Addition of Mentha arvensis in Infusions of Cleistocalyx operculatus Improves the Hedonic Score and Retains the High Antioxidant and Anti Lipid-Peroxidation Effects
Abstract
:1. Introduction
2. Materials and methods
2.1. Animals
2.2. Plant Material and Extraction
2.3. Preliminary Phytochemical Screening
2.4. Quantification of Flavonoid and Terpenoid Content
2.4.1. Quantification of Flavonoid Content
2.4.2. Quantification of Terpenoid Content
2.5. Mixing Herbal Remedies
2.5.1. HPLC Determination of Quercetin
2.5.2. GCMS Determination of Menthol
2.5.3. Sensory Analysis Using a 9-Point Hedonic Scale
2.5.4. Effect of Brewing Time on Total Flavonoids and Terpenoids
2.6. Determination of DPPH Radical Scavenging Activity
2.7. Determination of Lipid Peroxidation Inhibitory Effects
3. Results and Discussion
3.1. Phytochemical Analysis of the Pure C. Operculatus Leaf Powder
3.1.1. Phytochemical Screening
3.1.2. Quantification of Total Flavonoids and Terpenoids
3.2. Evaluation of the Infusions of Herbal Mixes
3.2.1. Choice of the Mixture Ratios and Phytochemical Analysis of the Infusions
3.2.2. Sensory Analysis of the Different Infusions
3.2.3. Effect of Brewing Time on Total Flavonoids and Terpenoids of Mix 3
3.2.4. Determination of DPPH Radical Scavenging Activity of Mix 3
3.2.5. Lipid Peroxidation Inhibitory Activity of Herbal Blend Mix 3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pham, G.N.; Nguyen, T.T.T.; Nguyen-Ngoc, H. Ethnopharmacology, Phytochemistry, and Pharmacology of Syzygium nervosum. Evidence-Based Complement. Altern. Med. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, J.; Chankhampan, C.; Kumguan, K.; Manosroi, W.; Manosroi, A. In vitro anti-aging activities of extracts from leaves of Ma Kiang (Cleistocalyx nervosum var.paniala). Pharm. Biol. 2014, 53, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.T.; Van Chuyen, N. Anti-Hyperglycemic Activity of an Aqueous Extract from Flower Buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci. Biotechnol. Biochem. 2007, 71, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Prasanth, M.I.; Brimson, J.M.; Chuchawankul, S.; Sukprasansap, M.; Tencomnao, T. Antiaging, Stress Resistance, and Neuroprotective Efficacies of Cleistocalyx nervosum var. paniala Fruit Extracts Using Caenorhabditis elegans Model. Oxidative Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Taya, S.; Punvittayagul, C.; Inboot, W.; Fukushima, S.; Wongpoomchai, R. Cleistocalyx nervosum Extract Ameliorates Chemical-Induced Oxidative Stress in Early Stages of Rat Hepatocarcinogenesis. Asian Pac. J. Cancer Prev. 2014, 15, 2825–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charoensin, S.; Taya, S.; Wongpornchai, S.; Wongpoomchai, R. Assessment of genotoxicity and antigenotoxicity of an aqueous extract of Cleistocalyx nervosum var. paniala in in vitro and in vivo models. Interdiscip. Toxicol. 2012, 5, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Min, B.-S.; Cuong, T.D.; Lee, J.-S.; Woo, M.-H.; Hung, T.M. Flavonoids from Cleistocalyx operculatus Buds and their Cytotoxic Activity. Bull. Korean Chem. Soc. 2010, 31, 2392–2394. [Google Scholar] [CrossRef] [Green Version]
- Tran, G.-B.; Le, N.-T.T.; Dam, S.-M. Potential Use of Essential Oil Isolated from Cleistocalyx operculatus Leaves as a Topical Dermatological Agent for Treatment of Burn Wound. Dermatol. Res. Pract. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noura, D.D.; Suraj, K.P.; William, N.S. Leaf essential oil composition, antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal. Am. J. Essent. Oils Nat. Prod. 2015, 2, 34–37. [Google Scholar]
