Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions
Abstract
:1. Introduction
Our Contribution
- We compactly review and discuss the deep learning technique, highlighting its role in driving current AI hype (Section 2.1);
- We connect current AI to the fields of cybersecurity and natural language inference, and through the phenomena of ‘adversarial samples’ and ‘hypothesis-only biases,’ respectively, showcase the limitations of model-centric AI in terms of algorithmic stability and robustness (Section 3.2 and Section 3.3);
- We further motivate a data-centric AI approach by elucidating the effect of the ongoing growth of the IoT, supporting our approach with the latest relevant data (Section 4);
- We reconcile data-centric AI with model-centric AI, providing further arguments for the ‘both/and’ view instead of the evidently suboptimal alternative of the ‘either/or’ perspective (Section 6).
2. Related Work
2.1. Deep Learning: A Model-Centric Key Driver of Current AI
2.1.1. ANN: Learning by Adjusting Weights
2.1.2. Learning over Multiple Levels of Abstraction
2.2. Data: Sustainable Fuel of Current AI
3. Limitations of Model-Centric AI
3.1. Narrow Business Applicability
3.2. Vulnerability to Adversarial Samples
3.3. Low Generalisation Capacity
4. From Model-Centric AI to Data-Centric AI
4.1. Limited Data
4.2. Solution Customisation
4.3. Characteristics of Data-Centric AI
4.4. Ongoing Growth of the IoT
Category | Model-Centric AI | Data-Centric AI | References |
---|---|---|---|
System development lifecycle | Successive upgrade of a model (algorithm/code) with fixed volume and type of data | Continuous improvement in the quality of data with fixed model hyperparameters | [19,20] |
Performance | Performs well only with large datasets | Performs well also with smaller datasets | [37,38,39,54] |
Robustness | Susceptible to adversarial samples | Higher adversarial robustness | [50,57] |
Applicability | Appropriate for testing algorithmic solutions in applications with narrow tasks | Particularly suitable for real-world scenarios phantom phantom phantom phantom | [17,21] |
Generalisation | Limited capacity to generalise across datasets (due to lack of context) | May generalise well to datasets other than the one tested on | [49,51,52,58] |
5. Rules and Criteria for Achieving Data-Centric AI
5.1. Sufficient and Representative Data Inputs
5.2. Unveiling Inherent Contexts through Textual Descriptions
5.3. Continuous Involvement of AI and Business-Domain Experts
5.4. Use of MLOps
6. Reconciling Data-Centric AI with Model-Centric AI
6.1. Data-Centric and Model-Centric AI Can Only Be Two Sides of One Coin
6.2. Problem-Solving Requires Considering Both the How-To (Model) and the What-Is (Data)
6.3. Models’ Limitations Do Not Necessarily Imply the Limitation of Modelling
6.4. Nature Supports Learning of Models
6.5. Together, Data-Centric AI and Model-Centric AI Provide More Robustness and Security
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamid, O.H.; Smith, N.L.; Barzanji, A. Automation, per se, is not job elimination: How artificial intelligence forwards cooperative human–machine coexistence. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Emden, Germany, 24–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 899–904. [Google Scholar]
- Bhatt, S. The Big Fight: RPA vs. Traditional Automation. 2018. Available online: https://www.botreetechnologies.com/blog/the-big-fight-robotic-process-automation-vs-traditional-automation (accessed on 3 January 2023).
