Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stages of Additive Manufacturing
- Data collection was performed using the scan of the reference model as a benchmark for three-dimensional printing and comparison later in the study.
- The analysis involved the virtual assessment of the object using a GOM Inspect 2020™ (Braunschweig, Germany) software package. After the design was loaded, the STL file was imported into the printer’s software, followed by specifying the parameters for cutting and adding the support structures.
- Printers were generally named Printer A and Printer B due to commercial reasons. Using photo-cured liquid resins (DentaMODEL™, Asiga, Sydney, Australia and NextDent™ Resin Model 2.0, Soesterberg, The Netherlands) eight three-dimensional models (Figure 2) were obtained as follows:
- -
- Printer A, using SLA printing technology, was used to obtain 4 three-dimensional models named Model A1, A2, A3, A4 (Figure 3A). Build volume of the pieces was 124.8 × 70.2 × 196 mm (4.9 × 2.8 × 7.7 in), with resolution 1920 × 1080 pixels, pixel pitch 65 microns (0.0025 in) (390.8 effective PPI), wavelength 405 nm.
- -
- Printer B, using DLP printing technology, was used to obtain 4 three-dimensional models named B1, B2, B3, B4 (Figure 3B). The maximum construction volume of the workpiece was 119 mm × 67 mm × 75 mm, resolution 1920 × 1080 pixels The printer used 385 nanometers in wavelength UV LED.
2.2. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taneva, E.; Kusnoto, B.; Evans, C.A. 3D scanning, imaging, and printing in orthodontics. Issues Contemp. Orthod. 2015, 148, 147–188. [Google Scholar]
- Cousley, R.R. Introducing 3D printing in your orthodontic practice. J. Orthod. 2020, 47, 265–272. [Google Scholar] [CrossRef]
- Yoo, S.-Y.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Kim, J.-G. Dimensional Accuracy of Dental Models for Three-Unit Prostheses Fabricated by Various 3D Printing Technologies. Materials 2021, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Guvendiren, M.; Molde, J.; Soares, M.R.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Weallens, J.; Ray, J. Endodontic application of 3D printing. Int. Endod. J. 2018, 51, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; Lal, K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report. J Prosthet Dent. 2008, 100, 165–172. [Google Scholar] [CrossRef]
- Brunello, G.; Sivolella, S.; Meneghello, R.; Ferroni, L.; Gardin, C.; Piatelli, A.; Zavan, B.; Bressan, E. Powder-based 3D printing for bone tissue engineering. Biotechnol. Adv. 2016, 34, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Materials Sci. Eng. C Mater Biol. Appl. 2014, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Karakurt, I.; Aydoğdu, A.; Çıkrıkcı, S.; Orozco, J.; Lin, L. Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study. Int. J. Pharm. 2020, 584, 119428. [Google Scholar] [CrossRef]
- Elizabeth, V. Restorative Dentistry for the Adolescent, Pediatric Dentistry, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 598–609.e5. [Google Scholar] [CrossRef]
- Sykes, L.M.; Parrott, A.M.; Owen, C.P.; Snaddon, D.R. Applications of rapid prototyping technology in maxillofacial prosthetics. Int. J. Prosthodont. 2004, 17, 454–459. [Google Scholar]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521. [Google Scholar] [CrossRef]
- Ballard, D.H.; Trace, A.P.; Ali, S.; Hodgdon, T.; Zygmont, M.E.; DeBenedectis, C.M.; Smith, S.E.; Richardson, M.L.; Patel, M.J.; Decker, S.J.; et al. Clinical applications of 3D printing: Primer for radiologists. Acad. Radiol. 2018, 25, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Abarna, J.; Maragathavalli, G. Applications of 3D Printing in Dentistry—A Review. J. Pharm. Sci. Res. 2019, 11, 1670–1675. [Google Scholar]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Lekurwale, S.; Karanwad, T.; Banerjee, S. Selective laser sintering (SLS) of 3D printlets using a 3D printer comprised of IR/red-diode laser. Ann. 3D Print. Med. 2022, 6, 100054. [Google Scholar] [CrossRef]
- Islam, M.K.; Hazell, P.J.; Escobedo, J.P.; Wang, H. Biomimetic armour design strategies for additive manufacturing: A review. Mater. Des. 2021, 205, 109730. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef]
- Ellakany, P.; Alharbi, F.; El Tantawi, M.; Mohsen, C. Evaluation of the accuracy of digital and 3D-printed casts compared with conventional stone casts. J. Prosthet. Dent. 2022, 127, 438–444. [Google Scholar] [CrossRef]
- Hassan, W.N.; Yusoff, Y.; Mardi, N.A. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am. J. Orthod. Dentofacial. Orthop. 2017, 151, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Revilla-Leo, M.; Ozcan, M. Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef] [Green Version]
- ISO 5725-1:1994; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. ISO Standards: Geneva, Switzerland, 1994. Available online: https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en (accessed on 20 January 2021).
