Potentiality of Rod-Type Chitosan Adsorbent Derived from Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Rod-Type Biosorbent
2.2. Reagents
2.3. Batch Adsorption Studies
2.4. Analytical Methods
3. Results and Discussion
3.1. Characteristics of Chitosan-Immobilized Biosorbent
3.2. Optimization of Rod-Type Biosorbent Modification Conditions
3.2.1. Effect of Biosorbent Shape
3.2.2. Effect of Material Content in Biosorbent
3.2.3. Effect of Biosorbent Size
3.3. Adsorption Study
3.3.1. Kinetics
3.3.2. Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Lee, S.H. Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review. Environ. Eng. Res. 2019, 24, 363–375. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.S.; Park, J.M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Al-Qodah, Z. Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 2006, 196, 164–176. [Google Scholar] [CrossRef]
- Maderova, Z.; Baldikova, E.; Pospiskova, K.; Safarik, I.; Safarikova, M. Removal of dyes by adsorption on magnetically modified activated sludge. Int. J. Environ. Sci. Technol. 2016, 13, 1653–1664. [Google Scholar] [CrossRef]
- Ozdemir, S.; Turp, S.M.; Oz, N. Simultaneous dry-sorption of heavy metals by porous adsorbents during sludge composting. Environ. Eng. Res. 2020, 25, 258–265. [Google Scholar] [CrossRef]
- Seo, J.H.; Kim, N.; Park, M.; Lee, S.; Yeon, S.; Park, D. Evaluation of metal removal performance of rod-type biosorbent prepared from sewage-sludge. Environ. Eng. Res. 2020, 25, 700–706. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef]
- Lin, X.; Wang, L.; Jiang, S.; Cui, L.; Wu, G. Iron-doped chitosan microsphere for As(III) adsorption in aqueous solution: Kinetic, isotherm and thermodynamics studies. Korean J. Chem. Eng. 2019, 36, 1102–1114. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.-S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2018, 26, 266–291. [Google Scholar] [CrossRef]
- Gerente, C.; Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of chitosan for the removal of metals from wastewaters by adsorption—Mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Kim, N.; Park, M.; Park, D. A new efficient forest biowaste as biosorbent for removal of cationic heavy metals. Bioresour. Technol. 2015, 175, 629–632. [Google Scholar] [CrossRef]
- Deng, S.; Ting, Y.P. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: Sorption capacity and uptake mechanisms. Environ. Sci. Technol. 2005, 39, 8490–8496. [Google Scholar] [CrossRef]
- Keyvani, F.; Rahpeima, S.; Javanbakht, V. Synthesis of EDTA-modified magnetic activated carbon nanocomposite for removal of permanganate from aqueous solutions. Solid State Sci. 2018, 83, 31–42. [Google Scholar] [CrossRef]
- Amrullah, A.; Paksung, N.; Matsumura, Y. Cell structure destruction and its kinetics during hydrothermal treatment of sewage sludge. Korean J. Chem. Eng. 2019, 36, 433–438. [Google Scholar] [CrossRef]
- Altun, T.; Ecevit, H. Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads. Environ. Eng. Res. 2000, 25, 426–438. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, J.; Wen, L.; Yang, C.; Zhang, L. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere 2019, 224, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Ramrakhiani, L.; Majumder, R.; Khowala, S. Removal of hexavalent chromium by heat inactivated fungal biomass of Termitomyces clypeatus: Surface characterization and mechanism of biosorption. Chem. Eng. J. 2011, 171, 1060–1068. [Google Scholar] [CrossRef]