- Zhang, X.; Wen, Z. Thoughts on the development of artificial intelligence combined with RPA. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1883, p. 012151. [Google Scholar]
- Khan, Z.A.; Imran, S.A.; Akre, V.; Shahzad, M.; Ahmed, S.; Khan, A.; Rajan, A. Contemporary cutting edge applications of IoT (Internet of Things) in industries. In Proceedings of the 2020 Seventh International Conference on Information Technology Trends (ITT), Abu Dhabi, United Arab Emirates, 25–26 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 30–35. [Google Scholar]
- Thames, L.; Schaefer, D. Industry 4.0: An overview of key benefits, technologies, and challenges. In Cybersecurity for Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–33. [Google Scholar]
- Sadiku, M.N.; Musa, S.M.; Momoh, O.D. Cloud computing: Opportunities and challenges. IEEE Potentials 2014, 33, 34–36. [Google Scholar] [CrossRef]
- Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the Internet of Things. IEEE Access 2017, 6, 6900–6919. [Google Scholar]
- Yuan, L.; He, Q.; Tan, S.; Li, B.; Yu, J.; Chen, F.; Jin, H.; Yang, Y. Coopedge: A decentralized blockchain-based platform for cooperative edge computing. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2245–2257. [Google Scholar]
- Boubin, J.; Banerjee, A.; Yun, J.; Qi, H.; Fang, Y.; Chang, S.; Srinivasan, K.; Ramnath, R.; Arora, A. PROWESS: An Open Testbed for Programmable Wireless Edge Systems; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Durão, L.F.; Haag, S.; Anderl, R.; Schützer, K.; Zancul, E. Digital twin requirements in the context of industry 4.0. In Proceedings of the IFIP International Conference on Product Lifecycle Management, Turin, Italy, 2–4 July 2018; Springer: New York, NY, USA, 2018; pp. 204–214. [Google Scholar]
- Mateev, M. Industry 4.0 and the digital twin for building industry. Industry 4.0 2020, 5, 29–32. [Google Scholar]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine learning and deep learning in smart manufacturing: The smart grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Pareek, P.; Shankar, P.; Pathak, M.P.; Sakariya, M.N. Predicting Music Popularity Using Machine Learning Algorithm and Music Metrics Available in Spotify. Cent. Dev. Econ. Stud. 2022, 9, 10–19. [Google Scholar]
- Murschetz, P.C.; Prandner, D. ‘Datafying’broadcasting: Exploring the role of big data and its implications for competing in a big data-driven tv ecosystem. In Competitiveness in Emerging Markets; Springer: New York, NY, USA, 2018; pp. 55–71. [Google Scholar]
- Moriuchi, E. The Role of Technology in Social Media. In Cross-Cultural Social Media Marketing: Bridging across Cultural Differences; Emerald Publishing Limited: Bingley, UK, 2021. [Google Scholar]
- Smith, N.; Teerawanit, J.; Hamid, O.H. AI-Driven Automation in a Human-Centered Cyber World. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3255–3260. [Google Scholar]
- Hamid, O.H. From Model-Centric to Data-Centric AI: A Paradigm Shift or Rather a Complementary Approach? In Proceedings of the 2022 8th International Conference on Information Technology Trends (ITT), Dubai, United Arab Emirates, 25–26 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 196–199. [Google Scholar]
- Eyuboglu, S.; Karlaš, B.; Ré, C.; Zhang, C.; Zou, J. dcbench: A benchmark for data-centric AI systems. In Proceedings of the Sixth Workshop on Data Management for End-To-End Machine Learning, Philadelphia, PA, USA, 12 June 2022; pp. 1–4. [Google Scholar]
- Ng, A. A Chat with Andrew on MLOps: From Model-Centric to Data-Centric AI. 2021. Available online: https://www.youtube.com/watch?v=06-AZXmwHjo (accessed on 3 January 2023).
- Ng, A. AI Doesn’t Have to Be Too Complicated or Expensive for Your Business. 2021. Available online: https://hbr.org/2021/07/ai-doesnt-have-to-be-too-complicated-or-expensive-for-your-business (accessed on 3 January 2023).
- Mazumder, M.; Banbury, C.; Yao, X.; Karlaš, B.; Rojas, W.G.; Diamos, S.; Diamos, G.; He, L.; Kiela, D.; Jurado, D.; et al. DataPerf: Benchmarks for Data-Centric AI Development. arXiv 2022, arXiv:2207.10062. [Google Scholar]
- McCarthy, J. What is Artificial Intelligence? 1998. Available online: https://cse.unl.edu/~choueiry/S09-476-876/Documents/whatisai.pdf (accessed on 3 January 2023).
- Horvatić, D.; Lipic, T. Human-Centric AI: The Symbiosis of Human and Artificial Intelligence. Entropy 2021, 23, 332. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiol. Phys. Technol. 2020, 13, 6–19. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Moravčík, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science 2017, 356, 508–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Toronto, ON, Canada, 3–10 March 2021; pp. 610–623. [Google Scholar]
- BusinessWire. Data Creation and Replication Will Grow at a Faster Rate Than Installed Storage Capacity, According to the IDC Global DataSphere and StorageSphere Forecasts. 2021. Available online: https://www.businesswire.com/news/home/20210324005175/en/Data-Creation-and-Replication-Will-Grow-at-a-Faster-Rate-Than-Installed-Storage-Capacity-According-to-the-IDC-Global-DataSphere-and-StorageSphere-Forecasts (accessed on 3 January 2023).
