The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Simulation
2.3. Data and Sources of Information
2.3.1. Hydrological Catchment Units or Catchments
2.3.2. Climate Change
2.3.3. Land Use Change
2.3.4. Hydrological Parameters
2.4. Construction of the Model
2.5. Calibration and Validation
Measurement of Goodness-of-Fit
2.6. Scenario Construction
2.7. Hydrological Balance
3. Results and Discussion
3.1. Changes in Land Use
3.2. Future Scenarios (Land Use)
3.3. Calibration
3.4. Hydrological Balance
3.4.1. Projections of Future Hydrological Conditions
3.4.2. Hydrological Environmental Service
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAGUA (Comisión Nacional de Agua). Atlas Del Agua En México 2015, 1st ed.; CONAGUA: Ciudad de México, México, 2015; ISBN 9788578110796. [Google Scholar]
- Brauman, K.A. Hydrologic Ecosystem Services: Linking Ecohydrologic Processes to Human Well-Being in Water Research and Watershed Management. Wiley Interdiscip. Rev. Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Manson, R.H. Los Servicios Hidrológicos y La Conservación de Los Bosques de México. Madera Bosques 2016, 10, 3–20. [Google Scholar] [CrossRef]
- Zilberman, D.; Lipper, L.; McCarthy, N. Putting Payments for Environmental Services in the Context of Economic Development. Paym. Environ. Serv. Agric. Landsc. 2009, 31, 9–33. [Google Scholar] [CrossRef]
- Isik, S.; Kalin, L.; Schoonover, J.E.; Srivastava, P.; Graeme Lockaby, B. Modeling Effects of Changing Land Use/Cover on Daily Streamflow: An Artificial Neural Network and Curve Number Based Hybrid Approach. J. Hydrol. 2013, 485, 103–112. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.E.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Balvanera, P.; Cotler, H.; Aburto, O.; Aguilar, A.; Aguilera, M.; Aluja, M.; Andrade, A.; Arroyo, I.; Ashworth, L. Estado y tendencias de los servicios ecosistémicos. In Capital Natural de México, Vol. II: Estado de Conservación y Tendencias de Cambio; CONABIO: Ciudad de Mexico, Mexico, 2009; pp. 185–245. [Google Scholar]
- Vitousek, P.M. Beyond Global Warming: Ecology and Global Change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Camarero, J.J.; Lloret, F.; Corcuera, L.; Peñuelas, J.; Gil-pelegrín, E. CAPÍTULO 14 Cambio global y decaimiento del bosque. In Ecologia del Bosque Mediterraneo en un Mundo Cambiante; Egraf, S.A., Ed.; Ministerio de Medio Ambiente: Madrid, Spain, 2004; pp. 397–423. ISBN 8480145528. [Google Scholar]
- Bazzi, H.; Ebrahimi, H.; Aminnejad, B. A Comprehensive Statistical Analysis of Evaporation Rates under Climate Change in Southern Iran Using WEAP (Case Study: Chahnimeh Reservoirs of Sistan Plain). Ain. Shams. Eng. J. 2021, 12, 1339–1352. [Google Scholar] [CrossRef]
- Ougougdal, H.A.; Khebiza, M.Y.; Messouli, M.; Lachir, A. Assessment of Futurewater Demand and Supply under IPCC Climate Change and Socio-Economic Scenarios, Using a Combination of Models in Ourika Watershed, High Atlas, Morocco. Water 2020, 12, 1751. [Google Scholar] [CrossRef]
- Mena, D.; Solera, A.; Restrepo, L.; Pimiento, M.; Cañón, M.; Duarte, F. An Analysis of Unmet Water Demand under Climate Change Scenarios in the Gualí River Basin, Colombia, through the Implementation of Hydro-Bid and Weap Hydrological Modeling Tools. J. Water Clim. Chang. 2021, 12, 185–200. [Google Scholar] [CrossRef]
- Pham, B.A.O.Q.; Yu, P.; Yang, T.; Kuo, C.; Tseng, H. Assessment of Climate Change Impacts on Hydrological Processes and Water Resources By Water Evaluation and Planning (Weap) Model: Case Study in Thac Mo Catchment, Vietnam. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017; Volume 6865, pp. 4312–4321. [Google Scholar]
- Wang, K.; Dickinson, R.E.; Liang, S. Global Atmospheric Evaporative Demand over Land from 1973 to 2008. J. Clim. 2012, 25, 8353–8361. [Google Scholar] [CrossRef]
- López, G.T.G.; Manzano, M.G.; Ramírez, A.I. Disponibilidad Hídrica Bajo Escenarios de Cambio Climático En El Valle de Galeana, Nuevo León, México. Tecnol. Cienc. Agua. 2017, 8, 105–114. [Google Scholar] [CrossRef]
