Author Contributions
Conceptualization, Z.S., D.M.K. and Z.K.; methodology, D.M.K.; software, Z.S., D.M.K. and N.F.; validation, D.M.K., S.H., T.A. and K.-I.K.; formal analysis, Z.S., D.M.K. and N.F.; investigation, D.M.K., T.A. and A.A.; resources, S.H. and K.-I.K.; data curation, D.M.K., S.H., T.A. and N.F.; writing—original draft preparation, Z.S. and N.F.; writing—review and editing, D.M.K., S.H., K.-I.K., T.A. and Z.K.; visualization, Z.S. and N.F. supervision, D.M.K.; project administration, D.M.K., T.A. and K.-I.K.; funding acquisition K.-I.K. All authors have read and agreed to the published version of the manuscript.
Figure 1.
Plots of the CDF (left) and the SF (right) of the NGLog–Weib model.
Figure 1.
Plots of the CDF (left) and the SF (right) of the NGLog–Weib model.
Figure 2.
Plots of the PDF of the NGLog–Weib model.
Figure 2.
Plots of the PDF of the NGLog–Weib model.
Figure 3.
Plots of the HF of the NGLog–Weib model.
Figure 3.
Plots of the HF of the NGLog–Weib model.
Figure 4.
For dataset 1, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 4.
For dataset 1, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 5.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 1.
Figure 5.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 1.
Figure 6.
For dataset 2, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 6.
For dataset 2, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 7.
Estimated PDF, CDF, HF, CHF, SF, PP plot and QQ plot of the NGLog–Weib distribution for dataset 2.
Figure 7.
Estimated PDF, CDF, HF, CHF, SF, PP plot and QQ plot of the NGLog–Weib distribution for dataset 2.
Figure 8.
For dataset 3, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 8.
For dataset 3, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 9.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 3.
Figure 9.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 3.
Figure 10.
For dataset 4, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 10.
For dataset 4, the (a) histogram, (b) kernel density plot, (c) TTT plot, (d) violin plot, and (e) box plot.
Figure 11.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 4.
Figure 11.
Estimated PDF, CDF, HF, CHF, SF, PP plot, and QQ plot of the NGLog–Weib distribution for dataset 4.
Table 2.
SRs of the NGLog–Weib distribution for Set I and Set II.
Table 2.
SRs of the NGLog–Weib distribution for Set I and Set II.
n | Est. | | |
---|
MLE | MSE | Bias | MLE | MSE | Bias |
---|
25 | | 1.5067 | 5.922 | 1.007 | 2.932 | 4.041 | −0.268 |
| 2.754 | 0.707 | 0.354 | 2.715 | 0.381 | 0.015 |
| 3.626 | 0.780 | 0.026 | 4.237 | 0.811 | 0.437 |
50 | | 1.431 | 5.088 | 0.931 | 2.904 | 3.893 | −0.295 |
| 2.645 | 0.384 | 0.245 | 2.660 | 0.275 | −0.039 |
| 3.495 | 0.598 | −0.105 | 4.178 | 0.684 | 0.378 |
75 | | 1.458 | 4.680 | 0.928 | 2.978 | 3.791 | −0.222 |
| 2.608 | 0.298 | 0.238 | 2.643 | 0.201 | −0.057 |
| 3.443 | 0.481 | −0.157 | 4.094 | 0.612 | 0.293 |
100 | | 1.461 | 4.513 | 0.910 | 2.919 | 3.396 | −0.281 |
| 2.614 | 0.273 | 0.214 | 2.639 | 0.182 | −0.061 |
| 3.429 | 0.430 | −0.170 | 4.093 | 0.551 | 0.283 |
