A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting
Abstract
:1. Introduction
2. Methodology of the Research
- To discuss the conventional methodology for GWL.
- To explore the current GWL methodologies.
- Deep-learning-based models for GWL.
- Machine -learning-perspectives-based groundwater modeling.
3. Groundwater and Surface Water Data Sources and Availability
4. Groundwater Level Prediction Techniques
4.1. Physically Based Numerical Method—MODFLOW
4.2. Machine Learning—Artificial Neural Networks (ANN)
4.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)
4.4. Genetic Programming (GP)
4.5. Deep Learning
5. Performance Evaluation
6. Future Research Direction and Discussion
6.1. Wavelet-Bi-LSTM (W-Bi-LSTM)
6.2. Wavelet-Bi-LSTM (W-Bi-LSTM)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omar, P.J.; Gaur, S.; Dwivedi, S.B.; Dikshit, P.K.S. Groundwater modelling using an analytic element method and finite difference method: An insight into lower ganga river basin. J. Earth Syst. Sci. 2019, 128, 195. [Google Scholar] [CrossRef] [Green Version]
- Zeydalinejad, N. Artificial neural networks vis-à-vis MODFLOW in the simulation of groundwater: A review. Model. Earth Syst. Environ. 2022, 8, 2911–2932. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Seoni, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comput. Methods Programs Biomed. 2022, 107161. [Google Scholar] [CrossRef]
- Lallahem, S.; Mania, J.; Hani, A.; Najjar, Y. On the use of neural networks to evaluate groundwater levels in fractured media. J. Hydrol. 2005, 307, 92–111. [Google Scholar] [CrossRef]
- Sreekanth, P.D.; Sreedevi, P.D.; Ahmed, S.; Geethanjali, N. Comparison of FFNN and ANFIS models for estimating groundwater level. Environ. Earth Sci. 2011, 62, 1301–1310. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Shahid, M.K.; Pyo, M.; Choi, Y.G. Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation. Membr. Water Treat. 2017, 8, 125–136. [Google Scholar] [CrossRef]
- Shahid, M.K.; Choi, Y. Sustainable Membrane-Based Wastewater Reclamation Employing CO2 to Impede an Ionic Precipitation and Consequent Scale Progression onto the Membrane Surfaces. Membranes 2021, 11, 688. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Fuwad, A.; Choi, Y. Current advances in treatment technologies for removal of emerging contaminants from water—A critical review. Coord. Chem. Rev. 2021, 442, 213993. [Google Scholar] [CrossRef]
- Khan, J.; Kim, K. A Performance Evaluation of the Alpha-Beta (α-β) Filter Algorithm with Different Learning Models: DBN, DELM, and SVM. Appl. Sci. 2022, 12, 9429. [Google Scholar] [CrossRef]
- Khan, J.; Lee, E.; Kim, K. A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network. CAAI Trans. Intell. Technol. 2022. [Google Scholar] [CrossRef]
- Singha, S.; Pasupuleti, S.; Singha, S.S.; Singh, R.; Kumar, S. Prediction of groundwater quality using efficient machine learning technique. Chemosphere 2021, 276, 130265. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Bagula, A.; Vaccari, M. Groundwater prediction using machine-learning tools. Algorithms 2020, 13, 300. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef]
- Fitts, C.R. Groundwater Science; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Younger, P.L. Groundwater in the Environment: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision trees: An overview and their use in medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Palimkar, P.; Shaw, R.N.; Ghosh, A. Machine learning technique to prognosis diabetes disease: Random forest classifier approach. In Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2021; Springer: Singapore, 2022; pp. 219–244. [Google Scholar]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Louppe, G. Understanding random forests: From theory to practice. arXiv 2014, arXiv:1407.7502. [Google Scholar]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Miao, J.; Zhu, W. Precision–recall curve (PRC) classification trees. Evol. Intell. 2022, 15, 1545–1569. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Osman AI, A.; Ahmed, A.N.; Huang, Y.F.; Kumar, P.; Birima, A.H.; Sherif, M.; El-Shafie, A. Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches. Arch. Comput. Methods Eng. 2022, 29, 3843–3859. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Salim, H.; Sungwon, K.; Yaseen, Z.M. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ramachandran, P. Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: Analysis of comparative performances of SVR, ANN and LRM. J. Hydrol. 2018, 558, 647–658. [Google Scholar] [CrossRef]
- Taylor, C.J.; Alley, W.M. Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data; US Geological Survey: Denver, CO, USA, 2001; Volume 1217.
