XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area
Abstract
:1. Introduction
2. Related Works
2.1. Quantitative ED-XRF Analysis of Obsidian Samples
2.2. Obsidian Sources Discrimination by ED-XRF
3. Materials and Methods
3.1. Obsidian Geological Samples
3.2. X-ray Fluorescence Analysis
3.3. Multivariate Analyses
4. Results and Discussion
4.1. Direct Comparison of Spectra and Semi-Quantitative Results
4.2. Multivariate Analyses on Semi-Quantitative Data
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonizzoni, L.; Martinelli, M.C.; Coltelli, M.; Manni, M.; Balestrieri, M.L.; Oddone, M.; Guglielmetti, A. New Perspectives on an “Old” Technique: Lipari Obsidian and Neolithic Communities Investigated by Fission Track Dating. J. Phys. Conf. Ser. 2022, 2204, 012032. [Google Scholar] [CrossRef]
- Avino, P.; Rosada, A. Mediterranean and Near East Obsidian Reference Samples to Establish Artefacts Provenance. Herit. Sci. 2014, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Rotolo, S.G.; Carapezza, M.L.; Correale, A.; Martin, F.F.; Hahn, G.; Hodgetts, A.G.E.; Monica, M.L.; Nazzari, M.; Romano, P.; Sagnotti, L.; et al. Obsidians of Pantelleria (Strait of Sicily): A Petrographic, Geochemical and Magnetic Study of Known and New Geological Sources. Open Archaeol. 2020, 6, 434–453. [Google Scholar] [CrossRef]
- Acquafredda, P.; Andriani, T.; Lorenzoni, S.; Zanettin, E. Chemical Characterization of Obsidians from Different Mediterranean Sources by Non-Destructive SEM-EDS Analytical Method. J. Archaeol. Sci. 1999, 26, 315–325. [Google Scholar] [CrossRef]
- Acquafredda, P.; Micheletti, F.; Muntoni, I.M.; Pallara, M.; Tykot, R.H. Petroarchaeometric Data on Antiparos Obsidian (Greece) for Provenance Study by SEM-EDS and XRF. Open Archaeol. 2019, 5, 18–30. [Google Scholar] [CrossRef]
- Muntoni, I.M.; Micheletti, F.; Mongelli, N.; Pallara, M.; Acquafredda, P. First Evidence in Italian Mainland of Pantelleria Obsidian: Highlights from WD-XRF and SEM-EDS Characterization of Neolithic Artefacts from Galliano Necropolis (Taranto, Southern Italy). J. Archaeol. Sci. Rep. 2022, 45, 103553. [Google Scholar] [CrossRef]
- Francaviglia, V. Characterization of Mediterranean Obsidian Sources by Classical Petrochemical Methods. Charact. Mediterr. Obsidian Sour. Class. Petrochem. Methods 1984, 20, 311–332. [Google Scholar]
- Glascock, M.D.; Braswell, G.E.; Cobean, R.H. A Systematic Approach to Obsidian Source Characterization. In Archaeological Obsidian Studies: Method and Theory; Shackley, M.S., Ed.; Advances in Archaeological and Museum Science; Springer: Boston, MA, USA, 1998; pp. 15–65. ISBN 978-1-4757-9276-8. [Google Scholar]
- Glascock, M.D. A Systematic Approach To Geochemical Sourcing Of Obsidian Artifacts. Sci. Cult 2020, 2, 35–47. [Google Scholar] [CrossRef]
- Giauque, R.D.; Asaro, F.; Stross, F.H.; Hester, T.R. High-Precision Non-Destructive X-ray Fluorescence Method Applicable to Establishing the Provenance of Obsidian Artifacts. X-ray Spectrom. 1993, 22, 44–53. [Google Scholar] [CrossRef]
- Tykot, R.H. Obsidian Studies in the Prehistoric Central Mediterranean: After 50 Years, What Have We Learned and What Still Needs to Be Done? Open Archaeol. 2017, 3, 264–278. [Google Scholar] [CrossRef]
