Possibilities of Improving Water Quality of Degraded Lake Affected by Nutrient Overloading from Agricultural Sources by the Multi-Point Aeration Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lake Łajskie
2.2. Oxygenation System
2.3. Methods
- Y—dependent variable (oxygen concentration);
- B0—constant (intercept);
- B1…Bi—regression coefficients;
- X1…Xi—independent variables;
- Eij—residual component;
- R—multiple correlation coefficient;
- R2—multiple determination coefficient.
3. Results and Discussion
3.1. Changes in Oxygen Distribution in Near-Bottom Waters during the Research Period
3.2. Multi-Point Aeration—Strengths and Weaknesses of Restoraation in Unfavorable Morphometry Conditions
3.3. Environmental Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchinson, G.E. A Treatise on Limnology; Yale University: New Haven, CT, USA, 1957. [Google Scholar]
- Vollenweider, R.A. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication; Organisation for Economic Co-Operation and Development: Paris, France, 1968. [Google Scholar]
- Vollenweider, R.A. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 1976, 33, 53–83. [Google Scholar]
- Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/PL/legal-content/summary/good-quality-water-in-europe-eu-water-directive.html (accessed on 22 January 2023).
- Ulén, B.; Bechmann, M.; Fölster, J.; Jarvie, H.P.; Tunney, H. Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: A review. Soil Use Manag. 2007, 23, 5–15. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Haygarth, P.M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 2007, 23, 1–4. [Google Scholar] [CrossRef]
- Foy, R.H. The return of the phosphorus paradigm: Agricultural phosphorus and eutrophication. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy Monograph: Madison, WI, USA, 2005; pp. 911–939. [Google Scholar]
- Kajak, Z. Hydrobiology-Limnology. Freshwater Ecosystems; PWN: Warsaw, Poland, 2001; pp. 139–187. [Google Scholar]
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Mendes, L.R.D. Edge-of-Field Technologies for Phosphorus Retention from Agricultural Drainage Discharge. Appl. Sci. 2020, 10, 634. [Google Scholar]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [Green Version]
- Hupfer, M.; Lewandowski, J. Oxygen Controls the Phosphorus Release from Lake Sediments—A Long-Lasting Paradigm in Limnology. Int. Rev. Hydrobiol. 2008, 93, 415–432. [Google Scholar] [CrossRef]
- Tammeorg, O.; Möls, T.; Niemistö, J.; Holmroos, H.; Horppila, J. The actual role of oxygen deficit in the linkage of the water quality and benthic phosphorus release: Potential implications for lake restoration. Sci. Total Environ. 2017, 599–600, 732–738. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506–509, 135–145. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs, 3rd ed.; Taylor & Francis/CRC Press: Boca Raton, FL, USA, 2005; p. 591. [Google Scholar]
- Klapper, H. Control of Eutrophication in Inland Waters; Ellis Hornwood: New York, NY, USA, 1991; pp. 116–266. [Google Scholar]
- Lossow, K.; Gawrońska, H. Lakes—Review of restoration methods. Munic. Rev. 2000, 9, 91–106. [Google Scholar]
