Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potential Free Energy
2.1.1. Relatively Homogeneous Electron Density Interface
2.1.2. Relatively Heterogeneous Electron Density Interface
2.1.3. Relatively Homogeneous Electron Density and Relatively Heterogeneous Electron Density Interface
2.1.4. Summary Equations
- (1)
- if , then
- (2)
- else if , then
- (3)
- else if , then
2.2. Imaging Collagen-Binding Peptides with Quantum Dots on Rat-Tail Type I Collagen
2.2.1. Peptide Synthesis
2.2.2. Collagen–Peptide Sample Preparation
2.2.3. Quantum Dot Binding Assay
2.2.4. Confocal Microscopy
2.2.5. Fluorescent Image Processing
3. Results
3.1. Potential Binding Sites for Collagen Type I Subsequence
3.2. Potential Binding Sites for Collagen Type I Alpha Chain 2
3.3. Experimental Validation of Predicted Peptide
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fratzl, P. Collagen: Structure and Mechanics, an Introduction. In Collagen; Fratzl, P., Ed.; Springer: Boston, MA, USA, 2008; pp. 1–13. [Google Scholar]
- Sun, B. The mechanics of fibrillar collagen extracellular matrix. Cell Rep. Phys. Sci. 2021, 2, 100515. [Google Scholar] [CrossRef]
- Chandra, P.K.; Atala, A.A. Use of Matrix and Seeding With Cells for Vasculature of Organs. In Reference Module in Biomedical Sciences; Reis, R.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 425–446. ISBN 9780128137000. [Google Scholar] [CrossRef]
- Hansen, R.R.; Tipnis, A.A.; White-Adams, T.C.; Di Paola, J.A.; Neeves, K.B. Characterization of collagen thin films for von Willebrand factor binding and platelet adhesion. Langmuir 2011, 27, 13648–13658. [Google Scholar] [CrossRef]
- Hong, M.H.; Lee, J.H.; Jung, H.S.; Shin, H.; Shin, H. Biomineralization of bone tissue: Calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomater Res. 2022, 26, 42. [Google Scholar] [CrossRef]
- Gubbiotti, M.A.; Vallet, S.D.; Ricard-Blum, S.; Iozzo, R.V. Decorin interacting network: A comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol. 2016, 55, 7–21. [Google Scholar] [CrossRef]
- Orgel, J.P.; Eid, A.; Antipova, O.; Bella, J.; Scott, J.E. Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS ONE 2009, 4, e7028. [Google Scholar] [CrossRef] [Green Version]
- Kalamajski, S.; Oldberg, A. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 2010, 29, 248–253. [Google Scholar] [CrossRef]
- Ezeani, M.; Noor, A.; Alt, K.; Lal, S.; Donnelly, P.S.; Hagemeyer, C.E.; Niego, B.E. Collagen-Targeted Peptides for Molecular Imaging of Diffuse Cardiac Fibrosis. JAHA 2021, 10, e022139. [Google Scholar] [CrossRef]
- Federico, S.; Pierce, B.F.; Piluso, S.; Wischke, C.; Lendlein, A.; Neffe, A.T. Design of Decorin-Based Peptides That Bind to Collagen I and their Potential as Adhesion Moieties in Biomaterials. Angew. Chem. Int. Ed. 2015, 54, 10980–10984. [Google Scholar] [CrossRef]
- Xu, Y.; Kirchner, M. Collagen Mimetic Peptides. Bioengineering 2021, 8, 5. [Google Scholar] [CrossRef]
- Fischer, N.G.; Munchow, E.A.; Tamerler, C.; Bottino, M.C.; Aparicio, C. Harnessing biomolecules for bioinspired dental biomaterials. J. Mater. Chem. B 2020, 8, 8713–8747. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, I.; Sharma, A.K.; Kumar, P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front. Bioeng. Biotechnol. 2020, 8, 504. [Google Scholar] [CrossRef] [PubMed]
- Hnilova, M.; Karaca, B.T.; Park, J.; Jia, C.; Wilson, B.R.; Sarikaya, M.; Tamerler, C. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly. Biotechnol. Bioeng. 2012, 109, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Rozhin, P.; Charitidis, C.; Marchesan, S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021, 26, 4084. [Google Scholar] [CrossRef] [PubMed]