- Macchia, A.; Malorgio, M.; Plattner, S.H.; Tiepolo, M.; Ferretti, M.; Ferro, D.; Campanella, L.; Zarattini, A. The Obsidian Palmarola: Markers of Origin–A Example of Exploratory Data Analysis. In Proceedings of the CMA4CH, Mediterranean Meeting, Application of Multivariate Analysis to Cultural Heritage and Environment 3rd edition, Taorimina, Italy, 26–29 September 2010. [Google Scholar]
- Summerhayes, G.R. Obsidian Network Patterns In Melanesia–Sources, Characterisation and Distribution. Bull. Indo-Pac. Prehistory Assoc. 2009, 29, 109–123. [Google Scholar] [CrossRef]
- Torrence, R.; Neall, V.; Doelman, T.; Rhodes, E.; McKee, C.; Davies, H.; Bonetti, R.; Guglielmetti, A.; Manzoni, A.; Oddone, M.; et al. Pleistocene Colonisation of the Bismarck Archipelago: New Evidence from West New Britain. Archaeol. Ocean. 2004, 39, 101–130. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.J.; Cernicchiaro, G.; Scorzelli, R.B.; Poupeau, G.; Acquafredda, P.; De Francesco, A. Magnetic Properties and 57Fe Mössbauer Spectroscopy of Mediterranean Prehistoric Obsidians for Provenance Studies. J. Non-Cryst. Solids 2003, 323, 188–192. [Google Scholar] [CrossRef]
- Blackman, M.J. Provenance Studies of Middle Eastern Obsidian from Sites in Highland Iran. In Archaeological Chemistry—III; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1984; Volume 205, pp. 19–50. ISBN 978-0-8412-0767-7. [Google Scholar]
- Golitko, M.; Meierhoff, J.; Terrell, J.E. Chemical Characterization of Sources of Obsidian from the Sepik Coast (PNG). Archaeol. Ocean. 2010, 45, 120–129. [Google Scholar] [CrossRef]
- Gratuze, B.; Barrandon, J.N.; Isa, K.A.; Cauvin, M.C. Non-Destructive Analysis of Obsidian Artefacts Using Nuclear Techniques: Investigation of Provenance of Near Eastern Artefacts. Archaeometry 1993, 35, 11–21. [Google Scholar] [CrossRef]
- Cann, J.R.; Renfrew, C. The Characterization of Obsidian and Its Application to the Mediterranean Region. Proc. Prehist. Soc. 1964, 30, 111–133. [Google Scholar] [CrossRef]
- Armitage, G.C.; Reeves, R.D.; Bellwood, P. Source Identification of Archaeological Obsidians in New Zealand. N. Z. J. Sci. 1972, 15, 408–420. [Google Scholar]
- Coote, G.E.; Whitehead, N.E.; McCallum, G.J. A Rapid Method of Obsidian Characterisation by Inelastic Scattering of Protons. J. Radioanal. Chem. 1972, 12, 491–496. [Google Scholar] [CrossRef]
- Bellot-Gurlet, L.; Dorighel, O.; Poupeau, G. Obsidian Provenance Studies in Colombia and Ecuador: Obsidian Sources Revisited. J. Archaeol. Sci. 2008, 35, 272–289. [Google Scholar] [CrossRef]
- Tykot, R.H. Chemical Fingerprinting and Source Tracing of Obsidian: The Central Mediterranean Trade in Black Gold. Acc. Chem. Res. 2002, 35, 618–627. [Google Scholar] [CrossRef]
- Bellot-Gurlet, L.; Bourdonnec, F.-X.L.; Poupeau, G.; Dubernet, S. Raman Micro-Spectroscopy of Western Mediterranean Obsidian Glass: One Step towards Provenance Studies? J. Raman Spectrosc. 2004, 35, 671–677. [Google Scholar] [CrossRef]
- Moutsiou, T. A Compositional Study (PXRF) of Early Holocene Obsidian Assemblages from Cyprus, Eastern Mediterranean. Open Archaeol. 2019, 5, 155–166. [Google Scholar] [CrossRef]
- Tykot, R.H. A Decade of Portable (Hand-Held) X-ray Fluorescence Spectrometer Analysis of Obsidian in the Mediterranean: Many Advantages and Few Limitations. MRS Adv. 2017, 2, 1769–1784. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, M.C.; Tykot, R.H.; Vianello, A. Lipari (Aeolian Islands) Obsidian in the Late Neolithic, Artifacts, Supply and Function. Open Archaeol. 2019, 5, 46–64. [Google Scholar] [CrossRef]