- Rochdane, S.; Reichert, B.; Messouli, M.; Babqiqi, A.; Khebiza, M.Y. Climate Change Impacts on Water Supply and Demand in Rheraya Watershed (Morocco), with Potential Adaptation Strategies. Water 2012, 4, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Kerns, B.K.; Powell, D.C.; Mellmann-Brown, S.; Carnwath, G.; Kim, J.B. Effects of Projected Climate Change on Vegetation in the Blue Mountains Ecoregion, USA. Clim. Serv. 2018, 10, 33–43. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Trejo, I. Efecto Del Cambio Climático En La Distribución Potencial de Cinco Especies Arbóreas de Bosque Templado En México. Rev. Mex. Biodivers. 2014, 85, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Kirilenko, A.P.; Sedjo, R.A. Climate Change Impacts on Forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijal, S.; Sinutok, S.; Techato, K.; Gentle, P.; Khanal, U.; Gyawali, S. Contribution of Community-Managed Sal-Based Forest in Climate Change Adaptation and Mitigation: A Case from Nepal. Forests 2022, 13, 262. [Google Scholar] [CrossRef]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate Change Vulnerability of Forest Biodiversity: Climate and Competition Tracking of Demographic Rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. A Comparison of Streamflow and Baseflow Responses to Land-Use Change and the Variation in Climate Parameters Using SWAT. Water 2020, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Khoshnoodmotlagh, S.; Verrelst, J.; Daneshi, A.; Mirzaei, M.; Azadi, H.; Haghighi, M.; Hatamimanesh, M.; Marofi, S. Transboundary Basins Need More Attention: Anthropogenic Impacts on Land Cover Changes in Aras River Basin, Monitoring and Prediction. Remote Sens. 2020, 12, 3329. [Google Scholar] [CrossRef]
- CONAFOR (Comisión Nacional Forestal). Programas y Acciones En Reforestación, Conservación y Restauración de Suelos, Incendios Forestales y Sanidad Forestal de Ecosistemas Forestales; Comisión Nacional Forestal (CONAFOR): Zapopan, Jalisco, 2010. [Google Scholar]
- Kepner, W.G.; Ramsey, M.M.; Brown, E.S.; Jarchow, M.E.; Dickinson, K.J.M.; Mark, A.F.; Ramsey, E.M.S.; Brown, M.E.; Jarchow, K.J.M.; Dickinson, A.F. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services. Ecosphere 2012, 3, 1–25. [Google Scholar] [CrossRef]
- Ruíz-García, V.H.; Borja de la Rosa, M.A.; Gómez-Díaz, J.D.; Asensio-Grima, C.; Matías-Ramos, M.; Monterroso-Rivas, A.I. Forest Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico. Water 2022, 14, 383. [Google Scholar] [CrossRef]
- Rubio Camacho, E.A.; González Tagle, M.A.; Benavides Solorio, J.D.D.; Chávez Durán, Á.A.; Xelhuantzi Carmona, J. Relación Entre Necromasa, Composición de Especies Leñosas y Posibles Implicaciones Del Cambio Climático En Bosques Templados. Rev. Mex. Cienc. Agrícolas 2017, 13, 2601–2614. [Google Scholar] [CrossRef] [Green Version]
- Vargas, C.R.d.C.; Sanchez, T.G.; Rolón, A.J.C.; Pichardo, R.R.; Tobías, J.R.; Treviño, T.J. Disponibilidad de los Recursos Hídricos ante Escenarios de Cambio Climático en una Cuenca Costera de Tamaulipas, México. Investig. Actuales En Medioambiente 2015, 1, 86–100. [Google Scholar]
- Escoto Castillo, A.; Sánchez Peña, L.; Gachuz Delgado, S. Trayectorias Socioeconómicas Compartidas (SSP): Nuevas Maneras de Comprender El Cambio Climático y Social. Estud. Demogr. Urbanos. Col. Mex. 2017, 32, 669–693. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Arriaga, G.; Nevarez-Favela, M.M.; Velásquez-Valle, M.A.; Sánchez-Cohen, I.; Bueno-Hurtado, P. Hydrological Modeling of a Basin in Mexico’s Arid Northern Region and Its Response to Environmental Changes. Ing. Agrícola Biosist. 2017, 9, 3–17. [Google Scholar] [CrossRef] [Green Version]
- SEI (Stockholm Environmental Institute). Water Evaluation And Planning System Tutorial; Stockholm Environmental Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Centro de Cambio Global-Universidad Católica de Chile; Stockholm Environment Institute. Guía Metodológica-Modelación Hidrológica y de Recursos Hídricos Con El Modelo WEAP; Stockholm Environment Institute: Stockholm, Sweden, 2009. [Google Scholar]
