Microgap Formation between a Dental Resin-Matrix Computer-Aided Design/Computer-Aided Manufacturing Ceramic Restorative and Dentin after Various Surface Treatments and Artificial Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Experimental Groups
2.4. Bonding Procedure to Dentin
2.5. Thermocycling
2.6. Evaluation of Microgaps Formation
2.7. Statistical Analysis
3. Results
3.1. Observations of the Surfaces after the Treatments
3.2. Width of the Formed Microgaps after Thermocycling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poticny, D.J.; Klim, J. CAD/CAM in-office technology: Innovations after 25 years for predictable, esthetic outcomes. J. Am. Dent. Assoc. 2010, 141, 5S–9S. [Google Scholar] [CrossRef]
- Fasbinder, D.J. Chairside CAD/CAM: An overview of restorative material options. Compend. Contin. Educ. Dent. 2012, 33, 52–58. [Google Scholar]
- Papadopoulos, C.; Dionysopoulos, D.; Pahinis, K.; Koulaouzidou, E.; Tolidis, K. Microtensile bond strength between resin-matrix CAD/CAM ceramics and resin cement after various surface modifications and artificial aging. J. Adhes. Dent. 2021, 23, 255–265. [Google Scholar] [CrossRef]
- Reiss, B.; Walther, W. Clinical long-term results and 10-year Kaplan-Meier analysis of Cerec restorations. Int. J. Comput. Dent. 2000, 3, 9–23. [Google Scholar]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM ceramic restorative materials for natural teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef]
- Mainjot, A. Recent advances in composite CAD/CAM blocks. Int. J. Esthet. Dent. 2016, 11, 275–280. [Google Scholar]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef]
- Tsitrou, E.A.; Northeast, S.E.; van Noort, R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J. Dent. 2007, 35, 897–902. [Google Scholar] [CrossRef]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef]
- Nguyen, J.F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Emsermann, I.; Eggmann, F.; Krastl, G.; Weiger, R.; Amato, J. Influence of pretreatment methods on the adhesion of composite and polymer infiltrated ceramic CAD-CAM blocks. J. Adhes. Dent. 2019, 21, 433–443. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Horvath, S.D.; Guess, P.C.; Blatz, M.B. Resin bond to indirect composite and new ceramic/polymer materials: A review of the literature. J. Esthet. Restor. Dent. 2014, 26, 382–393. [Google Scholar] [CrossRef]
- Dos Santos, V.H.; Griza, S.; de Moraes, R.R.; Faria-E-Silva, A.L. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments. Restor. Dent. Endod. 2014, 39, 12–16. [Google Scholar] [CrossRef]
- Li, R. Development of a ceramic primer with higher bond durability for resin cement. J. Oral Rehabil. 2010, 37, 560–568. [Google Scholar] [CrossRef]
- Wendler, M.; Belli, R.; Panzer, R.; Skibbe, D.; Petschelt, A.; Lohbauer, U. Repair bond strength of aged resin composite after different surface and bonding treatments. Materials 2016, 9, 547. [Google Scholar] [CrossRef]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar]
- Zeidan, L.C.; Esteves, C.M.; Oliveira, J.A.; Brugnera, A., Jr.; Cassoni, A.; Rodrigues, J.A. Effect of different power settings of Er,Cr:YSGG laser before or after tribosilicatization on the microshear bond strength between zirconia and two types of cements. Lasers Med. Sci. 2018, 33, 233–240. [Google Scholar] [CrossRef]
- Zhu, H.; Tao, H.H.; Wei, M.; Liu, P.; Yuan, L.; Zhang, Y.N.; Wang, B.; Chen, J.F. Effects of different frequencies of Er:YAG laser on the bonding properties of zirconia ceramic. Lasers Med. Sci. 2022, 38, 4. [Google Scholar] [CrossRef]
- Costa, T.R.; Ferreira, S.Q.; Klein-Junior, C.A.; Loguercio, A.D.; Reis, A. Durability of surface treatments and intermediate agents used for repair of a polished composite. Oper. Dent. 2010, 35, 231–237. [Google Scholar] [CrossRef]
- Rinastiti, M.; Ozcan, M.; Siswomihardjo, W.; Busscher, H.J. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments. J. Dent. 2010, 38, 29–38. [Google Scholar] [CrossRef]
- Campos, F.; Almeida, C.S.; Rippe, M.P.; de Melo, R.M.; Valandro, L.F.; Bottino, M.A. Resin bonding to a hybrid ceramic: Effects of surface treatments and aging. Oper. Dent. 2016, 41, 171–178. [Google Scholar] [CrossRef]