- Suryanarayana, C.; Sudheer, C.; Mahammood, V.; Panigrahi, B.K. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 2014, 145, 324–335. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Busico, G.; Ntona, M.M.; Carvalho, S.C.; Patrikaki, O.; Voudouris, K.; Kazakis, N. Simulating future groundwater recharge in coastal and inland catchments. Water Resour. Manag. 2021, 35, 3617–3632. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. 2012. Available online: http://www.fao.org/geonetwork/srv/en/metadata.show?id14116 (accessed on 1 February 2023).
- Batjes, N.H.; Ribeiro, E.; Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Becker, E. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Colombani, N.; Di Giuseppe, D.; Faccini, B.; Ferretti, G.; Mastrocicco, M.; Coltorti, M. Inferring the interconnections between surface water bodies, tile-drains and an unconfined aquifer–aquitard system: A case study. J. Hydrol. 2016, 537, 86–95. [Google Scholar] [CrossRef]
- Furusho-Percot, C.; Goergen, K.; Hartick, C.; Kulkarni, K.; Keune, J.; Kollet, S. Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Sci. Data 2019, 6, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huscroft, J.; Gleeson, T.; Hartmann, J.; Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 2018, 45, 1897–1904. [Google Scholar] [CrossRef] [Green Version]
- DAAC, L.P. The Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS). 2021. Available online: https://lpdaac.usgs.gov/tools/appeears/ (accessed on 10 February 2023).
- Sutanudjaja, E.H.; Van Beek, R.; Wanders, N.; Wada, Y.; Bosmans, J.H.; Drost, N.; Bierkens, M.F. PCR-GLOBWB 2: A 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 2018, 11, 2429–2453. [Google Scholar] [CrossRef] [Green Version]
- Müller Schmied, H.; Cáceres, D.; Eisner, S.; Flörke, M.; Herbert, C.; Niemann, C.; Döll, P. The global water resources and use model WaterGAP v2. 2d: Model description and evaluation. Geosci. Model Dev. 2021, 14, 1037–1079. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Masood, A.; Almazroui, M.; Rahman, K.U.; Bamaga, O.A.; Kamis, A.S.; Hesham, K. Groundwater share quantification through flood hydrographs simulation using two temporal rainfall distributions. Desalin. Water Treat. 2018, 114, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.S.; Aljarbouh, A.; Fayaz, M.; Qureshi, M.B.; Mashwani, W.K.; Khan, J. An Efficient Methodology for Water Supply Pipeline Risk Index Prediction for Avoiding Accidental Losses. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 385–393. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. Comprehensive review of groundwater scarcity, stress and sustainability index-based assessment. Groundw. Sustain. Dev. 2022, 18, 100782. [Google Scholar] [CrossRef]
- Shukla, P.; Singh, R.M. Groundwater system modelling and sensitivity of groundwater level prediction in Indo-Gangetic Alluvial Plains. In Groundwater; Springer: Singapore, 2018; pp. 55–66. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [PubMed]
- Khan, J.; Fayaz, M.; Hussain, A.; Khalid, S.; Mashwani, W.K.; Gwak, J. An improved alpha beta filter using a deep extreme learning machine. IEEE Access 2021, 9, 61548–61564. [Google Scholar] [CrossRef]
- Lee, E.; Khan, J.; Son, W.-J.; Kim, K. An Efficient Feature Augmentation and LSTM-Based Method to Predict Maritime Traffic Conditions. Appl. Sci. 2023, 13, 2556. [Google Scholar] [CrossRef]
- Nordin NF, C.; Mohd, N.S.; Koting, S.; Ismail, Z.; Sherif, M.; El-Shafie, A. Groundwater quality forecasting modelling using artificial intelligence: A review. Groundw. Sustain. Dev. 2021, 14, 100643. [Google Scholar] [CrossRef]
- Rakhshandehroo, G.R.; Vaghefi, M.; Aghbolaghi, M.A. Forecasting groundwater level in Shiraz plain using artificial neural networks. Arab. J. Sci. Eng. 2012, 37, 1871–1883. [Google Scholar] [CrossRef]
