Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data
Abstract
:1. Introduction
2. Sample Data and Bayesian Matrix
3. The Eigenvector of the DTBM
4. DTBM Completion Algorithm for One Missing Column
5. Missing Multiple Vectors
5.1. Only Missing Posterior Probability
5.2. Both the Posterior and the Likelihood Estimate Have Missing Values
6. Experiments
6.1. Single Column Missing
6.2. Posterior Columns Missing
6.3. Both the Posterior and the Likelihood of Missing
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillars, B.; Davis, W.A.; Hirsch, I.B.; Davis, T.M. Sulphonylurea–metformin combination therapy, cardiovascular disease and all cause mortality: The Fremantle Diabetes Study. Diabetes Obes. Metab. 2010, 12, 757–765. [Google Scholar] [CrossRef]
- Gebrie, D.; Manyazewal, T.; AEjigu, D.; Makonnen, E. Metformin-Insulin versus Metformin-Sulfonylurea Combination Therapies in Type 2 Diabetes: A Comparative Study of Glycemic Control and Risk of Cardiovascular Diseases in Addis Ababa, Ethiopia. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 3345. [Google Scholar] [CrossRef]
- Naqvi, A.A.; Mahmoud, M.A.; AlShayban, D.M.; Alharbi, F.A.; Alolayan, S.O.; Althagfan, S.; Iqbal, M.S.; Farooqui, M.; Ishaqui, A.A.; Elrggal, M.E.; et al. Translation and validation of the Arabic version of the General Medication Adherence Scale (GMAS) in Saudi patients with chronic illnesses. Saudi Pharm. J. 2020, 28, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Albahli, S. Type 2 machine learning: An effective hybrid prediction model for early type 2 diabetes detection. J. Med. Imaging Health Inform. 2020, 10, 1069–1075. [Google Scholar] [CrossRef]
- Kopitar, L.; Kocbek, P.; Cilar, L.; Sheikh, A.; Stiglic, G. Early detection of type 2 diabetes mellitus using machine learning-based prediction models. Sci. Rep. 2020, 10, 11981. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.; Carpenter, J.R.; Morris, T.P.; Sharma, M.; Petersen, I. Ethnic differences in the prevalence of type 2 diabetes diagnoses in the UK: Cross-sectional analysis of the health improvement network primary care database. Clin. Epidemiol. 2019, 11, 1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastie, T.; Mazumder, R.; Lee, J.D.; Zadeh, R. Matrix completion and low-rank SVD via fast alternating least squares. J. Mach. Learn. Res. 2015, 16, 3367–3402. [Google Scholar] [PubMed]
- Vivar, G.; Kazi, A.; Burwinkel, H.; Zwergal, A.; Navab, N.; Ahmadi, S.A. Simultaneous imputation and disease classification in incomplete medical datasets using Multigraph Geometric Matrix Completion (MGMC). arXiv 2020, arXiv:2005.06935. [Google Scholar]
- Chen, J.; Xu, H.; Liu, M.; Zhang, L. Bayesian Matrix Completion for Planning Diabetes Treatment Based on Urban Cases. In Proceedings of the 2022 International Conference on Computational Infrastructure and Urban Planning, Wuhan, China, 22–24 April 2022. [Google Scholar]
- Bhattacharya, S.; Chatterjee, S. Matrix completion with data-dependent missingness probabilities. IEEE Trans. Inf. Theory 2022, 68, 6762–6773. [Google Scholar] [CrossRef]
- Bo, M.; Gallo, S.; Zanocchi, M.; Maina, P.; Balcet, L.; Bonetto, M.; Marchese, L.; Mastrapasqua, A.; Aimonino Ricauda, N. Prevalence, Clinical Correlates, and Use of Glucose-Lowering Drugs among Older Patients with Type 2 Diabetes Living in Long-Term Care Facilities. J. Diabetes Res. 2015, 2015, 174316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Z.; Liu, M.; Xu, X.; Yue, Q. A Data-experience intelligent model to integrate human judging behavior and statistics for predicting diabetes complications. Alex. Eng. J. 2022, 61, 8241–8248. [Google Scholar] [CrossRef]
- Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; et al. Prevalence and treatment of diabetes in China, 2013–2018. JAMA 2021, 326, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Young, F.W.; De Leeuw, J.; Takane, Y. Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika 1976, 41, 505–529. [Google Scholar] [CrossRef]
- Bayes, T. LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
Medication Full Title | Abbreviation |
---|---|
Metformin | M |
Sulphonylureas | S |
Insulin | I |
Metformin + Sulphonylureas | M + S |
Metformin + Insulin | M + I |
Insulin + Sulphonylureas | S + I |
Metformin + Sulphonylureas + Insulin | M + S + I |
Medication Regimens Abbreviation | Probability of Being Used |
---|---|
M | 25.4% |
S | 13.6% |
I | 35.3% |
M + S | 2% |
M + I | 5.5% |
S + I | 3% |
M + S + I | 0.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, L.; Yue, Q. Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data. Appl. Sci. 2023, 13, 3314. https://doi.org/10.3390/app13053314
Liu M, Zhang L, Yue Q. Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data. Applied Sciences. 2023; 13(5):3314. https://doi.org/10.3390/app13053314
Chicago/Turabian StyleLiu, Mandi, Lei Zhang, and Qi Yue. 2023. "Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data" Applied Sciences 13, no. 5: 3314. https://doi.org/10.3390/app13053314
APA StyleLiu, M., Zhang, L., & Yue, Q. (2023). Bayesian Matrix Learning by Principle Eigenvector for Completing Missing Medical Data. Applied Sciences, 13(5), 3314. https://doi.org/10.3390/app13053314