- Makkar, M.K.; Sharma, S.; Kaur, H. Evaluation of Mentha arvensis essential oil and its major constituents for fungitoxicity. J. Food Sci. Technol. 2018, 55, 3840–3844. [Google Scholar] [CrossRef]
- Umezu, T. Evaluation of Central Nervous System Acting Effects of Plant-Derived Essential Oils Using Ambulatory Activity in Mice. Pharmacol. Pharm. 2013, 04, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.M.; Nguyen, M.C. Effect of varying processing methods (optimal conditions) on chemical properties of herbal leaf tea produced from “Voi” (Syzygium nervosum) leaves. Food Res. 2022, 6, 191–201. [Google Scholar] [CrossRef]
- Le, N.; Cuong, D.; Thinh, P.; Minh, T.; Manh, T.; Duong, T.-H.; Minh, T.; Oanh, V. Phytochemical Screening and Evaluation of Antioxidant Properties and Antimicrobial Activity against Xanthomonas axonopodis of Euphorbia tirucalli Extracts in Binh Thuan Province, Vietnam. Molecules 2021, 26, 941. [Google Scholar] [CrossRef]
- Aziz, S.; Ahmed, Z.; Hanif, M.; Mohiuddin, S.G.; Khan, S.H.A.; Ahmed, R.; Ghadzi, S.M.S.; Bitar, A.N. Phytochemical screening and enzymatic and antioxidant activities of Erythrina suberosa (Roxb) bark. J. Pharm. Bioallied Sci. 2020, 12, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Improving the Vanillin-Sulphuric Acid Method for Quantifying Total Saponins. Technologies 2018, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Capillas, C.; Herrero, A.; Pintado, T.; Delgado-Pando, G. Sensory Analysis and Consumer Research in New Meat Products Development. Foods 2021, 10, 429. [Google Scholar] [CrossRef]
- Phukhatmuen, P.; Meesakul, P.; Suthiphasilp, V.; Charoensup, R.; Maneerat, T.; Cheenpracha, S.; Limtharakul, T.; Pyne, S.G.; Laphookhieo, S. Antidiabetic and antimicrobial flavonoids from the twigs and roots of Erythrina subumbrans (Hassk.) Merr. Heliyon 2021, 7, e06904. [Google Scholar] [CrossRef]
- Goto, T.; Takahashi, N.; Hirai, S.; Kawada, T. Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism. PPAR Res. 2010, 2010, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Gupta, A.; Pandey, A.K. Calotropis procera Root Extract Has the Capability to Combat Free Radical Mediated Damage. ISRN Pharmacol. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Bezemer, T.M.; van der Putten, W.H.; Brinkman, E.P.; Biere, A. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age. J. Plant Ecol. 2017, 11, 696–708. [Google Scholar] [CrossRef] [Green Version]
- Elger, A.; Lemoine, D.G.; Fenner, M.; Hanley, M.E. Plant ontogeny and chemical defence: Older seedlings are better defended. Oikos 2009, 118, 767–773. [Google Scholar] [CrossRef]
- Moreira, P.; Oliveira, D. Leaf age affects the quality of DNA extracted from Dimorphandra mollis (Fabaceae), a tropical tree species from the Cerrado region of Brazil. Genet. Mol. Res. 2011, 10, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Finimundy, T.C.; Pereira, C.; Dias, M.I.; Caleja, C.; Calhelha, R.C.; Sokovic, M.; Stojković, D.; Carvalho, A.M.; Rosa, E.; Barros, L.; et al. Infusions of Herbal Blends as Promising Sources of Phenolic Compounds and Bioactive Properties. Molecules 2020, 25, 2151. [Google Scholar] [CrossRef]
- Ahmed, J.; Shivhare, U.; Singh, G. Drying Characteristics and Product Quality of Coriander Leaves. Food Bioprod. Process. 2001, 79, 103–106. [Google Scholar] [CrossRef]
- Shohael, A.M.; Ali, M.B.; Yu, K.-W.; Hahn, E.-J.; Paek, K.-Y. Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tissue Organ Cult. (PCTOC) 2006, 85, 219–228. [Google Scholar] [CrossRef]