- Bud, E.S.; Bocanet, V.I.; Muntean, M.H.; Vlasa, A.; Păcurar, M.; Zetu, I.N.; Soporan, B.I.; Bud, A. Extra-Oral Three-Dimensional (3D) Scanning Evaluation of Three Different Impression Materials—An In Vitro Study. Polymers 2022, 14, 3678. [Google Scholar] [CrossRef] [PubMed]
- Puebla, K.; Arcaute, K.; Quintana, R.; Wicker, R. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid. Prototyp. J. 2012, 18, 374–388. [Google Scholar] [CrossRef]
- Aly, P.; Mohsen, C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020, 14, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Bohner, L.; Hanisch, M.; Canto, G.D.L.; Mukai, E.; Sesma, N.; Neto, P.T.; Tortamano, P. Accuracy of Casts Fabricated by Digital and Conventional Implant Impressions. J. Oral. Implant. 2019, 45, 94–99. [Google Scholar] [CrossRef]
- Bud, E.S.; Bocanet, V.I.; Muntean, M.H.; Vlasa, A.; Bucur, S.M.; Păcurar, M.; Dragomir, B.R.; Olteanu, C.D.; Bud, A. Accuracy of Three-Dimensional (3D) Printed Dental Digital Models Generated with Three Types of Resin Polymers by Extra-Oral Optical Scanning. J. Clin. Med. 2021, 10, 1908. [Google Scholar] [CrossRef]
- Brown, G.B.; Currier, G.F.; Kadioglu, O.; Kierl, J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod Dentofacial. Orthop. 2018, 154, 733–739. [Google Scholar] [CrossRef] [Green Version]
- Fahmy, M.D.; Jazayeri, H.E.; Razavi, M.; Masri, R.; Tayebi, L. Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery. J. Prosthodont. 2016, 25, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesic, D.; Schaefer, B.M.; Sun, Y.; Saulacic, N.; Sailer, I. 3D Printing Approach in Dentistry: The Future for Personalized Oral Soft Tissue Regeneration. J. Clin. Med. 2020, 9, 2238. [Google Scholar] [CrossRef] [PubMed]
The Height of the Tooth | Mesial–Distal Distance | Buccal–Lingual Distance | ||||||
---|---|---|---|---|---|---|---|---|
SLA | DLP | SLA | DLP | SLA | DLP | |||
Precision (RMS) | Mean | 0.016 | 0.020 | 0.042 | 0.023 | 0.031 | 0.026 | |
95% CI | Lower Bound | 0.012 | 0.016 | 0.030 | 0.017 | 0.027 | 0.022 | |
Upper Bound | 0.019 | 0.024 | 0.053 | 0.029 | 0.035 | 0.030 | ||
5% Adjusted average | 0.015 | 0.020 | 0.040 | 0.022 | 0.031 | 0.025 | ||
Median | 0.015 | 0.018 | 0.035 | 0.021 | 0.030 | 0.023 | ||
Standard deviation | 0.007 | 0.008 | 0.021 | 0.011 | 0.012 | 0.012 | ||
Minimum | 0.008 | 0.009 | 0.017 | 0.011 | 0.009 | 0.009 | ||
Maxim | 0.034 | 0.033 | 0.086 | 0.054 | 0.051 | 0.050 | ||
Radius | 0.026 | 0.024 | 0.069 | 0.044 | 0.042 | 0.042 | ||
Interval interquartile | 0.007 | 0.014 | 0.036 | 0.012 | 0.019 | 0.020 | ||
Asymmetry | 1.566 | 0.308 | 0.885 | 1.658 | 0.001 | 0.453 | ||
Kurtoses | 3.440 | −1.057 | −0.353 | 3.736 | −0.799 | −0.774 | ||
Bias | Mean | 0.017 | 0.069 | 0.033 | 0.063 | 0.037 | 0.039 | |