- Tamerler, C.; Dincer, S.; Heidel, D.; Zareie, M.H.; Sarikaya, M. Biomimetic multifunctional molecular coatings using engineered proteins. Prog. Org. Coat. 2003, 47, 267–274. [Google Scholar] [CrossRef]
- Tamerler, C.; Sarikaya, M. Genetically Designed Peptide-Based Molecular Materials. Acs Nano 2009, 3, 1606–1615. [Google Scholar] [CrossRef]
- Kosugi, T.; Ohue, M. Solubility-Aware Protein Binding Peptide Design Using AlphaFold. Biomedicines 2022, 10, 1626. [Google Scholar] [CrossRef]
- Arseni, L.; Lombardi, A.; Orioli, D. From Structure to Phenotype: Impact of Collagen Alterations on Human Health. Int. J. Mol. Sci. 2018, 19, 1407. [Google Scholar] [CrossRef] [Green Version]
- San Antonio, J.D.; Jacenko, O.; Fertala, A.; Orgel, J. Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering 2020, 8, 3. [Google Scholar] [CrossRef]
- Domene, C.; Jorgensen, C.; Abbasi, S.W. A perspective on structural and computational work on collagen. Phys. Chem. Chem. Phys. 2016, 18, 24802–24811. [Google Scholar] [CrossRef] [Green Version]
- Gautieri, A.; Vesentini, S.; Redaelli, A.; Buehler, M.J. Hierarchical Structure and Nanomechanics of Collagen Microfibrils from the Atomistic Scale Up. Nano Lett. 2011, 11, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.M.; Katti, K.S.; Katti, D.R. Structural Hierarchy Controls Deformation Behavior of Collagen. Biomacromolecules 2012, 13, 2562–2569. [Google Scholar] [CrossRef]
- Chen, F.; Strawn, R.; Xu, Y. The predominant roles of the sequence periodicity in the self-assembly of collagen-mimetic mini-fibrils. Protein Sci. 2019, 28, 1640–1651. [Google Scholar] [CrossRef] [PubMed]
- Puszkarska, A.M.; Frenkel, D.; Colwell, L.J.; Duer, M.J. Using sequence data to predict the self-assembly of supramolecular collagen structures. Biophys. J. 2022, 121, 3023–3033. [Google Scholar] [CrossRef] [PubMed]
- Cutini, M.; Corno, M.; Costa, D.; Ugliengo, P. How does collagen adsorb on hydroxyapatite? Insights from ab initio simulations on a polyproline type II model. J. Phys. Chem. C 2017, 123, 7540–7550. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.P.; Li, S.Y.; Liu, Z.Y.; Wan, F.P.; Tian, T.Z.; Li, S.; Zhao, D.; Zeng, J.Y. A deep-learning framework for multi-level peptide-protein interaction prediction. Nat. Commun. 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Soltanian, M.; Sadeghi, M.; Ghaemmaghami, S. Non-Smooth Regularization: Improvement to Learning Framework Through Extrapolation. IEEE Trans. Signal Process. 2022, 70, 1213–1223. [Google Scholar] [CrossRef]
- Lv, Z.B.; Ao, C.Y.; Zou, Q. Protein Function Prediction: From Traditional Classifier to Deep Learning. Proteomics 2019, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Heo, L.; Feig, M. High-accuracy protein structures by combining machine-learning with physics-based refinement. Proteins 2020, 88, 637–642. [Google Scholar] [CrossRef]
- Cleves, A.E.; Johnson, S.R.; Jain, A.N. Synergy and Complementarity between Focused Machine Learning and Physics-Based Simulation in Affinity Prediction. J. Chem. Inf. Model. 2021, 61, 5948–5966. [Google Scholar] [CrossRef]
- Selz, K.A.; Samoylova, T.I.; Samoylov, A.M.; Vodyanoy, V.J.; Mandell, A.J. Designing allosteric peptide ligands targeting a globular protein. Biopolym. Orig. Res. Biomol. 2007, 85, 38–59. [Google Scholar] [CrossRef]
- Mekler, L. Specific selective interaction between amino acid groups of polypeptide chains. Biofizika 1969, 14, 581–584. [Google Scholar]