- Kuha, J.K.; Palomäki, A.H.; Keskinen, J.T.; Karjalainen, J.S. Negligible effect of hypolimnetic oxygenation on the trophic state of lake Jyväsjärvi, Finland. Limnologica 2016, 58, 1–6. [Google Scholar] [CrossRef]
- Liboriussen, L.; Søndergaard, S.; Jeppesen, E.; Thorsgaard, I.; Grünfeld, S.; Jakobsen, T.S.; Hansen, K. Effects of hypolimnetic oxygenation on water quality: Results from five Danish lakes. Hydrobiologia 2009, 625, 157–172. [Google Scholar] [CrossRef]
- Siwek, H.; Włodarczyk, M.; Czerniawski, R. Trophic state and oxygen conditions of waters aerated with pulverising aerator: The results from seven lakes in Poland. Water 2018, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Wesołowski, P.; Brysiewicz, A. The effect of pulverising aeration on changes in the oxygen and nitrogen concentrations in water of Lake Starzyc. J. Water Land Dev. 2015, 25, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.; Paschalski, J. Initial limnological characteristics of some lakes in the Masurian Lake District. Sci. Noteb. Agric. Univ. Olszt. 1959, 4, 64–65. [Google Scholar]
- Łopata, M.; Gawrońska, H.; Wiśniewski, G.; Jaworska, B. The trophic state of Lake Łajskie in 2008—Sources of pollution. Anthropog. Nat. Transform. Lakes 2009, 3, 175–180. [Google Scholar]
- University of Warmia and Mazury in Olsztyn. Research of the Quality of Lake Łajskie and Kośno Waters. Stage I. Documentation for the Scientific and Technical Task; University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2019; p. 65. [Google Scholar]
- University of Warmia and Mazury in Olsztyn. Research of the Quality of Lake Łajskie and Kośno Waters. Stage II. Documentation for the Scientific and Technical Task; University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2020; p. 68. [Google Scholar]
- Milewska, A. Morphometric Characteristics and Bathymetry of Lake Łajskie Water Reservoir. Bachelor’s Thesis, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland, 2020. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Water Works Association/Water Pollution Control Federation: Washington, DC, USA, 2005. [Google Scholar]
- Little, J.C. Hypolimnetic aerators: Predicting oxygen transfer and hydrodynamics. Water Res. 1995, 29, 2475–2482. [Google Scholar] [CrossRef]
- Nakamura, Y.; Inoue, T. A theoretical study on operational condition of hypolimnetic aerators. Wat. Sci. Tech. 1996, 34, 211–218. [Google Scholar] [CrossRef]
- Grochowska, J. Proposal for water quality improvement by using an innovative and comprehensive restoration method. Water 2020, 12, 2377. [Google Scholar] [CrossRef]
- Grochowska, J.; Augustyniak, R.; Łopata, M.; Tandyrak, R. Is It Possible to Restore a Heavily Polluted, Shallow, Urban Lake? Appl. Sci. 2020, 10, 3698. [Google Scholar] [CrossRef]
- Kowalczewska-Madura, K.; Dondajewska-Pielka, R.; Gołdyn, R. The Assessment of External and Internal Nutrient Loading as a Basis for Lake Management. Water 2022, 14, 2844. [Google Scholar] [CrossRef]
- Łopata, M.; Augustyniak, R.; Grochowska, J.K.; Parszuto, K.; Płachta, A. Phosphorus in the shallow, urban lake subjected to restoration—Case study of Lake Domowe Duże in Szczytno. Lim. Rev. 2021, 21, 73–79. [Google Scholar] [CrossRef]