- Malongane, F.; McGaw, L.J.; Debusho, L.K.; Mudau, F.N. Sensory Characteristics and Volatile Compounds of Herbal Teas and Mixtures of Bush Tea with Other Selected Herbal Teas of South Africa. Foods 2020, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Saklar, S.; Ertas, E.; Ozdemir, I.S.; Karadeniz, B. Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. J. Food Sci. Technol. 2015, 52, 6639–6646. [Google Scholar] [CrossRef] [Green Version]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
Methods | Solvents | Process | Sample | Bibliography |
---|---|---|---|---|
Crude extract | Water, methanol, chloroform, ethanol | Boiling: 100/65/60 °C + sonication | Fruits, leaves | [4,6] |
Fraction | Methanol/water/hexane/EtOAc/CH2Cl2 | Sephadex LH 20 silica gel | Buds | [7] |
Oil leaf extract | Water Chloroform | Hydrodistillation Likens–Nickerson | Leaves | [8,9] |
Test | Methanol | Ethanol | Acetone | Chloroform |
---|---|---|---|---|
Flavonoids | + | + | + | − |
Terpenoids | + | + | + | + |
Alkaloids | − | − | + | − |
Phenols | + | + | + | + |
Saponins | − | + | − | − |
Phytochemicals | Treatment | ||
---|---|---|---|
Young Leaves | Mature Leaves | Old Leaves | |
Flavonoids (mg QE/g) | 2.34 b ± 0.15 | 1.76 c ± 0.04 | 2.73 a ± 0.21 |
Terpenoids (mg SE/g) | 4.00 c ± 0.06 | 4.28 b ± 0.05 | 5.43 a ± 0.19 |
Phytochemicals | Treatment | ||||
---|---|---|---|---|---|
Mix 1 | Mix 2 | Mix 3 | Mix 4 | Mix 5 | |
Flavonoids (mg QE/g) | 1.39 a ± 0.025 | 1.02 c ± 0.029 | 0.99 d ± 0.02 | 0.76 e ± 0.11 | 1.28 b ± 0.015 |
Terpenoids (mg SE/g) | 13.12 d ± 0.26 | 12.8 d ± 0.204 | 14.31 c ± 0.162 | 15.36 b ± 0.243 | 26.36 a ± 0.292 |
Sample/Water | Mix 1 | Mix 2 | Mix 3 | Mix 4 | Mix 5 |
---|---|---|---|---|---|
1/100 | 5.1 bc ± 1.53 | 5.8 abc ± 1.64 | 6.4a±1.63 | 6.1 ab ± 1.61 | 4.8 c ± 1.85 |
1/150 | 4.9 b ± 1.16 | 5.4 b ± 1.18 | 8.5a±0.64 | 6.2 b ± 1.47 | 5 b ± 1.60 |
Phytochemicals | Time (min) | ||
---|---|---|---|
6 | 10 | 60 | |
Flavonoids (mg QE/g) | 1.02 b ± 0.18 | 1.17 b± 0.009 | 1.54 a ± 0.19 |
Terpenoids (mg SE/g) | 12.47 c ± 0.16 | 14.41 a± 0.16 | 13.68 b ± 0.17 |
Samples | IC50 (µg/mL) |
---|---|
Herbal blend Mix 3 | 35.65 ± 0.12 |
Ascorbic acid | 5.11 ± 0.02 |
Samples | IC50 (µg/mL) |
---|---|
Herbal blend Mix 3 | 6.01 ± 0.75 |
Trolox | 27.85 ± 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, T.T.L.; Kieu, L.T.B.; Mai, S.T.T.; Ngoc, D.L.B.; Thuy, L.T.B.; Quyen, N.T.; Anh, T.T.; Huy, L.V.; Phong, N.V.; Duyen, C.T.M.; et al. Addition of Mentha arvensis in Infusions of Cleistocalyx operculatus Improves the Hedonic Score and Retains the High Antioxidant and Anti Lipid-Peroxidation Effects. Appl. Sci. 2023, 13, 2873. https://doi.org/10.3390/app13052873
Minh TTL, Kieu LTB, Mai STT, Ngoc DLB, Thuy LTB, Quyen NT, Anh TT, Huy LV, Phong NV, Duyen CTM, et al. Addition of Mentha arvensis in Infusions of Cleistocalyx operculatus Improves the Hedonic Score and Retains the High Antioxidant and Anti Lipid-Peroxidation Effects. Applied Sciences. 2023; 13(5):2873. https://doi.org/10.3390/app13052873
Chicago/Turabian StyleMinh, Tran Thi Le, Luu Thi Bich Kieu, Son Thi Tuyet Mai, Dang Long Bao Ngoc, Le Thi Bich Thuy, Nguyen Thi Quyen, Ton Trang Anh, Le Van Huy, Nguyen Vu Phong, Chung Thi My Duyen, and et al. 2023. "Addition of Mentha arvensis in Infusions of Cleistocalyx operculatus Improves the Hedonic Score and Retains the High Antioxidant and Anti Lipid-Peroxidation Effects" Applied Sciences 13, no. 5: 2873. https://doi.org/10.3390/app13052873