- Nayak, P.; Venkatesh, B.; Krishna, B.; Jain, S.K. Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach. J. Hydrol. 2013, 493, 57–67. [Google Scholar]
- Dawson, C.W.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998, 43, 47–66. [Google Scholar] [CrossRef]
- Krishna, B.; Satyaji Rao, Y.R.; Vijaya, T. Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol. Process. Int. J. 2008, 22, 1180–1188. [Google Scholar] [CrossRef]
- Kouziokas, G.N.; Chatzigeorgiou, A.; Perakis, K. Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. Water Resour. Manag. 2018, 32, 5041–5052. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Zhang, N.; Xiao, C.; Liu, B.; Liang, X. Groundwater depth predictions by GSM, RBF, and ANFIS models: A comparative assessment. Arab. J. Geosci. 2017, 10, 189. [Google Scholar] [CrossRef]
- Bak, G.M.; Bae, Y.C. Groundwater level prediction using ANFIS algorithm. J. Korea Inst. Electron. Commun. Sci. 2019, 14, 1235–1240. [Google Scholar]
- Gong, Y.; Zhang, Y.; Lan, S.; Wang, H. A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour. Manag. 2016, 30, 375–391. [Google Scholar] [CrossRef]
- Khaki, M.; Yusoff, I.; Islami, N. Simulation of groundwater level through artificial intelligence system. Environ. Earth Sci. 2015, 73, 8357–8367. [Google Scholar] [CrossRef]
- Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour. Manag. 2014, 28, 5433–5446. [Google Scholar] [CrossRef]
- Hsu, K.C.; Li, S.T. Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Resour. 2010, 33, 190–200. [Google Scholar] [CrossRef]
- Loboda, N.S.; Glushkov, A.V.; Khokhlov, V.N.; Lovett, L. Using non-decimated wavelet decomposition to analyse time variations of North Atlantic Oscillation, eddy kinetic energy, and Ukrainian precipitation. J. Hydrol. 2006, 322, 14–24. [Google Scholar] [CrossRef]
- Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Behnia, N. A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manag. 2013, 27, 1301–1321. [Google Scholar] [CrossRef]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; Saravanan, S.; Balamurugan, M.; Saravanan, K. Genetic programming based monthly groundwater level forecast models with uncertainty quantifcation. Model Earth Syst. Environ. 2016, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, K. Bayesian neural networks for uncertainty analysis of hydrologic modeling: A comparison of two schemes. Water Resour. Manag. 2012, 26, 2365–2382. [Google Scholar] [CrossRef]
- Shiri, J.; Kisi, O.; Yoon, H.; Lee, K.K.; Hossein Nazemi, A. Predicting groundwater level fuctuations with meteorological efect implications-A comparative study among soft computing techniques. Comput. Geosci. 2013, 56, 32–44. [Google Scholar] [CrossRef]
- Ren, H.; Cromwell, E.; Kravitz, B.; Chen, X. Using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrol. Earth Syst. Sci. 2022, 26, 1727–1743. [Google Scholar] [CrossRef]
- Bowes, B.D.; Sadler, J.M.; Morsy, M.M.; Behl, M.; Goodall, J.L. Forecasting groundwater table in a flood prone coastal city with long short-term memory and recurrent neural networks. Water 2019, 11, 1098. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.J.; Moon, S.H.; Kang, K.G.; Moon, D.C.; Koh, H.J. Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network. Hydrology 2020, 7, 64. [Google Scholar] [CrossRef]
- Javadinejad, S.; Dara, R.; Jafary, F. Modelling groundwater level fluctuation in an Indian coastal aquifer. Water SA 2020, 46, 665–671. [Google Scholar] [CrossRef]
- Moravej, M.; Amani, P.; Hosseini-Moghari, S.M. Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSSVR). Groundw. Sustain. Dev. 2020, 11, 100447. [Google Scholar] [CrossRef]
- Khedri, A.; Kalantari, N.; Vadiati, M. Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. Water Supply 2020, 20, 909–921. [Google Scholar] [CrossRef]