- Kim, N.; Park, M.; Yun, Y.-S.; Park, D. Removal of anionic arsenate by a bacterial biosorbent prepared from fermentation biowaste. Chemosphere 2019, 226, 67–74. [Google Scholar] [CrossRef]
- Lipatova, I.M.; Makarova, L.I.; Yusova, A.A. Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier. Chemosphere 2018, 212, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Graillot, A.; Bouyer, D.; Monge, S.; Robin, J.J.; Loison, P.; Faur, C. Sorption properties of a new thermosensitive copolymeric sorbent bearing phosphonic acid moieties in multi-component solution of cationic species. J. Hazard. Mater. 2013, 260, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Patel, S.; Mishra, B.K. Oxidation by permanganate: Synthetic and mechanistic aspects. Tetrahedron 2009, 65, 707–739. [Google Scholar] [CrossRef]
- Su, J.; Gao, C.; Huang, T.; Gao, Y.; Bai, X.; He, L. Characterization and mechanism of the Cd(II) removal by anaerobic denitrification bacterium Pseudomonas sp. H117. Chemosphere 2019, 222, 970–979. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, F.; Wang, B.; Song, Z.; Zhou, Z.; Ren, D. Magnetic biochar from alkali-activated rice straw for removal of rhodamine B from aqueous solution. Environ. Eng. Res. 2020, 25, 536–544. [Google Scholar] [CrossRef]
- Saeed, A.; Iqbal, M.; Akhtar, M.W. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater. 2005, 117, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.S.; Lopes, C.B.; Coelho, J.P.; Sánchez, M.E.; Garcia, A.I.; Duarte, A.C.; Otero, M.; Pereira, E. Removal of arsenic from aqueous solutions by sorption onto sewage sludge-based sorbent. Water Air Soil Pollut. 2012, 223, 2311–2321. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 113, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Kim, Y.S.; Park, S.M.; Baek, K. Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environ. Sci. Pollut. Res. 2014, 21, 10878–10889. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, D.; Kim, J.; Ji, M.K.; Han, Y.S.; Park, Y.T.; Yun, H.S.; Choi, J. As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads. J. Hazard. Mater. 2015, 292, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.M.; Zhang, R.; Liu, X.G.; Song, G.X.; Chen, X.F.; Wang, Y.; Kong, J.L. Highly efficient As(V)/Sb(V) removal by magnetic sludge composite: Synthesis, characterization, equilibrium, and mechanism studies. RSC Adv. 2016, 6, 42876–42884. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Zheng, Y.; Kang, J.; Qu, J.; Chen, J.P. Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res. 2011, 45, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Hammaini, A.; González, F.; Ballester, A.; Blázquez, M.L.; Muñoz, J.A. Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manag. 2007, 84, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.-L.; He, X.-W.; Wang, C.-R.; Li, J.-W.; Zhang, C.-H. Cadmium adsorption characteristic of alkali modified sewage sludge. Bioresour. Technol. 2012, 121, 25–30. [Google Scholar] [CrossRef] [PubMed]
Biosorbent Type | ||
---|---|---|
Raw Sludge | Sludge–Chitosan | |
TN (mg-N/L) | 30.46 | 3.60 |
TP (mg-P/L) | 11.63 | 1.28 |
TOC (mg-C/L) | 26.66 | 5.02 |
TC (mg-C/L) | 43.77 | 6.72 |