- Štambuk, N.; Konjevoda, P.; Turčić, P.; Kövér, K.; Kujundžić, R.N.; Manojlović, Z.; Gabričević, M. Genetic coding algorithm for sense and antisense peptide interactions. Biosystems 2018, 164, 199–216. [Google Scholar] [CrossRef]
- Lazar, T.; Guharoy, M.; Schad, E.; Tompa, P. Unique Physicochemical Patterns of Residues in Protein-Protein Interfaces. J. Chem. Inf. Model. 2018, 58, 2164–2173. [Google Scholar] [CrossRef]
- Desouza, S.J.; Brentani, R. Collagen Binding-Site in Collagenase Can Be Determined Using the Concept of Sense-Antisense Peptide Interactions. J. Biol. Chem. 1992, 267, 13763–13767. [Google Scholar] [CrossRef]
- Wimley, W.C.; White, S.H. Reversible unfolding of beta-sheets in membranes: A calorimetric study. J. Mol. Biol. 2004, 342, 703–711. [Google Scholar] [CrossRef] [Green Version]
- White, S.H.; Wimley, W.C. Membrane protein folding and stability: Physical principles. Annu. Rev. Bioph. Biom. 1999, 28, 319–365. [Google Scholar] [CrossRef] [PubMed]
- White, S.H.; Wimley, W.C. Hydrophobic interactions of peptides with membrane interfaces. Bba-Rev. Biomembr. 1998, 1376, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Wimley, W.C.; White, S.H. Experimentally determined hydrophobicity scales for membrane proteins. Nat. Struct. Biol. 1996, 3, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Kalamajski, S.; Bihan, D.; Bonna, A.; Rubin, K.; Farndale, R.W. Fibromodulin interacts with collagen cross-linking sites and activates lysyl oxidase. J. Biol. Chem. 2016, 291, 7951–7960. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Meldrum, C.; Cousins, S. Are sense-antisense peptide interactions between HIV-1 (gp120), CD4, and the proto oncogene product P56LCK important? Med. Hypotheses 1992, 38, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Shai, Y.; Flashner, M.; Chaiken, I.M. Anti-sense peptide recognition of sense peptides: Direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography. Biochemistry 1987, 26, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.W.; Wolfenden, R. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry. RNA Biol. 2016, 13, 145–151. [Google Scholar] [CrossRef] [Green Version]
- José, M.V.; Zamudio, G.S.; Morgado, E.R. A unified model of the standard genetic code. R. Soc. Open Sci. 2017, 4, 160908. [Google Scholar] [CrossRef] [Green Version]
- Seligmann, H. Bijective codon transformations show genetic code symmetries centered on cytosine’s coding properties. Theory Biosci. 2018, 137, 17–31. [Google Scholar] [CrossRef]
- Wnętrzak, M.; Błażej, P.; Mackiewicz, D.; Mackiewicz, P. The optimality of the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC Evol. Biol. 2018, 18, 192. [Google Scholar] [CrossRef] [PubMed]
- Zitnay, J.L.; Li, Y.; Qin, Z.; San, B.H.; Depalle, B.; Reese, S.P.; Buehler, M.J.; Yu, S.M.; Weiss, J.A. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides. Nat. Commun. 2017, 8, 14913. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Restrepo, D.; Jung, J.Y.; Su, F.Y.; Liu, Z.; Ritchie, R.O.; McKittrick, J.; Zavattieri, P.; Kisailus, D. Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Adv. Mater. 2019, 31, 1901561. [Google Scholar] [CrossRef]
- Nepal, D.; Kang, S.; Adstedt, K.M.; Kanhaiya, K.; Bockstaller, M.R.; Brinson, L.C.; Buehler, M.J.; Coveney, P.V.; Dayal, K.; El-Awady, J.A.; et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35. [Google Scholar] [CrossRef]
- Buehler, M.J. Multiscale Modeling at the Interface of Molecular Mechanics and Natural Language through Attention Neural Networks. Acc. Chem. Res. 2022, 55, 3387–3403. [Google Scholar] [CrossRef]