- Wiśniewski, R. Restoration of water reservoirs. From practice to theory. In Proceedings of the 5th International Conference “Protection and Restoration of Lakes”, Grudziądz, Poland, 11–13 May 2004; Wiśniewski, R., Ed.; Scientific Society in Toruń: Toruń, Poland, 2004; pp. 239–245. [Google Scholar]
- Böstrom, B.; Andersen, J.M.; Fleisher, S.; Jannson, M. Exchange of phosphorus across the water-sediment interface. Hydrobiologia 1988, 170, 229–244. [Google Scholar] [CrossRef]
- Søndergaard, M. Nutrient Dynamics in Lakes—With Emphasis on Phosphorus, Sediment and Lake Restoration. Ph.D. Thesis, National Environmental Research Institute, University of Aarhus, Aarhus, Denmark, 2007; 276p. [Google Scholar]
- Douglas, G.B.; Hamilton, D.P.; Robb, M.S.; Pan, G.; Spears, B.M.; Lurling, M. Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems. Aquat. Ecol. 2016, 50, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Søndergaard, M.; Lauridsen, T.; Davidson, T.A.; Liu, Z.; Mazzeo, N.; Trochine, C.; Özkan, K.; Jensen, H.S.; Trolle, D.; et al. Biomanipulation as a restoration tool to combat eutrophication: Recent advances and future challenges. Adv. Ecol. Res. 2012, 47, 411–488. [Google Scholar]
- Geris, R.; Kosour, D. Revitalisation of Brno Reservoir in Limnological Aspects. In Proceedings of the International Conference Lakes, Reservoirs and Ponds. Impact–Threats–Conservation, Iława, Poland, 31 May–3 June 2016; Klimaszyk, P., Marszelewski, W., Rzymski, P., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2016; pp. 297–302. [Google Scholar]
- Lindenschmidt, K.-E.; Hamblin, P.F. Hypolimnetic Aeration In Lake Tegel, Berlin. Water Res. 1997, 31, 1619–1628. [Google Scholar] [CrossRef]
- Burris, V.L.; McGinnis, D.F.; Little, J.C. Predicting oxygen transfer and water flow rate in airlift aerators. Water Res. 2002, 32, 4605–4615. [Google Scholar] [CrossRef]
- DeMoyer, C.D.; Schierholz, E.L.; Gulliver, J.S.; Wilhelms, S.C. Impact of bubble and free surface oxygen transfer on diffused aeration systems. Water Res. 2003, 37, 1890–1904. [Google Scholar] [CrossRef]
- Łopata, M.; Wiśniewski, G. The use of surface water flow to improve oxygen conditions in a hypertrophic lake, Global. J. Adv. Pure Appl. Sci. 2013, 1, 687–692. [Google Scholar]
- Łopata, M.; Tandyrak, R.; Augustyniak, R.; Grochowska, J.; Parszuto, K.; Płachta, A. Possibilities of using surface inflows for lakes oxygenation. In Proceedings of the Protection and Restoration of Lakes, Toruń, Poland, 12–14 June 2019; Wiśniewski, R., Kakareko, T., Eds.; Scientific Society in Toruń: Toruń, Poland, 2019; pp. 53–68. [Google Scholar]
- Gantzer, P.A.; Bryant, L.D.; Little, J.C. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs. Water Res. 2009, 43, 1700–1710. [Google Scholar] [CrossRef]
- Tian, X.; Pan, H.; Kongas, P.; Horppila, J. 3D-modelling of the thermal circumstances of a lake under artificial aeration. Appl. Water Sci. 2017, 7, 4169–4176. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Value | Bathymetric Surfaces | ||||
---|---|---|---|---|---|---|---|
Isobath | Area [ha] | Between | Area [ha] | Area [%] | |||
surface area | ha | 47.84 | 0 m | 47.84 | 0–1 m | 4.39 | 9.18 |
volume | thou. m3 | 1592.2 | 1 m | 43.45 | 1–2 m | 7.70 | 16.09 |
max depth | m | 7.4 | 2 m | 35.75 | 2–3 m | 11.62 | 24.28 |