- Seifi, A.; Ehteram, M.; Singh, V.P.; Mosavi, A. Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability 2020, 12, 4023. [Google Scholar] [CrossRef]
- Demirci, M.; Üneş, F.; Körlü, S. Modeling of groundwater level using artificial intelligence techniques: A case study of Reyhanli region in Turkey. Appl. Ecol. Environ. Res. 2019, 17, 2651–2663. [Google Scholar] [CrossRef]
- Djurovic, N.; Domazet, M.; Stricevic, R.; Pocuca, V.; Spalevic, V.; Pivic, R.; Domazet, U. Comparison of groundwater level models based on artificial neural networks and ANFIS. Sci. World J. 2015, 2015, 742138. [Google Scholar] [CrossRef] [Green Version]
- Jalalkamali, A.; Sedghi, H.; Manshouri, M. Monthly groundwater level prediction using ANN and neuro-fuzzy models: A case study on Kerman plain, Iran. J. Hydroinform. 2011, 13, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Sun, A.Y. Predicting groundwater level changes using GRACE data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Ghose, D.K.; Panda, S.S.; Swain, P.C. Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J. Hydrol. 2010, 394, 296–304. [Google Scholar] [CrossRef]
- Shan, L.; Liu, Y.; Tang, M.; Yang, M.; Bai, X. CNN-BiLSTM hybrid neural networks with attention mechanism for well log prediction. J. Pet. Sci. Eng. 2021, 205, 108838. [Google Scholar] [CrossRef]
- Ghasemlounia, R.; Gharehbaghi, A.; Ahmadi, F.; Saadatnejadgharahassanlou, H. Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network. Comput. Electron. Agric. 2021, 191, 106568. [Google Scholar] [CrossRef]
- Yin, J.; Deng, Z.; Ines, A.V.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386. [Google Scholar] [CrossRef]
- Malik, A.; Bhagwat, A. Modelling groundwater level fluctuations in urban areas using artificial neural network. Groundw. Sustain. Dev. 2021, 12, 100484. [Google Scholar] [CrossRef]
- Bahmani, R.; Ouarda, T.B. Groundwater level modeling with hybrid artificial intelligence techniques. J. Hydrol. 2021, 595, 125659. [Google Scholar] [CrossRef]
- Kombo, O.H.; Kumaran, S.; Sheikh, Y.H.; Bovim, A.; Jayavel, K. Long-term groundwater level prediction model based on hybrid KNN-RF technique. Hydrology 2020, 7, 59. [Google Scholar] [CrossRef]
- Iqbal, M.; Naeem, U.A.; Ahmad, A.; Ghani, U.; Farid, T. Relating groundwater levels with meteorological parameters using ANN technique. Measurement 2020, 166, 108163. [Google Scholar] [CrossRef]
- Kenda, K.; Peternelj, J.; Mellios, N.; Kofinas, D.; Čerin, M.; Rožanec, J. Usage of statistical modeling techniques in surface and groundwater level prediction. J. Water Supply Res. Technol. -AQUA 2020, 69, 248–265. [Google Scholar] [CrossRef]
- Cao, Y.; Yin, K.; Zhou, C.; Ahmed, B. Establishment of landslide groundwater level prediction model based on GA-SVM and influencing factor analysis. Sensors 2020, 20, 845. [Google Scholar] [CrossRef] [Green Version]
- Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ. Res. 2020, 190, 110062. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Gupta, P.K.; Patidar, N.; Himanshu, S.K. Ensemble modelling framework for groundwater level prediction in urban areas of India. Sci. Total Environ. 2020, 712, 135539. [Google Scholar] [CrossRef] [PubMed]
- Sharafati, A.; Asadollah SB, H.S.; Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. 2020, 591, 125468. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Delpasand, M.; Loáiciga, H.A. Self-optimizer data-mining method for aquifer level prediction. Water Supply 2020, 20, 724–736. [Google Scholar] [CrossRef]
- Chen, C.; He, W.; Zhou, H.; Xue, Y.; Zhu, M. A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Sci. Rep. 2020, 10, 3904. [Google Scholar] [CrossRef] [Green Version]