- Liu, J.Y.; Meng, Z.F.; Xu, T.Y.; Kuerban, K.; Wang, S.N.; Zhang, X.Y.; Fan, J.J.; Ju, D.W.; Tian, W.Z.; Huang, X.; et al. A SIRP alpha Fc Fusion Protein Conjugated With the Collagen-Binding Domain for Targeted Immunotherapy of Non-Small Cell Lung Cancer. Front. Immunol. 2022, 13, 12. [Google Scholar] [CrossRef]
- Mu, Y.Z.; Ma, S.Q.; Wei, P.F.; Wang, Y.L.; Jing, W.; Zhao, Y.F.; Zhang, L.; Wu, J.Z.; Zhao, B.; Deng, J.Y.; et al. Multifunctional Modification of SIS Membrane with Chimeric Peptides to Promote Its Antibacterial, Osteogenic, and Healing-Promoting Abilities for Applying to GBR. Adv. Funct. Mater. 2021, 31, 2101452. [Google Scholar] [CrossRef]
- Sun, W.J.; Lin, H.; Chen, B.; Zhao, W.X.; Zhao, Y.N.; Dai, J.W. Promotion of peripheral nerve growth by collagen scaffolds loaded with collagen-targeting human nerve growth factor-beta. J. Biomed. Mater. Res. Part A 2007, 83A, 1054–1061. [Google Scholar] [CrossRef]
- Sun, W.J.; Lin, H.; Xie, H.; Chen, B.; Zhao, W.X.; Han, Q.Q.; Zhao, Y.N.; Xiao, Z.F.; Dai, J.W. Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 2007, 25, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.X.; Chen, B.; Li, X.D.; Lin, H.; Sun, W.J.; Zhao, Y.H.; Wang, B.; Zhao, Y.N.; Han, Q.Q.; Dai, J.W. Vascularization and cellularization of collagen scaffolds incorporated with two different collagen-targeting human basic fibroblast growth factors. J. Biomed. Mater. Res. Part A 2007, 82A, 630–636. [Google Scholar] [CrossRef]
- Wahyudi, H.; Reynolds, A.A.; Li, Y.; Owen, S.C.; Yu, S.M. Targeting collagen for diagnostic imaging and therapeutic delivery. J. Control. Release 2016, 240, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Scott, P.G.; McEwan, P.A.; Dodd, C.M.; Bergmann, E.M.; Bishop, P.N.; Bella, J. Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc. Natl. Acad. Sci. USA 2004, 101, 15633–15638. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolym. Orig. Res. Biomol. 1983, 22, 2577–2637. [Google Scholar] [CrossRef]
- Topham, C.M.; Smith, J.C. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues. Comput. Biol. Chem. 2015, 54, 33–43. [Google Scholar] [CrossRef]
- Arcon, J.P.; Modenutti, C.P.; Avendaño, D.; Lopez, E.D.; Defelipe, L.A.; Ambrosio, F.A.; Turjanski, A.G.; Forli, S.; Marti, M.A. AutoDock Bias: Improving binding mode prediction and virtual screening using known protein–ligand interactions. Bioinformatics 2019, 35, 3836–3838. [Google Scholar] [CrossRef] [Green Version]
- Ricci-Lopez, J.; Aguila, S.A.; Gilson, M.K.; Brizuela, C.A. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning. J. Chem. Inf. Model. 2021, 61, 5362–5376. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boone, K.; Cloyd, A.K.; Derakovic, E.; Spencer, P.; Tamerler, C. Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. Appl. Sci. 2023, 13, 3342. https://doi.org/10.3390/app13053342
Boone K, Cloyd AK, Derakovic E, Spencer P, Tamerler C. Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. Applied Sciences. 2023; 13(5):3342. https://doi.org/10.3390/app13053342
Chicago/Turabian StyleBoone, Kyle, Aya Kirahm Cloyd, Emina Derakovic, Paulette Spencer, and Candan Tamerler. 2023. "Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions" Applied Sciences 13, no. 5: 3342. https://doi.org/10.3390/app13053342
APA StyleBoone, K., Cloyd, A. K., Derakovic, E., Spencer, P., & Tamerler, C. (2023). Designing Collagen-Binding Peptide with Enhanced Properties Using Hydropathic Free Energy Predictions. Applied Sciences, 13(5), 3342. https://doi.org/10.3390/app13053342