Sludge Content (%) | Chitosan Content (%) | Diameter (mm) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|---|---|
K1 (1/h) | qe (mg/g) | R2 (-) | K2 (g/mg·h) | qe (mg/g) | R2 (-) | h (mg/g·h) | |||
2.0 | 4.0 | 0.2–0.3 | 0.96 | 0.09 | 0.9889 | 0.13 | 14.64 | 0.9995 | 28.65 |
4.0 | 4.0 | 0.2–0.3 | 1.13 | 0.08 | 0.9855 | 0.14 | 14.84 | 0.9995 | 29.94 |
6.0 | 4.0 | 0.2–0.3 | 0.79 | 0.09 | 0.9636 | 0.11 | 16.08 | 0.9990 | 27.33 |
6.0 | 3.0 | 0.2–0.3 | 0.84 | 0.12 | 0.9395 | 0.19 | 13.69 | 0.9996 | 35.55 |
6.0 | 4.0 | 0.2–0.3 | 1.58 | 0.06 | 0.9422 | 0.10 | 16.66 | 0.9956 | 27.63 |
6.0 | 5.0 | 0.2–0.3 | 1.28 | 0.06 | 0.9628 | 0.07 | 16.16 | 0.9963 | 18.48 |
6.0 | 6.0 | 0.2–0.3 | 0.78 | 0.08 | 0.9475 | 0.06 | 16.69 | 0.9931 | 16.55 |
6.0 | 4.0 | 0.2–0.3 | 0.81 | 0.09 | 0.9759 | 0.09 | 15.78 | 0.9984 | 22.42 |
6.0 | 4.0 | 0.5–0.6 | 1.63 | 0.04 | 0.9192 | 0.06 | 16.82 | 0.9916 | 16.13 |
6.0 | 4.0 | 0.8–0.9 | 0.95 | 0.08 | 0.9969 | 0.08 | 15.47 | 0.9971 | 19.47 |
6.0 | 4.0 | 1.0–1.2 | 0.64 | 0.08 | 0.9911 | 0.06 | 15.70 | 0.9992 | 14.84 |
Kinetic | Metals | Pseudo-First-Order | Pseudo-Second-Order | |||||
K1 (1/h) | qe (mg/g) | R2 (-) | K2 (g/mg·h) | qe (mg/g) | R2 (-) | h (mg/g·h) | ||
As(V) | 0.85 | 8.64 | 0.9924 | 0.18 | 16.21 | 0.9996 | 47.68 | |
Cd(II) | 0.51 | 2.91 | 0.8452 | 0.80 | 14.96 | 0.9999 | 178.06 | |
Cr(VI) | 1.33 | 38.27 | 0.9840 | 0.06 | 19.94 | 0.9974 | 23.06 | |
Mn(VII) | 1.02 | 34.94 | 0.9642 | 0.01 | 34.75 | 0.9645 | 14.66 | |
Isotherm | Metals | Langmuir | Freundlich | |||||
Qmax (mg/g) | b (L/mg) | R2 (-) | KF (mg/g) | n | R2 (-) | |||
As(V) | 42.25 | 0.0241 | 0.9711 | 6.3703 | 3.18 | 0.8643 | ||
Cd(II) | 28.69 | 0.0398 | 0.8030 | 4.5064 | 2.94 | 0.9048 | ||
Cr(VI) | 70.79 | 0.0201 | 0.9648 | 7.0609 | 2.57 | 0.8447 | ||
Mn(VII) | 275.43 | 0.0163 | 0.8948 | 14.1749 | 1.98 | 0.9766 |
Metals | Sorbent Type | Uptake (mg/g) | Experimental Condition | Reference |
---|---|---|---|---|
As(V) | Pyrolyzed sludge (Industry) | 0.07 | pH 3.0–3.5, 48 h | [30] |
Biochar sewage sludge (Domestic) | 13.42 | pH 6.7–7, 24 h | [31] | |
Acid mine drainage sludge (Industry) | 21.50 | pH 7, 24 h | [32] | |
Acid mine drainage sludge alginate bead (Industry) | 21.79 | pH 5, 96 h | [33] | |
Magnetic sludge composite (Domestic) | 21.3 | pH 2.6, 5 h | [34] | |
Sludge–chitosan (Domestic) | 42.25 | pH 5.5, 6 h | This study | |
Cd(II) | Activated sludge (Domestic) | 28.10 | pH 5, 2 h | [35] |
Sewage sludge (Domestic) | 28.41 | pH 5, 24 h | [36] | |
Sludge–chitosan (Domestic) | 28.69 | pH 5.5, 6 h | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.H.; Kim, N.; Park, M.; Park, D. Potentiality of Rod-Type Chitosan Adsorbent Derived from Sewage Sludge. Appl. Sci. 2023, 13, 2055. https://doi.org/10.3390/app13042055
Seo JH, Kim N, Park M, Park D. Potentiality of Rod-Type Chitosan Adsorbent Derived from Sewage Sludge. Applied Sciences. 2023; 13(4):2055. https://doi.org/10.3390/app13042055
Chicago/Turabian StyleSeo, Ji Hae, Namgyu Kim, Munsik Park, and Donghee Park. 2023. "Potentiality of Rod-Type Chitosan Adsorbent Derived from Sewage Sludge" Applied Sciences 13, no. 4: 2055. https://doi.org/10.3390/app13042055
APA StyleSeo, J. H., Kim, N., Park, M., & Park, D. (2023). Potentiality of Rod-Type Chitosan Adsorbent Derived from Sewage Sludge. Applied Sciences, 13(4), 2055. https://doi.org/10.3390/app13042055