- Lise, D.P.; Van Ende, A.; De Munck, J.; Vieira, L.; Baratieri, L.N.; Van Meerbeek, B. Microtensile bond strength of composite cement to novel CAD/CAM materials as a function of surface treatment and aging. Oper. Dent. 2017, 42, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Peumans, M.; Valjakova, E.B.; De Munck, J.; Mishevska, C.B.; Van Meerbeek, B. Bonding effectiveness of luting composites to different CAD/CAM materials. J. Adhes. Dent. 2016, 18, 289–302. [Google Scholar] [CrossRef]
- da Costa Soares, M.U.; Aaujo, N.C.; Sales, W.S.; Sobrar, A.P. Impact of remineralizing agents on enamel microhardness recovery after inoffice tooth bleaching therapies. Acta Odontol. Scand. 2013, 71, 343–348. [Google Scholar] [CrossRef]
- De Munck, J.; Mine, A.; Poitevin, A.; Van Ende, A.; Vivan Cardoso, M.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B. Meta-analytical review of parameters involved in dentin bonding. J. Dent. Res. 2012, 91, 351–357. [Google Scholar] [CrossRef]
- Lima, V.P.; Machado, J.B.; Zhang, Y.; Loomans, B.A.C.; Moraes, R.R. Laboratory methods to simulate the mechanical degradation of resin composite restorations. Dent. Mater. 2022, 38, 214–229. [Google Scholar] [CrossRef]
- Amaral, F.L.; Colucci, V.; Palma-Dibb, R.G.; Corona, S.A. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–354. [Google Scholar] [CrossRef]
- Papazekou, P.; Dionysopoulos, D.; Papadopoulos, C.; Mourouzis, P.; Tolidis, K. Evaluation of micro-shear bond strength of a self-adhesive flowable giomer to dentin in different adhesive modes. Int. J. Adhes. Adhes. 2022, 118, 103188. [Google Scholar] [CrossRef]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef]
- Ito, S.; Hashimoto, M.; Wadgaonkar, B.; Svizero, N.; Carvalho, R.M.; Yiu, C.; Rueggeberg, F.A.; Foulger, S.; Saito, T.; Nishitani, Y.; et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005, 26, 6449–6459. [Google Scholar] [CrossRef]
- Amaral, C.M.; Peris, A.R.; Ambrosano, G.M.B.; Pimenta, L.A.F. Microleakage and gap formation of resin composite restorations polymerized with different techniques. Am. J. Dent. 2004, 17, 156–160. [Google Scholar]
- Thadathil Varghese, J.; Babaei, B.; Farrar, P.; Prentice, L.; Prusty, B.G. Influence of thermal and thermomechanical stimuli on a molar tooth treated with resin-based restorative dental composites. Dent. Mater. 2022, 38, 811–823. [Google Scholar] [CrossRef]
- Lopes, M.B.; Yan, Z.; Consani, S.; Gonini Júnior, A.; Aleixo, A.; McCabe, J.F. Evaluation of the coefficient of thermal expansion of human and bovine dentin by thermomechanical analysis. Braz. Dent. J. 2012, 23, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.; Keul, C.; Roos, M.; Edelhoff, D.; Stawarczyk, B. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: Three different in vitro test methods. Clin. Oral Investig. 2016, 20, 227–236. [Google Scholar] [CrossRef]
- Della Bona, A.; Anusavice, K.J. Microstructure, composition, and etching topography of dental ceramics. Int. J. Prosthodont. 2002, 15, 159–167. [Google Scholar]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, 124–135. [Google Scholar] [CrossRef]
- Tekçe, N.; Tuncer, S.; Demirci, M.; Kara, D.; Baydemir, C. Microtensile bond strength of CAD/CAM resin blocks to dual-cure adhesive cement: The effect of different sandblasting procedures. J. Prosthodont. 2018, 28, 485–490. [Google Scholar] [CrossRef]
- Yen, T.W.; Blackman, R.B.; Baez, R.J. Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. J. Prosthet. Dent. 1993, 70, 224–233. [Google Scholar] [CrossRef]
- Sturz, C.R.; Faber, F.J.; Scheer, M.; Rothamel, D.; Neugebauer, J. Effects of various chair-side surface treatment methods on dental restorative materials with respect to contact angles and surface roughness. Dent. Mater. J. 2015, 34, 796–813. [Google Scholar] [CrossRef] [PubMed]
- Della-Bona, A. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. J. Appl. Oral Sci. 2005, 13, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tekçe, N.; Tuncer, S.; Demirci, M. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives. J. Adv. Prosthodont. 2018, 10, 211–217. [Google Scholar] [CrossRef]
- Strasser, T.; Preis, V.; Behr, M.; Rosentritt, M. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment. Clin. Oral Investig. 2018, 22, 2787–2797. [Google Scholar] [CrossRef]