- Amato, C.C.; Daene, P.E.; Mckinney, C.; Ingol-Blanco, E.; Teasley, R.L. CRWR Online Report 06-12 WEAP Hydrology Model Applied: The Rio Conchos Basin; The University of Texas: Austin, TX, USA, 2006. [Google Scholar]
- Ahmadaali, J.; Barani, G.-A.; Qaderi, K.; Hessari, B. Analysis of the Effects of Water Management Strategies and Climate Change on the Environmental and Agricultural Sustainability of Urmia Lake Basin, Iran. Water 2018, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Geler, R.T.; Toruño, P.J.; Marinero Orantes, E.A.; Gutiérrez Espinoza, E.I. Servicios Ambientales y Gestión de Los Recursos Hídricos Utilizando El Modelo WEAP: Casos de Estudio En Iberoamérica. Rev. Iberoam. Bioeconomía Cambio Climático 2015, 1, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Part 1: Model Characteristics. Water Int. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Labrador, A.F.; Zúñiga, J.M.; Romero, J. Desarrollo de Un Modelo Para La Planificación Integral Del Recurso Hídrico En La Cuenca Hidrográfica Del Río Aipe, Huila, Colombia Development of a Model for Integral Planning of Water Resources in Aipe Catchment, Huila, Colombia. Rev. Ing. Región 2016, 15, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Flores, L.F.; Galaitsi, S.; Escobar, M.; Purkey, D. Modeling of Andean Páramo Ecosystems’ Hydrological Response to Environmental Change. Water 2016, 8, 94. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Summary for policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A.P., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. ISBN 9781317602071. [Google Scholar]
- SEMARNAT (Secretaría de Medio Ambiente). Acuerdo Por El Que Se Dan a Conocer Los Resultados del Estudio Técnico de Las Aguas Nacionales Subterráneas del Acuífero Texcoco, Clave 1507, En El Estado de México, Región Hidrológico-Administrativa XIII, Aguas del Valle de México; SEMARNAT: Ciudad de México, Mexico, 2019. [Google Scholar]
- Garcia, E. Modificaciones al Sistema de Clasificación Climática de Köppe; UNAM, Ed.; Universidad Nacional Autónoma de México: Ciudad de México, México, 2004; ISBN 970-32-1010-4. [Google Scholar]
- SMN (Servicio Metereológico Nacional). Información Climatológica Nacional. Available online: https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica (accessed on 3 June 2022).
- Gómez-Díaz, J.; Etchevers-Barra, J.; Monterroso-Rivas, A.; Gay-García, C.; Campo-Alves, J.; Martínez-Menes, M. Spatial Estimation of Mean Temperature and Precipitation in Areas of Scarce Meteorological Information. Atmósfera 2008, 21, 35–56. [Google Scholar]
- Gómez-Díaz, J.; Monterroso-Rivas, A.I. Actualización de La Delimitación de Las Zonas Áridas, Semiáridas y Sub-Húmedas Secas de México a Escala Regional. Reporte Final de Proyecto de Investigación Fondo CONAFOR-CONACYT; Universidad Autonoma Chapingo: Texcoco, México, 2008. [Google Scholar]
- Young, C.A.; Escobar-Arias, M.I.; Fernandes, M.; Joyce, B.; Kiparsky, M.; Mount, J.F.; Mehta, V.K.; Purkey, D.; Viers, J.H.; Yates, D. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. J. Am. Water Resour. Assoc. 2009, 45, 1409–1423. [Google Scholar] [CrossRef]
- Monterroso-Rivas, A.I.; Gómez-Díaz, J.D. Impact of Climate Change on Potential Evapotranspiration and Growing Season in Mexico. Rev. TERRA Lat. 2021, 39, 1–19. [Google Scholar] [CrossRef]
- Santos-Hernández, A.F.; Monterroso-Rivas, A.I.; Granados-Sánchez, D.; Villanueva-Morales, A.; Santacruz-Carrillo, M. Projections for Mexico’s Tropical Rainforests Considering Ecological Niche and Climate Change. Forests 2021, 12, 119. [Google Scholar] [CrossRef]
- Ruiz-García, P.; Conde-Álvarez, C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate 2021, 9, 60. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- CONAGUA (Comisión Nacional del Agua). Banco Nacional de Datos de Aguas Superficiales (BANDAS). Available online: https://app.conagua.gob.mx/bandas/ (accessed on 3 June 2022).