mean depth | m | 3.3 | 3 m | 24.13 | 3–4 m | 8.75 | 18.29 |
relative depth | - | 0.01 | 4 m | 15.37 | 4–5 m | 5.44 | 11.37 |
depth indicator | - | 0.44 | 5 m | 9.94 | 5–6 m | 3.87 | 8.09 |
Max length | m | 987.7 | 6 m | 6.07 | 6–7 m | 4.56 | 9.53 |
Max width | m | 723.3 | 7 m | 1.51 | within 7 m | 1.51 | 3.16 |
shoreline | m | 3283 | |||||
Shoreline development | m/ha | 68.6 |
Point No. | Reactor 1 | Reactor 2 | Reactor 3 | Reactor 4 | ||||||||
V | VI | VIII | V | VI | VIII | V | VI | VIII | V | VI | VIII | |
1 | 0.00 | 0.18 | 0.22 | 0.11 | 0.24 | 0.22 | 0.14 | 0.24 | 0.24 | 0.21 | 0.20 | 0.23 |
2 | 0.06 | 0.63 | 0.49 | 0.11 | 0.50 | 0.55 | 0.11 | 0.51 | 0.56 | 0.14 | 0.21 | 0.21 |
3 | 0.07 | 5.48 | 6.02 | 0.09 | 3.93 | 5.26 | 0.09 | 2.92 | 5.75 | 0.11 | 0.33 | 0.41 |
4 | 0.19 | 0.53 | 0.47 | 0.09 | 0.41 | 0.47 | 0.08 | 0.44 | 0.38 | 0.11 | 4.56 | 5.53 |
5 | 0.89 | 0.55 | 0.41 | 0.09 | 0.24 | 0.14 | 0.06 | 0.22 | 0.23 | 0.07 | 0.53 | 0.47 |
6 | 2.89 | 1.32 | 0.59 | 0.20 | 0.32 | 0.25 | 0.00 | 0.01 | 0.14 | 0.02 | 0.24 | 0.26 |
7 | 0.09 | 0.27 | 0.27 | 0.00 | 0.23 | 0.22 | 0.04 | 0.2 | 0.23 | 0.09 | 0.24 | 0.18 |
8 | 0.09 | 0.23 | 0.16 | 0.06 | 0.55 | 0.63 | 0.05 | 0.51 | 0.66 | 0.09 | 0.47 | 0.54 |
9 | 0.11 | 0.42 | 0.48 | 0.10 | 4.25 | 5.53 | 0.09 | 4.70 | 6.18 | 0.11 | 4.92 | 5.26 |
10 | 0.18 | 4.96 | 5.84 | 0.11 | 0.38 | 0.35 | 0.09 | 0.33 | 0.36 | 0.11 | 0.42 | 0.43 |
11 | 0.86 | 0.95 | 1.06 | 0.21 | 0.32 | 0.24 | 0.10 | 0.20 | 0.18 | 0.12 | 0.20 | 0.20 |
12 | 3.34 | 1.28 | 1.14 | 0.74 | 0.66 | 0.23 | 0.12 | 0.23 | 0.20 | 0.12 | 0.21 | 0.14 |
Point No. | Reactor 5 | Reactor 6 | Reactor 7 | Reactor 8 | ||||||||
V | VI | VIII | V | VI | VIII | V | VI | VIII | V | VI | VIII | |
1 | 0.13 | 0.00 | 0.00 | 0.00 | 0.13 | 0.14 | 0.00 | 0.14 | 0.14 | 0.05 | 0.44 | 0.47 |
2 | 0.12 | 0.00 | 0.06 | 0.00 | 0.12 | 0.14 | 0.00 | 0.36 | 0.51 | 0.02 | 0.22 | 0.31 |
3 | 0.12 | 0.31 | 0.38 | 0.00 | 0.31 | 0.45 | 0.00 | 5.10 | 6.35 | 0.00 | 5.38 | 5.74 |
4 | 0.10 | 5.33 | 6.35 | 0.00 | 5.02 | 6.26 | 0.00 | 0.40 | 0.52 | 0.00 | 0.36 | 0.41 |
5 | 0.10 | 0.58 | 0.70 | 0.08 | 0.58 | 0.53 | 0.00 | 0.18 | 0.26 | 0.00 | 0.00 | 0.00 |
6 | 0.11 | 0.26 | 0.20 | 0.10 | 0.22 | 0.16 | 0.04 | 0.48 | 0.48 | 0.00 | 0.00 | 0.00 |
7 | 0.64 | 0.32 | 0.14 | 0.10 | 0.09 | 0.08 | 0.00 | 0.03 | 0.08 | 0.00 | 0.26 | 0.38 |
8 | 0.20 | 0.20 | 0.14 | 0.05 | 0.14 | 0.14 | 0.00 | 0.31 | 0.28 | 0.00 | 0.43 | 0.47 |
9 | 0.11 | 0.33 | 0.37 | 0.00 | 0.33 | 0.32 | 0.00 | 4.02 | 5.20 | 0.00 | 5.36 | 5.43 |
10 | 0.10 | 5.18 | 5.56 | 0.00 | 5.31 | 5.86 | 0.00 | 0.35 | 0.38 | 0.00 | 0.41 | 0.57 |
11 | 0.06 | 0.63 | 0.69 | 0.00 | 0.57 | 0.63 | 0.00 | 0.03 | 0.06 | 0.00 | 0.06 | 0.22 |
12 | 0.00 | 0.26 | 0.41 | 0.00 | 0.14 | 0.20 | 0.03 | 0.00 | 0.06 | 0.00 | 0.08 | 0.14 |
Point No. | Reactor 1 | Reactor 2 | Reactor 3 | Reactor 4 | ||||||||
V | VI | VIII | V | VI | VIII | V | VI | VIII | V | VI | VIII | |
1 | 0.03 | 0.27 | 0.36 | 0.16 | 0.56 | 0.50 | 0.20 | 0.39 | 0.40 | 0.34 | 0.26 | 0.26 |
2 | 0.10 | 0.80 | 0.78 | 0.16 | 0.78 | 0.89 | 0.12 | 1.02 | 1.17 | 0.21 | 0.27 | 0.28 |
3 | 0.11 | 6.22 | 6.89 | 0.18 | 5.14 | 6.88 | 0.23 | 5.17 | 7.04 | 0.20 | 0.53 | 0.61 |
4 | 0.23 | 0.79 | 0.82 | 0.14 | 0.69 | 0.72 | 0.19 | 0.79 | 0.73 | 0.19 | 5.62 | 7.14 |
