https://doi.org/10.3390/app13031966