- Jantzen, T.; Klezendorf, B.; Middleton, J.; Smith, J. WEAP Hydrology Modeling Applied: The Upper Rio Florido Rive Basin; Center for Research in Water Resources: Ciudad de México, México, 2006. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1549–1559. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Hogue, T.S.; Boyle, D.P. Advances in automatic calibration of watershed models. In Calibration of Watershed Models; American Geophysical Union: Washington, DC, USA, 2011; pp. 9–28. [Google Scholar]
- Lu, C.; Chiang, L.-C. Assessment of Sediment Transport Functions with the Modified SWAT-Twn Model for a Taiwanese Small Mountainous Watershed. Water 2019, 11, 1749. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting Through Conceptual Models—Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Vijai, H.; Sorooshian, S.; Yapo, P. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar]
- Singh, J.; Knapp, H.; Demissie, M. Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 4030, 343–360. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M. HydroGOF: Goodness-of-Fit Functions for Comparison of Simulated and Observed Hydrological Time Series, R Package Version 0.4-0. 2020. [Google Scholar]
- Martínez Sifuentes, A.R.; Villanueva Díaz, J.; Estrada Ávalos, J.; Vázquez Vázquez, C.; Orona Castillo, I. Pérdida de Suelo y Modificación de Escurrimientos Causados Por El Cambio de Uso de La Tierra En La Cuenca Del Río Conchos, Chihuahua. Nov. Sci. 2020, 12. [Google Scholar] [CrossRef]
- Hernández, G.A.; Castorena, M.D.C.G.; Maravilla, S.M.B.; Cervantes, E.R.Á.; Castorena, E.V.G.; Solorio, C.A.O. Mineralogy in the Estimation of the Temperature of Forest Fire and Their Immediate Effects in Andosols, State of Mexico. Madera Bosques 2020, 26, 1–14. [Google Scholar] [CrossRef]
- PROBOSQUE (Protectora de bosques del Estado de México). Estadisticas de Incendios Forestales En El Estado de México: Administrador de Base de Datos PostGIS. Available online: https://probosque.edomex.gob.mx/estadisticas (accessed on 20 September 2022).
- León-Muñoz, J.; Aguayo, R.; Marcé, R.; Catalán, N.; Woelfl, S.; Nimptsch, J.; Arismendi, I.; Contreras, C.; Soto, D.; Miranda, A. Climate and Land Cover Trends Affecting Freshwater Inputs to a Fjord in Northwestern Patagonia. Front. Mar. Sci. 2021, 8, 628454. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Synthesis of Soil-Hydraulic Properties and Infiltration Timescales in Wildfire-Affected Soils. Hydrol. Process. 2017, 31, 324–340. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Spatial and Temporal Evapotranspiration Trends after Wildfire in Semi-Arid Landscapes. J. Hydrol. 2018, 559, 71–83. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Chin, A.; Simon, G.L.; Briles, C.; Hogue, T.S.; O’Dowd, A.P.; Gerlak, A.K.; Albornoz, A.U. Wildfire, Water, and Society: Toward Integrative Research in the “Anthropocene”. Anthropocene 2016, 16, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Rengers, F.K.; McGuire, L.A.; Kean, J.W.; Staley, D.M.; Hobley, D.E.J. Water Resources Research. J. Am. Water Resour. Assoc. 1969, 5, 2-2. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Wagenbrenner, J.W.; Pierson, F.B.; Spaeth, K.E.; Ashmun, L.E.; Moffet, C.A. Infiltration and Interrill Erosion Rates after a Wildfire in Western Montana, USA. Catena 2016, 142, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Rzedowski, J. Vegetación de México; Primera, Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Ciudad de México, México, 2006. [Google Scholar]