5 | 0.94 | 0.67 | 0.80 | 0.13 | 0.49 | 0.39 | 0.13 | 0.64 | 0.70 | 0.16 | 1.12 | 1.27 |
6 | 3.16 | 1.68 | 1.06 | 0.27 | 0.99 | 0.85 | 0.06 | 0.17 | 0.42 | 0.10 | 0.44 | 0.50 |
7 | 0.17 | 0.35 | 0.41 | 0.06 | 0.43 | 0.48 | 0.14 | 0.47 | 0.61 | 0.16 | 0.38 | 0.29 |
8 | 0.13 | 0.35 | 0.40 | 0.10 | 1.02 | 1.17 | 0.17 | 1.19 | 1.43 | 0.17 | 0.89 | 1.16 |
9 | 0.14 | 0.69 | 0.69 | 0.13 | 6.57 | 8.02 | 0.16 | 5.56 | 7.02 | 0.20 | 6.01 | 7.33 |
10 | 0.22 | 6.20 | 7.11 | 0.19 | 0.69 | 0.93 | 0.16 | 0.58 | 0.70 | 0.18 | 0.66 | 0.70 |
11 | 0.96 | 2.16 | 1.56 | 0.30 | 0.73 | 0.70 | 0.16 | 0.49 | 0.43 | 0.20 | 0.42 | 0.40 |
12 | 3.68 | 2.21 | 1.43 | 1.23 | 1.21 | 1.02 | 0.18 | 0.51 | 0.44 | 0.17 | 0.44 | 0.37 |
Point No. | Reactor 5 | Reactor 6 | Reactor 7 | Reactor 8 | ||||||||
V | VI | VIII | V | VI | VIII | V | VI | VIII | V | VI | VIII | |
1 | 0.21 | 0.14 | 0.10 | 0.00 | 0.33 | 0.49 | 0.06 | 0.34 | 0.37 | 0.08 | 0.89 | 0.96 |
2 | 0.24 | 0.14 | 0.12 | 0.00 | 0.37 | 0.44 | 0.02 | 0.56 | 0.78 | 0.06 | 0.68 | 0.73 |
3 | 0.23 | 0.56 | 0.66 | 0.00 | 0.69 | 0.88 | 0.00 | 5.89 | 6.99 | 0.00 | 6.12 | 6.49 |
4 | 0.19 | 6.21 | 7.84 | 0.09 | 6.24 | 7.54 | 0.00 | 0.72 | 0.80 | 0.00 | 0.63 | 0.72 |
5 | 0.17 | 1.23 | 1.32 | 0.17 | 1.12 | 1.21 | 0.00 | 0.29 | 0.34 | 0.00 | 0.22 | 0.28 |
6 | 0.17 | 0.48 | 0.39 | 0.21 | 0.48 | 0.39 | 0.08 | 0.72 | 0.72 | 0.00 | 0.11 | 0.18 |
7 | 1.08 | 0.64 | 0.28 | 0.20 | 0.37 | 0.39 | 0.00 | 0.19 | 0.28 | 0.00 | 0.66 | 0.84 |
8 | 0.42 | 0.40 | 0.30 | 0.17 | 0.39 | 0.37 | 0.00 | 0.44 | 0.59 | 0.00 | 0.89 | 1.12 |
9 | 0.21 | 0.56 | 0.79 | 0.12 | 0.56 | 0.66 | 0.00 | 5.32 | 6.24 | 0.00 | 6.14 | 6.51 |
10 | 0.21 | 6.24 | 7.11 | 0.07 | 6.29 | 6.74 | 0.00 | 0.59 | 0.66 | 0.00 | 0.60 | 0.89 |
11 | 0.16 | 1.14 | 1.34 | 0.00 | 0.99 | 1.14 | 0.02 | 0.11 | 0.28 | 0.00 | 0.34 | 0.52 |
12 | 0.06 | 0.68 | 0.87 | 0.00 | 0.36 | 0.54 | 0.08 | 0.10 | 0.24 | 0.00 | 0.33 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łopata, M.; Grochowska, J.K.; Augustyniak-Tunowska, R.; Tandyrak, R. Possibilities of Improving Water Quality of Degraded Lake Affected by Nutrient Overloading from Agricultural Sources by the Multi-Point Aeration Technique. Appl. Sci. 2023, 13, 2861. https://doi.org/10.3390/app13052861
Łopata M, Grochowska JK, Augustyniak-Tunowska R, Tandyrak R. Possibilities of Improving Water Quality of Degraded Lake Affected by Nutrient Overloading from Agricultural Sources by the Multi-Point Aeration Technique. Applied Sciences. 2023; 13(5):2861. https://doi.org/10.3390/app13052861
Chicago/Turabian StyleŁopata, Michał, Jolanta Katarzyna Grochowska, Renata Augustyniak-Tunowska, and Renata Tandyrak. 2023. "Possibilities of Improving Water Quality of Degraded Lake Affected by Nutrient Overloading from Agricultural Sources by the Multi-Point Aeration Technique" Applied Sciences 13, no. 5: 2861. https://doi.org/10.3390/app13052861
APA StyleŁopata, M., Grochowska, J. K., Augustyniak-Tunowska, R., & Tandyrak, R. (2023). Possibilities of Improving Water Quality of Degraded Lake Affected by Nutrient Overloading from Agricultural Sources by the Multi-Point Aeration Technique. Applied Sciences, 13(5), 2861. https://doi.org/10.3390/app13052861