95% CI | Lower Bound | 0.011 | 0.057 | 0.023 | 0.052 | 0.032 | 0.030 | |
Upper Bound | 0.023 | 0.081 | 0.042 | 0.074 | 0.043 | 0.049 | ||
5% Adjusted average | 0.017 | 0.069 | 0.033 | 0.062 | 0.037 | 0.037 | ||
Median | 0.013 | 0.074 | 0.034 | 0.058 | 0.036 | 0.036 | ||
Standard deviation | 0.012 | 0.023 | 0.017 | 0.020 | 0.017 | 0.029 | ||
Minimum | 0.002 | 0.016 | 0.005 | 0.042 | 0.003 | 0.000 | ||
Maximum | 0.036 | 0.112 | 0.060 | 0.107 | 0.067 | 0.136 | ||
Radius | 0.034 | 0.096 | 0.055 | 0.066 | 0.064 | 0.135 | ||
Interval interquartile | 0.022 | 0.029 | 0.025 | 0.027 | 0.025 | 0.040 | ||
Asymmetry | 0.268 | −0.494 | −0.055 | 1.025 | −0.376 | 0.943 | ||
Kurtoses | −1.443 | 1.006 | −0.913 | 0.210 | −0.618 | 1.717 |
Kolmogorov–Smirnov | Shapiro–Wilk | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Statistic | df | p-Value | Statistic | df | p-Value | ||
Precision (RMS) | SLA | Height of the tooth | 0.192 | 16 | 0.119 | 0.876 | 16 | 0.034 |
Mesial–distal dist. | 0.205 | 16 | 0.071 | 0.893 | 16 | 0.062 | ||
Buccal–lingual dist. | 0.096 | 41 | 0.200 | 0.969 | 41 | 0.329 | ||
DLP | Height of the tooth | 0.184 | 16 | 0.15 | 0.938 | 16 | 0.32 | |
Mesial–distal dist. | 0.183 | 16 | 0.158 | 0.855 | 16 | 0.016 | ||
Buccal–lingual dist. | 0.11 | 40 | 0.200 | 0.944 | 40 | 0.047 | ||
Bias | SLA | Height of the tooth | 0.16 | 16 | 0.200 | 0.918 | 16 | 0.159 |
Mesial–distal dist. | 0.104 | 16 | 0.200 | 0.956 | 16 | 0.587 | ||
Buccal–lingual dist. | 0.11 | 41 | 0.200 | 0.961 | 41 | 0.166 | ||
DLP | Height of the tooth | 0.152 | 16 | 0.200 | 0.965 | 16 | 0.749 | |
Mesial–distal dist. | 0.156 | 16 | 0.200 | 0.881 | 16 | 0.041 | ||
Buccal–lingual dist. | 0.1 | 40 | 0.200 | 0.931 | 40 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasa, A.; Bocanet, V.I.; Muntean, M.H.; Bud, A.; Dragomir, B.R.; Rosu, S.N.; Lazar, L.; Bud, E. Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP). Appl. Sci. 2023, 13, 2664. https://doi.org/10.3390/app13042664
Vlasa A, Bocanet VI, Muntean MH, Bud A, Dragomir BR, Rosu SN, Lazar L, Bud E. Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP). Applied Sciences. 2023; 13(4):2664. https://doi.org/10.3390/app13042664
Chicago/Turabian StyleVlasa, Alexandru, Vlad I. Bocanet, Mircea H. Muntean, Anamaria Bud, Bogdan Radu Dragomir, Sorana Nicoleta Rosu, Luminita Lazar, and Eugen Bud. 2023. "Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP)" Applied Sciences 13, no. 4: 2664. https://doi.org/10.3390/app13042664
APA StyleVlasa, A., Bocanet, V. I., Muntean, M. H., Bud, A., Dragomir, B. R., Rosu, S. N., Lazar, L., & Bud, E. (2023). Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP). Applied Sciences, 13(4), 2664. https://doi.org/10.3390/app13042664