- Miranda, F.; Hernández, X.E. Los Tipos de Vegetación de México y Su Clasificación. Bot. Sci. 2016, 28, 29–179. [Google Scholar] [CrossRef] [Green Version]
- Laino-Guanes, R.; Suárez-Sánchez, J.; González-Espinosa, M.; Musálem-Castillejos, K.; Ramírez-Marcial, N.; Bello-Mendoza, R.; Jiménez, F. Modelación Del Balance Hídrico y El Movimiento de Nutrientes Utilizando WEAP: Limitaciones Para Modelar Los Efectos de La Restauración Forestal y El Cambio Climático En La Cuenca Alta Del Río Grijalva. Aqua-LAC 2017, 9, 46–58. [Google Scholar] [CrossRef]
- Urrutia Hernández, I.; Rodríguez Alfaro, B.; González Menéndez, M.; Martínez Becerra, L.W.; Flores Garnica, J.G.; Alonso Torrens, Y. Impacto de Quemas Prescritas En La Estabilidad Del Escurrimiento Superficial En Un Bosque de Pino. Madera Bosques 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Droogers, P.; Immerzeel, W.W. Calibration Methodologies in Hydrological Modeling: State of the Art; The National User Support Programme 2001–2005; FutureWater-Science for Solutions: Wageningen, The Netherlands, 2006. [Google Scholar]
- Ingol-Blanco, E.; McKinney, D.C. Development of a Hydrological Model for the Rio Conchos Basin. J. Hydrol. Eng. 2013, 18, 340–351. [Google Scholar] [CrossRef]
- Kandera, M.; Výleta, R.; Liová, A.; Danáčová, Z.; Lovasová, Ľ. Testing of Water Evaluation and Planning (Weap) Model for Water Resources Management in the Hron River Basin. Acta Hydrol. Slovaca 2021, 22, 30–39. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Abera Abdi, D.; Ayenew, T. Evaluation of the WEAP Model in Simulating Subbasin Hydrology in the Central Rift Valley Basin, Ethiopia. Ecol. Process. 2021, 10, 41. [Google Scholar] [CrossRef]
- Asghar, A.; Iqbal, J.; Amin, A.; Ribbe, L. Integrated Hydrological Modeling for Assessment of Water Demand and Supply under Socio-Economic and IPCC Climate Change Scenarios Using WEAP in Central Indus Basin. J. Water Supply Res. Technol.-AQUA 2019, 68, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Al-Mukhtar, M.M.; Mutar, G.S. Modelling of Future Water Use Scenarios Using WEAP Model: A Case Study in Baghdad City, Iraq. Eng. Technol. J. 2021, 39, 488–503. [Google Scholar] [CrossRef]
- Nevárez-Favela, M.M.; Fernández-Reynoso, D.S.; Sánchez-Cohen, I.; Sánchez-Galindo, M.; Macedo-Cruz, A.; Palacios-Espinosa, C. Comparison between WEAP and SWAT Models in a Basin at Oaxaca, Mexico. Tecnol. Cienc. Agua. 2021, 12, 358–401. [Google Scholar] [CrossRef]
- García-Coll, I.; Martínez, A.; Ramírez, A.; Niño, A.; Rivas, A.; Domínguez, L. La relación agua-bosque: Delimitación de zonas prioritarias para pago de servicios ambientales hidrológicos en la cuenca del río Gavilanes, Coatepec, Veracruz. In El Manejo Integral de Cuencas en México; Cotler, H., Ed.; Instituto Nacional de Ecología: Ciudad de México, Mexico, 2004; pp. 99–116. [Google Scholar]
- Viramontes, D.; Descroix, L.; Bollery, A. Variables de Suelos Determinantes Del Escurrimiento y La Erosión En Un Sector de La Sierra Madre Occidental. Ing. Hidraul. Mex. 2006, 21, 73–83. [Google Scholar]
- La Manna, L.; Rostagno, M.; Morales, D. Impacto Del Fuego Sobre El Comportamiento Hidrológico Del Suelo En Un Bosque de Ciprés. Patagon For. 2010, 16, 23–24. [Google Scholar]
- Mab, P.; Kositsakulchai, E. Water Balance Analysis of Tonle Sap Lake Using Weap Model and Satellite-Derived Data from Google Earth Engine. Sci. Technol. Asia 2020, 25, 45–58. [Google Scholar] [CrossRef]