- Hack, U. What Is The Real Story behind the Explosive Growth of Data? 2021. Available online: https://www.red-gate.com/blog/database-development/whats-the-real-story-behind-the-explosive-growth-of-data (accessed on 3 January 2023).
- Reinsel, D.; Rydning, J.; Gantz, J.F. Worldwide Global DataSphere Forecast, 2021–2025: The World Keeps Creating More Data—Now, What Do We Do with It All? 2021. Available online: https://www.marketresearch.com/IDC-v2477/Worldwide-Global-DataSphere-Forecast-Keeps-14315439/ (accessed on 3 January 2023).
- Lowe, D. Machine Learning Deserves Better than This. 2021. Available online: https://www.science.org/content/blog-post/machine-learning-deserves-better (accessed on 3 January 2023).
- Navarro, C.L.A.; Damen, J.A.; Takada, T.; Nijman, S.W.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.; et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. BMJ 2021, 375, n2281. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.; Beer, L.; et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 2021, 3, 199–217. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning. 2022. Available online: https://christophm.github.io/interpretable-ml-book (accessed on 3 January 2023).
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial attacks and defenses in deep learning. Engineering 2020, 6, 346–360. [Google Scholar] [CrossRef]
- Fujiyoshi, H.; Hirakawa, T.; Yamashita, T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019, 43, 244–252. [Google Scholar] [CrossRef]
- Sharma, P.; Austin, D.; Liu, H. Attacks on machine learning: Adversarial examples in connected and autonomous vehicles. In Proceedings of the 2019 IEEE International Symposium on Technologies for Homeland Security (HST), Boston, MA USA, 5–6 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Geirhos, R.; Jacobsen, J.H.; Michaelis, C.; Zemel, R.; Brendel, W.; Bethge, M.; Wichmann, F.A. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2020, 2, 665–673. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Chung, H.W.; Kohane, I.S.; Beam, A.L. Adversarial attacks against medical deep learning systems. arXiv 2018, arXiv:1804.05296. [Google Scholar]
- Gururangan, S.; Swayamdipta, S.; Levy, O.; Schwartz, R.; Bowman, S.R.; Smith, N.A. Annotation artifacts in natural language inference data. arXiv 2018, arXiv:1803.02324. [Google Scholar]
- Poliak, A.; Naradowsky, J.; Haldar, A.; Rudinger, R.; Van Durme, B. Hypothesis only baselines in natural language inference. arXiv 2018, arXiv:1805.01042. [Google Scholar]
- Zhang, G.; Bai, B.; Zhang, J.; Bai, K.; Zhu, C.; Zhao, T. Mitigating Annotation Artifacts in Natural Language Inference Datasets to Improve Cross-dataset Generalization Ability. arXiv 2019, arXiv:1909.04242. [Google Scholar]
- Belinkov, Y.; Poliak, A.; Shieber, S.M.; Van Durme, B.; Rush, A.M. Do not take the premise for granted: Mitigating artifacts in natural language inference. arXiv 2019, arXiv:1907.04380. [Google Scholar]
- Motamedi, M.; Sakharnykh, N.; Kaldewey, T. A data-centric approach for training deep neural networks with less data. arXiv 2021, arXiv:2110.03613. [Google Scholar]
- Berscheid, D. Data-Centric Machine Learning: Making Customized ML Solutions Production-Ready. 2021. Available online: https://dida.do/blog/data-centric-machine-learning (accessed on 3 January 2023).
- Morrish, J.; Hatton, M. Global IoT Market to Grow to 24.1 Billion Devices in 2030, Generating $1.5 Trillion Annual Revenue. 2020. Available online: https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030 (accessed on 3 January 2023).
- IoT Business News. Transforma Insights Makes Powerful New IoT Forecast Resource Available for All. 2021. Available online: https://transformainsights.com/news/powerful-new-iot-forecast-tool (accessed on 3 January 2023).
- Ji, X.; Tian, Q.; Yang, Y.; Lin, C.; Li, Q.; Shen, C. Improving Adversarial Robustness with Data-Centric Learning. 2022. Available online: http://alisec-competition.oss-cn-shanghai.aliyuncs.com/competition_papers/20211201/rank5.pdf (accessed on 3 January 2023).