- Evans, S.W.; Jones, N.L.; Williams, G.P.; Ames, D.P.; Nelson, E.J. Groundwater Level Mapping Tool: An open source web application for assessing groundwater sustainability. Environ. Model. Softw. 2020, 131, 104782. [Google Scholar] [CrossRef]
- Hasda, R.; Rahaman, M.F.; Jahan, C.S.; Molla, K.I.; Mazumder, Q.H. Climatic data analysis for groundwater level simulation in drought prone Barind Tract, Bangladesh: Modelling approach using artificial neural network. Groundw. Sustain. Dev. 2020, 10, 100361. [Google Scholar] [CrossRef]
- Mohanasundaram, S.; Suresh Kumar, G.; Narasimhan, B. A novel deseasonalized time series model with an improved seasonal estimate for groundwater level predictions. H2Open J. 2019, 2, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Malekzadeh, M.; Kardar, S.; Shabanlou, S. Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundw. Sustain. Dev. 2019, 9, 100279. [Google Scholar] [CrossRef]
- Moghaddam, H.K.; Moghaddam, H.K.; Kivi, Z.R.; Bahreinimotlagh, M.; Alizadeh, M.J. Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels. Groundw. Sustain. Dev. 2019, 9, 100237. [Google Scholar] [CrossRef]
- Gemitzi, A.; Stefanopoulos, K. Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. J. Hydrol. 2011, 403, 130–140. [Google Scholar] [CrossRef]
- Fahimi, F.; Yaseen, Z.M.; El-shafie, A. Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review. Theor. Appl. Climatol. 2017, 128, 875–903. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Addison, P.S.; Murray, K.B.; Watson, J.N. Wavelet transform analysis of open channel wake flows. J. Eng. Mech. 2001, 127, 58–70. [Google Scholar] [CrossRef]
- Cohen, A.; Kovacevic, J. Wavelets: The mathematical background. Proc. IEEE 1996, 84, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Masood, A.; Tariq MA, U.R.; Hashmi MZ, U.R.; Waseem, M.; Sarwar, M.K.; Ali, W.; Ng, A.W. An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques. Water 2022, 14, 565. [Google Scholar] [CrossRef]
- Shahid, M.K.; Mainali, B.; Rout, P.R.; Lim, J.W.; Aslam, M.; Al-Rawajfeh, A.E.; Choi, Y. A Review of Membrane-Based Desalination Systems Powered by Renewable Energy Sources. Water 2023, 15, 534. [Google Scholar] [CrossRef]
Main Terminology | Sub-Terminology | Prediction Possibilities | |
---|---|---|---|
Weather data | Precipitation | Clear, rain or snow | Hourly, daily, weekly, monthly, and yearly |
Temperature | Minimum or maximum, positive or negative | ||
Solar radiation | |||
Relative humidity | |||
Wind speed | |||
Evaporation | |||
Aquifer layers | Saturated and unsaturated zone | ||
Hydraulic conductivity | |||
Transmissivity | |||
Aquifer storage | |||
Number of layers | |||
Thickness | |||
Land cover | Crop, Urban, rural, or industrial | ||
Stream flow | Variation measurement | ||
Soil | Soil texture | ||
Morphology | Digital elevation model (DEM) |
Data Shape | Data Classification | Data Source | Access Date | Availability |
---|---|---|---|---|
Shapefile | Classification of land use | https://land.copernicus.eu/pan-european/corine-land-cov | (10 February 2023) | Europe |
Shapefile | Property of soil classification | https://www.isric.org/explore/wosis | (10 February 2023) | Worldwide |
Shapefile or Vectorial | Rock permeability and porosity | https://borealisdata.ca/dataset.xhtml?persistentId=doi%3A10.5683/SP2/TTJNIU | (10 February 2023) | Worldwide |
Raster | Climatic data | https://apps.ecmwf.int/datasets/ | (10 February 2023) | Worldwide |
Raster | MODIS products | https://appeears.earthdatacloud.nasa.gov/ | (10 February 2023) | Worldwide |
Raster | Digital surface model (DSM) | https://asterweb.jpl.nasa.gov/gdem.asp | (10 February 2023) | Worldwide |
Database | Climatic data | https://swat.tamu.edu/data/cfsr | (10 February 2023) | Worldwide |
Database | Climate projections | https://esgf-data.dkrz.de/search/esgf-dkrz/ | (10 February 2023) | Worldwide |