- Poca, M.; Cingolani, A.M.; Gurvich, D.E.; Whitworth-Hulse, J.I.; Saur Palmieri, V. La Degradación de Los Bosques de Altura Del Centro de Argentina Reduce Su Capacidad de Almacenamiento de Agua. Ecol. Austral. 2018, 28, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Bruijnzeel, L.A. Hydrological Functions of Tropical Forests: Not Seeing the Soil for the Trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Tena, T.M.; Mwaanga, P.; Nguvulu, A. Impact of Land Use/Land Cover Change on Hydrological Components in Chongwe River Catchment. Sustainability 2019, 11, 6415. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Shibata, H.; Wang, Q. Optimal Conservation Planning of Multiple Hydrological Ecosystem Services under Land Use and Climate Changes in Teshio River Watershed, Northernmost of Japan. Ecol. Indic. 2016, 62, 1–13. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Chen, X.; Shi, P. The Impact of Land Use and Land Cover Changes on Soil Moisture and Hydraulic Conductivity along the Karst Hillslopes of Southwest China. Environ. Earth Sci. 2009, 59, 811–820. [Google Scholar] [CrossRef]
- Martínez-González, F.; Sosa-Pérez, F.; Ortiz-Medel, J. Comportamiento de La Humedad Del Suelo Con Diferente Cobertura Vegetal En La Cuenca La Esperanza. Tecnol. Cienc. Agua. 2010, 1, 89–103. [Google Scholar]
- Kim, U.; Kaluarachchi, J.J. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. J. Am. Water Resour. Assoc. 2009, 45, 1361–1378. [Google Scholar] [CrossRef]
- Reihan, A.; Koltsova, T.; Kriauciuniene, J.; Lizuma, L.; Meilutyte-Barauskiene, D. Changes in Water Discharges of the Baltic States Rivers in the 20th Century and Its Relation to Climate Change. Hydrol. Res. 2007, 38, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Price, K.; Jackson, C.R.; Parker, A.J.; Reitan, T.; Dowd, J.; Cyterski, M. Effects of Watershed Land Use and Geomorphology on Stream Low Flows during Severe Drought Conditions in the Southern Blue Ridge Mountains, Georgia and North Carolina, United States. Water Resour. Res. 2011, 47, W02516. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, Y.; Shi, Z.; Yu, M.; Zhao, F.; Guan, Y. Quantifying Spatiotemporal Variations in Soil Moisture Driven by Vegetation Restoration on the Loess Plateau of China. J. Hydrol. 2021, 600, 126580. [Google Scholar] [CrossRef]
- Puno, R.C.C.; Puno, G.R.; Talisay, B.A.M. Hydrologic Responses of Watershed Assessment to Land Cover and Climate Change Using Soil and Water Assessment Tool Model. Glob. J. Environ. Sci. Manag. 2019, 5, 71–82. [Google Scholar] [CrossRef]
- Iida, S.; Levia, D.F.; Shimizu, A.; Shimizu, T.; Tamai, K.; Nobuhiro, T.; Kabeya, N.; Noguchi, S.; Sawano, S.; Araki, M. Intrastorm Scale Rainfall Interception Dynamics in a Mature Coniferous Forest Stand. J. Hydrol. 2017, 548, 770–783. [Google Scholar] [CrossRef]
- Zhongming, W.; Lees, B.G.; Feng, J.; Wanning, L.; Haijing, S. Stratified Vegetation Cover Index: A New Way to Assess Vegetation Impact on Soil Erosion. Catena 2010, 83, 87–93. [Google Scholar] [CrossRef]
- Matías, R.M.; Gómez, D.D.J.; Monterroso, R.A.I.; Villar, B.D.J.H.G.; Uribe, M.; Ruiz, G.P. Factores Que Influyen En La Erosión Hídrica Del Suelo En Un Bosque Templado. Rev. Mex. Cienc. For. 2020, 11, 51–71. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing Forests for Climate Change Mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Panagos, P.; Wuepper, D. Positive Cascading Effect of Restoring Forests. Int. Soil Water Conserv. Res. 2020, 8, 102. [Google Scholar] [CrossRef]
- Valdés Ramírez, M. El Cambio Climático y El Estado Simbiótico de Los Árboles del Bosque. Rev. Mex. Cienc. For. 2019, 2, 5–14. [Google Scholar] [CrossRef]