- Hamid, O.H.; Braun, J. Reinforcement learning and attractor neural network models of associative learning. In Computational Intelligence: Proceedings of the 9th International Joint Conference, IJCCI 2017, Funchal-Madeira, Portugal, 1–3 November 2017; Revised Selected Papers; Springer: New York, NY, USA, 2019; pp. 327–349. [Google Scholar]
- van Moorselaar, D.; Slagter, H.A. Inhibition in selective attention. Ann. N. Y. Acad. Sci. 2020, 1464, 204–221. [Google Scholar] [CrossRef]
- Schlegl, T.; Stino, H.; Niederleithner, M.; Pollreisz, A.; Schmidt-Erfurth, U.; Drexler, W.; Leitgeb, R.A.; Schmoll, T. Data-centric AI approach to improve optic nerve head segmentation and localization in OCT en face images. arXiv 2022, arXiv:2208.03868. [Google Scholar]
- Miranda, L.J. Towards Data-Centric Machine Learning: A Short Review. Available online: https://ljvmiranda921.github.io/notebook/2021/07/30/data-centric-ml (accessed on 3 January 2023).
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Krishnan, S.; Wang, J.; Wu, E.; Franklin, M.J.; Goldberg, K. Activeclean: Interactive data cleaning for statistical modeling. Proc. VLDB Endow. 2016, 9, 948–959. [Google Scholar] [CrossRef]
- Vartak, M.; Subramanyam, H.; Lee, W.E.; Viswanathan, S.; Husnoo, S.; Madden, S.; Zaharia, M. ModelDB: A system for machine learning model management. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1–3. [Google Scholar]
- Renggli, C.; Karlaš, B.; Ding, B.; Liu, F.; Schawinski, K.; Wu, W.; Zhang, C. Continuous integration of machine learning models with ease. ml/ci: Towards a rigorous yet practical treatment. Proc. Mach. Learn. Syst. 2019, 1, 322–333. [Google Scholar]
- Zhang, H.; Li, Y.; Huang, Y.; Wen, Y.; Yin, J.; Guan, K. Mlmodelci: An automatic cloud platform for efficient mlaas. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 4453–4456. [Google Scholar]
- Jiang, Y.; Zhu, Y.; Lan, C.; Yi, B.; Cui, Y.; Guo, C. A unified architecture for accelerating distributed {DNN} training in heterogeneous {GPU/CPU} clusters. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), Online, 4–6 November 2020; pp. 463–479. [Google Scholar]
- Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018; pp. 578–594. [Google Scholar]
- Sharma, R.; Allen, J.; Bakhshandeh, O.; Mostafazadeh, N. Tackling the story ending biases in the story cloze test. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia, 15–20 July 2018; pp. 752–757. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming exploration in reinforcement learning with demonstrations. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 6292–6299. [Google Scholar]
- Moerland, T.M.; Broekens, J.; Jonker, C.M. Emotion in reinforcement learning agents and robots: A survey. Mach. Learn. 2018, 107, 443–480. [Google Scholar] [CrossRef] [Green Version]
- Irwin, T. Aristotle’s First Principles; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- LeCun, Y. A Path towards Autonomous Machine Intelligence, Version 0.9. 2. Available online: http://openreview.net (accessed on 27 June 2022).
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Penguin Random House: London, UK, 2018. [Google Scholar]
- Schölkopf, B. Causality for machine learning. In Probabilistic and Causal Inference: The Works of Judea Pearl; ACM Books: New York, NY, USA, 2022; pp. 765–804. [Google Scholar]
- Wang, J.X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.; Soyer, H.; Leibo, J.Z.; Hassabis, D.; Botvinick, M. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 2018, 21, 860–868. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, O.H. Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions. Appl. Sci. 2023, 13, 2753. https://doi.org/10.3390/app13052753
Hamid OH. Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions. Applied Sciences. 2023; 13(5):2753. https://doi.org/10.3390/app13052753
Chicago/Turabian StyleHamid, Oussama H. 2023. "Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions" Applied Sciences 13, no. 5: 2753. https://doi.org/10.3390/app13052753
APA StyleHamid, O. H. (2023). Data-Centric and Model-Centric AI: Twin Drivers of Compact and Robust Industry 4.0 Solutions. Applied Sciences, 13(5), 2753. https://doi.org/10.3390/app13052753