- Tykot, R.H. Geological Sources of Obsidian on Lipari and Artifact Production and Distribution in the Neolithic and Bronze Age Central Mediterranean. Open Archaeol. 2019, 5, 83–105. [Google Scholar] [CrossRef]
- Tykot, R.H. Characterization of the Monte Arci (Sardinia) Obsidian Sources. J. Archaeol. Sci. 1997, 24, 467–479. [Google Scholar] [CrossRef]
- Tykot, R.H. Non-Destructive PXRF on Prehistoric Obsidian Artifacts from the Central Mediterranean. Appl. Sci. 2021, 11, 7459. [Google Scholar] [CrossRef]
- Freund, K.P.; Tykot, R.H.; Vianello, A. Blade Production and the Consumption of Obsidian in Stentinello Period Neolithic Sicily. Comptes Rendus Palevol. 2015, 14, 207–217. [Google Scholar] [CrossRef]
- De Francesco, A.; Bocci, M.; Crisci, G.M.; Francaviglia, V. Obsidian Provenance at Several Italian and Corsican Archaeological Sites Using the Nondestructive X-ray Fluorescence Method. In Obsidian and Ancient Manufactured Glasses; Liritzis, I., Stevenson, C.M., Eds.; University of New Mexico Press: Albuquerque, NM, USA, 2012; pp. 115–129. [Google Scholar]
- Conrey, R.M.; Goodman-Elgar, M.; Bettencourt, N.; Seyfarth, A.; Van Hoose, A.; Wolff, J.A. Calibration of a Portable X-ray Fluorescence Spectrometer in the Analysis of Archaeological Samples Using Influence Coefficients. Geochem. Explor. Environ. Anal. 2014, 14, 291–301. [Google Scholar] [CrossRef]
- Agha-Aligol, D.; Lamehi-Rachti, M.; Oliaiy, P.; Shokouhi, F.; Farahani, M.F.; Moradi, M.; Jalali, F.F. Characterization of Iranian Obsidian Artifacts by PIXE and Multivariate Statistical Analysis. Geoarchaeology 2015, 30, 261–270. [Google Scholar] [CrossRef]
- Prokeš, L.; Vašinová Galiová, M.; Hušková, S.; Vaculovič, T.; Hrdlička, A.; Mason, A.Z.; Neff, H.; Přichystal, A.; Kanický, V. Laser Microsampling and Multivariate Methods in Provenance Studies of Obsidian Artefacts. Chem. Pap. 2015, 69, 761–778. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Galli, A.; Milazzo, M. Direct Evaluation of Self-Absorption Effects in Dark Matrices by Compton Scattering Measurements. X-ray Spectrom. 2000, 29, 443–448. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Galli, A.; Spinolo, G.; Palanza, V. EDXRF Quantitative Analysis of Chromophore Chemical Elements in Corundum Samples. Anal. Bioanal. Chem. 2009, 395, 2021–2027. [Google Scholar] [CrossRef]
- Acquafredda, P. XRF Technique. Phys. Sci. Rev. 2019, 4, 1–20. [Google Scholar] [CrossRef]
- Van Espen, P.; Janssens, K.; Swenters, I. IAEA Computer Manual Series No. 21 (IAEA/CMS/21/CD); IAEA: Vienna, Austria, 2009. [Google Scholar]
- Hughes, R.E. The Coso Volcanic Field Reexamined: Implications for Obsidian Sourcing and Hydration Dating Research. Geoarchaeology 1988, 3, 253–265. [Google Scholar] [CrossRef]
- Tykot, R.H. Inter-Instrumental Calibration and Data Comparison for XRF Analysis of Obsidian and Other Archaeological Materials. In Proceedings of the 43rd International Symposium on Archaeometry, Lisbon, Portugal, 16–20 May 2022. [Google Scholar]