Database | River network spatial data | https://water.nier.go.kr/web/gisKrf?pMENU_NO=89 | (10 February 2023) | Korea |
Database | National Water Resources Management Comprehensive Information System | http://www.wamis.go.kr/ | (10 February 2023) | Worldwide |
Database | Geographic information | Water Environment Geographic Information | (10 February 2023) | Worldwide |
References | Deep Learning | GP | MODFLOW | ANFIS | ANN |
---|---|---|---|---|---|
P. Shukla and R. M. Singh [49] | ✓ | ||||
Lallahem et al. [4] | ✓ | ||||
Krishna et al. [56] | ✓ | ||||
Sreekanth et al. [5] | ✓ | ✓ | |||
Kouziokas et al. [57] | ✓ | ||||
Zhang et al. [62] | ✓ | ||||
Gong et al. [55] | ✓ | ✓ | |||
Khaki et al. [64] | ✓ | ✓ | |||
Emamgholizadeh et al. [65] | ✓ | ✓ | |||
Kasiviswanathan et al. [69] | ✓ | ||||
Shiri et al. [71] | ✓ | ||||
Zhang et al. [6] | ✓ | ✓ | |||
Ren et al. [72] | ✓ | ||||
bowes et al. [73] | ✓ | ||||
Shin et al. [74] | ✓ | ||||
Javadinejad et al. [75] | ✓ | ||||
Moravej et al. [76] | ✓ | ||||
Khedri et al. [77] | ✓ | ||||
Seifi et al. [78] | ✓ | ||||
Demirci et al. [79] | ✓ | ✓ | |||
Djurovic et al. [80] | ✓ | ||||
Jalalkamali et al. [81] | ✓ | ||||
Zeydalinejad et al. [2] | ✓ | ||||
Mukherjee et al. [32] | ✓ | ||||
Moosavi et al. [68] | ✓ | ||||
Sun et al. [82] | ✓ | ||||
Ghose et al. [83] | ✓ | ||||
Shan et al. [84] | ✓ | ✓ | |||
Ghasemlounia et al. [85] | ✓ | ||||
Yin et al. [86] | ✓ |
Reference | Performance Evaluation Metrices | Prediction | Target Prediction | Year |
---|---|---|---|---|
Ren et al. [72] | MAPE, RMSE, NSE, KGE | Weekly | GWL | 2022 |
Malik and Bhagwat [87] | , RMSE | Annually | GWL fluctuations | 2021 |
Bahmani and Ouarda [88] | RMSE, BIAS , rBIAS | Monthly | GWL | 2021 |
Kombo et al. [89] | MAE,, NSE, RMSE | Daily | GWL | 2020 |
Iqbal et al. [90] | , MAE, MSE | Daily | GWL | 2020 |
Seifi et al. [78] | RMSE, NSE, MAE, PBIAS | Monthly | GWL | 2020 |
Kenda et al. [91] | Daily | GWL/SWL | 2020 | |
Cao et al. [92] | RMSE, R, MAPE | Daily | GWL | 2020 |
Di and Granata [93] | , RAE, MAE, RMSE, RAE | Daily | GWL | 2020 |
Yadav et al. [94] | NMSE, , RMSE, | Monthly | GWL | 2020 |
Sharafati et al. [95] | , NRMSE | Monthly | GWL | 2020 |
Shin et al. [74] | NSE, RMSE | Daily | GWL | 2020 |
Khedri et al. [77] | NSE, MAE, RMSE, R | Monthly | GWL | 2020 |
Bozorg-Haddad et al. [96] | RMSE, | Monthly | GWL | 2020 |
Chen et al. [97] | RMSE, | Monthly | GWL | 2020 |
Evans et al. [98] | MAE | 3-month interval | Depth to GW | 2020 |
Hasda et al. [99] | MSE, | Weekly | GWL | 2020 |
Mohanasundaram et al. [100] | , RMSE | Monthly | GWL | 2019 |
Malekzadeh et al. [101] | Bias, R, VAF, RMSE, SI, MAE, NSE, RMSRE, MAPE | Monthly | GWL | 2019 |
Moghaddam et al. [102] | , RMSE, NSE | Monthly | GWL | 2019 |
Zhang et al. [6] | , RMSE, NSE | Half-hourly | GWL | 2019 |
Gemitzi and Stefanopoulos [103] | MaxAE, MAE | Monthly | GWL | 2011 |
Jalalkamali et al. [81] | , MAPE, RMSE | Monthly | GWL | 2011 |
Ghose et al. [83] | MSE | Daily | GWL | 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, J.; Lee, E.; Balobaid, A.S.; Kim, K. A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Appl. Sci. 2023, 13, 2743. https://doi.org/10.3390/app13042743
Khan J, Lee E, Balobaid AS, Kim K. A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Applied Sciences. 2023; 13(4):2743. https://doi.org/10.3390/app13042743
Chicago/Turabian StyleKhan, Junaid, Eunkyu Lee, Awatef Salem Balobaid, and Kyungsup Kim. 2023. "A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting" Applied Sciences 13, no. 4: 2743. https://doi.org/10.3390/app13042743
APA StyleKhan, J., Lee, E., Balobaid, A. S., & Kim, K. (2023). A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Applied Sciences, 13(4), 2743. https://doi.org/10.3390/app13042743