- Bayraktar, Y.; Arslan, M.; Demirtag, Z. Repair bond strength and surface topography of resin-ceramic and ceramic restorative blocks treated by laser and conventional surface treatments. Microsc. Res. Tech. 2021, 84, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Cengiz-Yanardag, E.; Kurtulmus Yilmaz, S.; Karakaya, I.; Ongun, S. Effect of different surface treatment methods on micro-shear bond strength of CAD-CAM restorative materials to resin cement. J. Adhes. Sci. Technol. 2019, 33, 110–123. [Google Scholar] [CrossRef]
- Kurtulmus-Yilmaz, S.; Cengiz, E.; Ongun, S.; Karakaya, I. The effect of surface treatments on the mechanical and optical behaviors of CAD/CAM restorative materials. J. Prosthodont. 2019, 28, e496–e503. [Google Scholar] [CrossRef] [PubMed]
- Tzanakakis, E.G.; Tzoutzas, I.G.; Koidis, P.T. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J. Prosthet. Dent. 2016, 115, 9–19. [Google Scholar] [CrossRef]
- Arkoy, S.; Ulusoy, M. Effect of different surface treatments on repair bond strength of CAD/CAM resin-matrix ceramics. Materials 2022, 15, 6314. [Google Scholar] [CrossRef]
- Oz, F.D.; Canatan, S.; Bolay, S. Effects of surface treatments on the bond strength of composite resin to hybrid computer-assisted design/manufacturing blocks. J. Adhes. Sci. Tech. 2019, 33, 986–1000. [Google Scholar] [CrossRef]
- Yavuz, T.; Dilber, E.; Kara, H.B.; Tuncdemir, A.R.; Ozturk, A.N. Effects of different surface treatments on shear bond strength in two different ceramic systems. Lasers Med. Sci. 2013, 28, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
Material | Manufacturer | Type | Composition |
---|---|---|---|
Lava™ Ultimate | 3M ESPE, Seefeld, Germany | RBC CAD/CAM blocks | Bis-GMA, UDMA, Bis-EMA, TEGDMA, SiO2 (20 nm), ZrO2 (4–11 nm), aggregated ZrO2/SiO2 cluster (SiO2: 20 nm, ZrO2: 4–11 nm) |
RelyX™ Ultimate | 3M ESPE, St. Paul, MN, USA | Dual-cure resin cement | Base: methacrylate monomers, radiopaque, silanated fillers, initiator components, stabilizers, and rheological additives Catalyst: methacrylate monomers, radiopaque alkaline (basic) fillers, initiator components, stabilizers, pigments, rheological additives, fluorescence dye, and dark polymerize activator for Single Bond™ Universal Adhesive |
Single Bond™ Universal Adhesive | 3M ESPE, Seefeld, Germany | Universal adhesive system | 10-MDP monomer, dimethacrylate resins, HEMA, polyalkenoic acid copolymer, fillers, ethanol, water, initiators, and silane |
Experimental Groups | Mean and SD of the Microgap Size (μm) | Free Microgap Interfaces (%) |
---|---|---|
CR | 170.72 ± 79.06 A | 0% |
SB1 | 6.83 ± 3.02 B | 25% |
SB2 | 2.31 ± 1.61 B | 50% |
HF | 22.46 ± 9.29 C | 25% |
LR | 163.44 ± 59.23 A | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanopoulos, A.; Dionysopoulos, D.; Papadopoulos, C.; Mourouzis, P.; Tolidis, K. Microgap Formation between a Dental Resin-Matrix Computer-Aided Design/Computer-Aided Manufacturing Ceramic Restorative and Dentin after Various Surface Treatments and Artificial Aging. Appl. Sci. 2023, 13, 2335. https://doi.org/10.3390/app13042335
Galanopoulos A, Dionysopoulos D, Papadopoulos C, Mourouzis P, Tolidis K. Microgap Formation between a Dental Resin-Matrix Computer-Aided Design/Computer-Aided Manufacturing Ceramic Restorative and Dentin after Various Surface Treatments and Artificial Aging. Applied Sciences. 2023; 13(4):2335. https://doi.org/10.3390/app13042335
Chicago/Turabian StyleGalanopoulos, Alexandros, Dimitrios Dionysopoulos, Constantinos Papadopoulos, Petros Mourouzis, and Kosmas Tolidis. 2023. "Microgap Formation between a Dental Resin-Matrix Computer-Aided Design/Computer-Aided Manufacturing Ceramic Restorative and Dentin after Various Surface Treatments and Artificial Aging" Applied Sciences 13, no. 4: 2335. https://doi.org/10.3390/app13042335
APA StyleGalanopoulos, A., Dionysopoulos, D., Papadopoulos, C., Mourouzis, P., & Tolidis, K. (2023). Microgap Formation between a Dental Resin-Matrix Computer-Aided Design/Computer-Aided Manufacturing Ceramic Restorative and Dentin after Various Surface Treatments and Artificial Aging. Applied Sciences, 13(4), 2335. https://doi.org/10.3390/app13042335