- Saleh, M.; Bonizzoni, L.; Orsilli, J.; Samela, S.; Gargano, M.; Gallo, S.; Galli, A. Application of Statistical Analyses for Lapis Lazuli Stone Provenance Determination by XRL and XRF. Microchem. J. 2020, 154, 104655. [Google Scholar] [CrossRef]
- Durrani, S.A.; Khan, H.A.; Taj, M.; Renfrew, C. Obsidian Source Identification by Fission Track Analysis. Nature 1971, 233, 242–245. [Google Scholar] [CrossRef]
- Chataigner, C.; Badalian, R.; Bigazzi, G.; Cauvin, M.-C.; Jrbashian, R.; Karapetian, S.G.; Norelli, P.; Oddone, M.; Poidevin, J.-L. Provenance Studies of Obsidian Artefacts from Armenian Archaeological Sites Using the Fission-Track Dating Method. J. Non-Cryst. Solids 2003, 323, 167–171. [Google Scholar] [CrossRef]
- Bellot-Gurlet, L.; Bigazzi, G.; Dorighel, O.; Oddone, M.; Poupeau, G.; Yegingil, Z. The Fission-Track Analysis: An Alternative Technique for Provenance Studies of Prehistoric Obsidian Artefacts. Radiat. Meas. 1999, 31, 639–644. [Google Scholar] [CrossRef]
- Bigazzi, G.; Ercan, T.; Oddone, M.; Özdoḡan, M.; Yeḡingil, Z. Application of Fission Track Dating to Archaeometry: Provenance Studies of Prehistoric Obsidian Artifacts. Nucl. Tracks Radiat. Meas. 1993, 22, 757–762. [Google Scholar] [CrossRef]
- Ruschioni, G.; Micheletti, F.; Bonizzoni, L.; Orsilli, J.; Galli, A. FUXYA2020: A Low-Cost Homemade Portable EDXRF Spectrometer for Cultural Heritage Applications. Appl. Sci. 2022, 12, 1006. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Galli, A.; Gondola, M.; Martini, M. Comparison between XRF, TXRF, and PXRF Analyses for Provenance Classification of Archaeological Bricks. X-ray Spectrom. 2013, 42, 262–267. [Google Scholar] [CrossRef]
- Micheletti, F.; Orsilli, J.; Melada, J.; Gargano, M.; Ludwig, N.; Bonizzoni, L. The Role of IRT in the Archaeometric Study of Ancient Glass through XRF and FORS. Microchem. J. 2020, 153, 104388. [Google Scholar] [CrossRef]
- Baxter, M.J. A Review of Supervised and Unsupervised Pattern Recognition in Archaeometry. Archaeometry 2006, 48, 671–694. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 1 February 2023).
- Fernández-Ruiz, R.; García-Heras, M. Study of Archaeological Ceramics by Total-Reflection X-ray Fluorescence Spectrometry: Semi-Quantitative Approach. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1123–1129. [Google Scholar] [CrossRef]
- Idjouadiene, L.; Mostefaoui, T.A.; Djermoune, H.; Ziat, F.; Bonizzoni, L. XRF Analysis of Ancient Numidian Coins: A Comparison between Different Kingdoms. Eur. Phys. J. Plus 2021, 136, 512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonizzoni, L.; Kulchytska, O.; Ruschioni, G. XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area. Appl. Sci. 2023, 13, 3495. https://doi.org/10.3390/app13063495
Bonizzoni L, Kulchytska O, Ruschioni G. XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area. Applied Sciences. 2023; 13(6):3495. https://doi.org/10.3390/app13063495
Chicago/Turabian StyleBonizzoni, Letizia, Oleksandra Kulchytska, and Giulia Ruschioni. 2023. "XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area" Applied Sciences 13, no. 6: 3495. https://doi.org/10.3390/app13063495
APA StyleBonizzoni, L., Kulchytska, O., & Ruschioni, G. (2023). XRF Semi-Quantitative Analysis and Multivariate Statistics for the Classification of Obsidian Flows in the Mediterranean Area. Applied Sciences, 13(6), 3495. https://doi.org/10.3390/app13063495