- Esse, C.; Correa-Araneda, F.; Saavedra, P.; Santander-Massa, R. Efecto Del Uso Del Suelo Sobre La Disponibilidad de Agua y Eficiencia Hídrica En Cuencas Templadas Del Centro-Sur de Chile. In Proceedings of the Vinculate 2020, Santiago, Chile, 2020; p. 1. Available online: https://www.uautonoma.cl/pdf/vinculate2020/Carlos-Esse.pdf (accessed on 3 June 2022).
Land Use | Total Surface | % | Chapingo River | % | Texcoco River | % | San Bernardino River | % |
---|---|---|---|---|---|---|---|---|
Agriculture (rainfed) | 2294.8 | 29.6 | 420.4 | 21.6 | 1042.8 | 26.7 | 831.6 | 44.2 |
Temperate forest | 2021.4 | 26.1 | 472.1 | 24.2 | 1448.5 | 37.1 | 100.8 | 5.4 |
Reforestation | 1145.6 | 14.8 | 395.4 | 20.3 | 199.9 | 5.1 | 550.3 | 29.2 |
Urban | 949.9 | 12.3 | 300.0 | 15.4 | 545.9 | 14.0 | 104.0 | 5.5 |
Agriculture (irrigated) | 540.3 | 7.0 | 89.1 | 4.6 | 354.6 | 9.1 | 96.7 | 5.1 |
Secondary vegetation | 438.7 | 5.7 | 160.9 | 8.3 | 166.3 | 4.3 | 111.5 | 5.9 |
Mine | 212.2 | 2.7 | 87.0 | 4.5 | 39.4 | 1.0 | 85.9 | 4.6 |
Agriculture (protected) | 80.8 | 1.0 | 18.7 | 1.0 | 60.2 | 1.5 | 1.9 | 0.1 |
Pasture | 52.2 | 0.7 | 3.6 | 0.2 | 48.6 | 1.2 | 0.1 | 0.0 |
Water | 4.6 | 0.1 | 1.3 | 0.1 | 3.3 | 0.1 | 0.0 | 0.0 |
Total | 7740.6 | 100.0 | 1948.5 | 100.0 | 3909.4 | 100.0 | 1882.6 | 100.0 |
Function | Description | Range of Values | Ecuation * | |
---|---|---|---|---|
R2 | It presents the linear correlation between both data series (Lu and Chiang, 2019, [55]). | 0 to 1 | (3) | |
NSE | It indicates the closeness between the simulated and observed data (Nash and Sutcliffe, 1970, [56]). | −ꝏ to 1 | (4) | |
PBIAS | It indicates whether the simulated values are overestimated or underestimated (Vijai et al., 1999, [57]). | >0 underestimated <0 overestimated | (5) | |
RSR | Defines the performance of the simulation (Singh et al., 2005, [58]). | 0 to 1 | (6) |
Model | Trend | Period | Average Temperature (°C) | Precipitation (mm) |
---|---|---|---|---|
Current | Pessimistic SSP5-8.5 | 2021 | 11.0 | 652 |
CNRM-CM6-1 | 2081–2100 | 17.8 | 931 | |
HadGEM3-GC31-LL | 18.7 | 861 | ||
MPI-ESM1-2-LR | 16.6 | 783 |
Land Use Class | 1995 | % | 2008 | % | 2021 | % | 1995–2008 | 2008–2021 | Total Change | Change ha/Year |
---|---|---|---|---|---|---|---|---|---|---|
Temperate forest | 2403.0 | 31.0 | 2345.4 | 30.3 | 2021.4 | 26.1 | −57.6 | −323.9 | −381.6 | −14.7 |
Reforestation | 968.3 | 12.5 | 1104.6 | 14.3 | 1145.6 | 14.8 | 136.4 | 41.0 | 177.4 | 6.8 |
Secondary vegetation | 137.0 | 1.8 | 300.7 | 3.9 | 438.7 | 5.7 | 163.7 | 138.0 | 301.7 | 11.6 |
Pasture | 74.0 | 1.0 | 102.6 | 1.3 | 52.2 | 0.7 | 28.6 | −50.3 | −21.8 | −0.8 |
Mine | 147.8 | 1.9 | 124.2 | 1.6 | 212.2 | 2.7 | −23.6 | 88.0 | 64.4 | 2.5 |
Rainfed agriculture | 2530.0 | 32.7 | 2399.8 | 31.0 | 2294.8 | 29.6 | −130.3 | −105.0 | −235.3 | −9.0 |
Irrigated agriculture | 664.4 | 8.6 | 483.6 | 6.2 | 540.3 | 7.0 | −180.8 | 56.8 | −124.1 | −4.8 |
Protected agriculture | 20.0 | 0.3 | 32.2 | 0.4 | 80.8 | 1.0 | 12.2 | 48.6 | 60.8 | 2.3 |
Urban | 791.7 | 10.2 | 844.3 | 10.9 | 949.9 | 12.3 | 52.6 | 105.6 | 158.2 | 6.1 |
Water | 4.3 | 0.1 | 3.2 | 0.0 | 4.6 | 0.1 | −1.1 | 1.4 | 0.3 | 0.0 |
Land Use Classes | TF 1 | R 2 | SV 3 | G 4 | M 5 | RA 6 | IA 7 | PA 8 | U 9 | W 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
2008 | |||||||||||
1995 | Secondary vegetation | 34.7 | 4.3 | - | 0.9 | - | - | 2.7 | - | - | - |
Reforestation | 18.2 | - | 100.2 | 0.1 | 5.4 | 49.3 | 8.9 | 0.4 | 35.0 | - | |
Pasture | 3.5 | - | 1.2 | 0.0 | - | - | - | - | - | - | |
Temperate forest | - | 32.6 | 49.3 | 31.7 | - | 2.7 | - | 0.8 | 0.4 | - | |
2021 | |||||||||||
2008 | Pasture | 68.9 | 0.1 | 0.5 | - | - | 0.2 | - | - | - | - |
Secondary vegetation | 26.6 | 106.2 | - | 0.9 | - | 42.2 | 0.2 | 0.6 | 0.6 | 0.1 | |
Reforestation | 14.4 | - | 31.9 | 0.1 | 8.2 | 197.1 | 53.8 | 3.4 | 42.6 | 0.2 | |
Temperate forest | - | 131.5 | 280.9 | 18.3 | - | 4.1 | - | - | - | - |
Land Use Class | Area (%) | ||||
---|---|---|---|---|---|
1995 | 2008 | Current | Positive Scenario | Negative Scenario | |
Temperate forest | 31.0 | 30.3 | 26.0 | 48.5 | 13.6 |
Reforestation | 12.5 | 14.3 | 14.9 | 9.6 | 2.4 |
Secondary vegetation | 1.8 | 3.9 | 5.7 | 0.3 | 4.9 |
Pasture | 1.0 | 1.3 | 0.7 | 0 | 2.8 |
Mine | 1.9 | 1.6 | 2.7 | 2.8 | 3.6 |
Agriculture (rainfed) | 32.6 | 31.0 | 29.6 | 18.2 | 48.7 |
Agriculture (irrigated) | 8.6 | 6.3 | 6.9 | 3.6 | 5.6 |
Agriculture (protected) | 0.3 | 0.4 | 1.1 | 2.6 | 2.1 |
Urban | 10.2 | 10.9 | 12.2 | 14.3 | 16.3 |
Water | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 |
Scenario | Current | Negative | Positive | |||||
---|---|---|---|---|---|---|---|---|
CNRM | HADGEM | MPI | CNRM | HADGEM | MPI | |||
Units | (mm/Year) | Evolution (%) | ||||||
Texcoco River | ||||||||
Inflows | Precipitation | 652.5 | 42.7 | 32.0 | 20.0 | 42.7 | 32.0 | 20.0 |
Water stored * | 130.7 | 23.8 | 9.5 | 3.9 | 43.1 | 23.8 | 17.5 | |
Outflows | Evapotranspiration | 533.7 | 32.7 | 30.7 | 19.1 | 41.7 | 37.3 | 24.9 |
Water storage in the soil | 199.8 | 29.6 | 13.4 | 7.1 | 46.7 | 24.8 | 17.7 | |
Base flow | 4.1 | −70.1 | −74.3 | −75.8 | −67.1 | −72.8 | −74.6 | |
Inter flow | 2.7 | 146.4 | 115.8 | 100.0 | 116.3 | 89.0 | 75.1 | |
Surface runoff | 25.9 | 355.6 | 184.2 | 142.4 | 137.7 | 32.6 | 12.0 | |
Chapingo River | ||||||||
Inflows | Precipitation | 652.5 | 42.7 | 32.0 | 20.0 | 42.7 | 32.0 | 20.0 |
Water stored * | 108.5 | −22.5 | −25.5 | −34.9 | 33.4 | 19.7 | 8.8 | |
Outflows | Evapotranspiration | 534.7 | 23.9 | 23.7 | 13.5 | 37.7 | 34.3 | 22.6 |
Water storage in the soil | 153.3 | 1.8 | 6.1 | −15.0 | 46.5 | 27.9 | 17.3 | |
Base flow | 4.2 | −80.9 | −81.5 | −81.7 | −80.3 | −81.2 | −81.5 | |
Inter flow | 12.3 | 86.8 | 68.2 | 59.8 | 97.7 | 74.6 | 65.1 | |
Surface runoff | 40.0 | 332.1 | 187.8 | 140.6 | 125.1 | 36.9 | 12.6 | |
San Bernardino River | ||||||||
Inflows | Precipitation | 652.5 | 42.7 | 32.0 | 20.0 | 42.7 | 32.0 | 20.0 |
Water stored * | 108.5 | −6.4 | −8.7 | −20.6 | 106.3 | 82.3 | 67.5 | |
Outflows | Evapotranspiration | 534.7 | 17.7 | 18.3 | 8.6 | 34.3 | 30.9 | 19.5 |
Water storage in the soil | 153.3 | 21.1 | 13.0 | 2.5 | 103.7 | 76.2 | 62.7 | |
Base flow | 4.2 | −35.5 | −41.2 | −43.5 | −29.8 | −39.6 | −42.6 | |
Inter flow | 12.3 | 77.5 | 59.2 | 51.2 | 84.5 | 57.9 | 48.5 | |
Surface runoff | 40.0 | 326.1 | 190.8 | 145.1 | 110.1 | 35.2 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-García, V.H.; Asensio-Grima, C.; Ramírez-García, A.G.; Monterroso-Rivas, A.I. The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes. Appl. Sci. 2023, 13, 2503. https://doi.org/10.3390/app13042503
Ruiz-García VH, Asensio-Grima C, Ramírez-García AG, Monterroso-Rivas AI. The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes. Applied Sciences. 2023; 13(4):2503. https://doi.org/10.3390/app13042503
Chicago/Turabian StyleRuiz-García, Víctor H., Carlos Asensio-Grima, A. Guillermo Ramírez-García, and Alejandro Ismael Monterroso-Rivas. 2023. "The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes" Applied Sciences 13, no. 4: 2503. https://doi.org/10.3390/app13042503
APA StyleRuiz-García, V. H., Asensio-Grima, C., Ramírez-García, A. G., & Monterroso-Rivas, A. I. (2023). The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes. Applied Sciences, 13(4), 2503. https://doi.org/10.3390/app13042503