200 | | 1.112 | 2.531 | 0.611 | 3.045 | 2.730 | −0.156 |
| 2.533 | 0.157 | 0.143 | 2.656 | 0.119 | −0.044 |
| 3.511 | 0.284 | −0.106 | 4.019 | 0.424 | 0.219 |
300 | | 1.112 | 1.767 | 0.442 | 3.069 | 2.412 | −0.131 |
| 2.543 | 0.114 | 0.098 | 2.654 | 0.099 | −0.046 |
| 3.494 | 0.223 | −0.079 | 3.962 | 0.336 | 0.162 |
400 | | 0.886 | 1.457 | 0.387 | 3.123 | 1.921 | −0.078 |
| 2.481 | 0.098 | 0.081 | 2.665 | 0.078 | −0.034 |
| 3.519 | 0.196 | −0.080 | 3.923 | 0.263 | 0.123 |
500 | | 0.788 | 1.112 | 0.288 | 3.156 | 1.780 | −0.044 |
| 2.463 | 0.078 | 0.063 | 2.669 | 0.069 | −0.031 |
| 3.548 | 0.167 | −0.052 | 3.904 | 0.233 | 0.104 |
600 | | 0.733 | 0.883 | 0.233 | 3.185 | 1.644 | −0.015 |
| 2.444 | 0.064 | 0.044 | 2.674 | 0.059 | −0.026 |
| 3.559 | 0.144 | −0.042 | 3.881 | 0.201 | 0.081 |
700 | | 0.719 | 0.804 | 0.219 | 3.221 | 1.529 | 0.021 |
| 2.443 | 0.061 | 0.043 | 2.686 | 0.054 | −0.014 |
| 3.553 | 0.132 | −0.048 | 3.866 | 0.191 | 0.065 |
800 | | 0.679 | 0.678 | 0.179 | 3.124 | 1.415 | −0.076 |
| 2.439 | 0.054 | 0.039 | 2.671 | 0.051 | −0.029 |
| 3.569 | 0.118 | −0.030 | 3.892 | 0.172 | 0.052 |
900 | | 0.712 | 0.669 | 0.162 | 3.222 | 1.211 | 0.022 |
| 2.448 | 0.051 | 0.037 | 2.690 | 0.043 | −0.009 |
| 3.555 | 0.116 | −0.045 | 3.850 | 0.137 | 0.040 |
1000 | | 0.675 | 0.600 | 0.145 | 3.208 | 1.052 | 0.008 |
| 2.437 | 0.048 | 0.027 | 2.691 | 0.036 | −0.009 |
| 3.568 | 0.106 | −0.032 | 3.849 | 0.118 | 0.039 |
Table 3.
SRs of the NGLog–Weib distribution for Set III and Set IV.
Table 3.
SRs of the NGLog–Weib distribution for Set III and Set IV.
n | Est. | | |
---|
MLE | MSE | Bias | MLE | MSE | Bias |
---|
25 | | 1.941 | 4.911 | 0.994 | 2.397 | 4.383 | 0.969 |
| 3.467 | 0.757 | 0.356 | 4.136 | 0.579 | 0.236 |
| 4.386 | 0.522 | −0.105 | 4.508 | 0.453 | −0.092 |
50 | | 1.880 | 4.354 | 0.843 | 2.404 | 4.113 | 0.903 |
| 3.416 | 0.439 | 0.236 | 4.079 | 0.398 | 0.179 |
| 4.390 | 0.490 | −0.075 | 4.426 | 0.493 | −0.174 |
75 | | 1.850 | 3.834 | 0.741 | 2.206 | 3.476 | 0.736 |
| 3.414 | 0.304 | 0.167 | 4.047 | 0.319 | 0.147 |
| 4.394 | 0.486 | −0.114 | 4.477 | 0.424 | −0.123 |
100 | | 1.846 | 3.539 | 0.680 | 2.224 | 3.408 | 0.723 |
| 3.417 | 0.234 | 0.116 | 4.028 | 0.269 | 0.128 |
| 4.386 | 0.465 | −0.109 | 4.453 | 0.417 | −0.147 |
200 | | 1.577 | 2.338 | 0.377 | 1.971 | 2.353 | 0.471 |
| 3.361 | 0.136 | 0.061 | 3.966 | 0.149 | 0.066 |
| 4.477 | 0.358 | −0.023 | 4.522 | 0.313 | −0.078 |
300 | | 1.613 | 2.059 | 0.329 | 1.908 | 1.849 | 0.374 |
| 3.359 | 0.112 | 0.044 | 3.971 | 0.114 | 0.045 |
| 4.438 | 0.329 | −0.041 | 4.527 | 0.267 | −0.071 |
400 | | 1.487 | 1.695 | 0.287 | 1.837 | 1.559 | 0.355 |
| 3.339 | 0.103 | 0.039 | 3.949 | 0.082 | 0.044 |
| 4.468 | 0.289 | −0.032 | 4.539 | 0.234 | −0.074 |
500 | | 1.363 | 1.220 | 0.163 | 1.794 | 1.223 | 0.232 |
| 3.318 | 0.072 | 0.018 | 3.942 | 0.067 | 0.034 |
| 4.506 | 0.242 | 0.006 | 4.545 | 0.203 | −0.034 |
600 | | 1.404 | 1.114 | 0.144 | 1.778 | 1.140 | 0.208 |
| 3.325 | 0.064 | 0.025 | 3.943 | 0.059 | 0.034 |
| 4.486 | 0.221 | −0.014 | 4.542 | 0.191 | −0.058 |
700 | | 1.366 | 0.979 | 0.116 | 1.659 | 0.911 | 0.159 |
| 3.319 | 0.059 | 0.019 | 3.919 | 0.050 | 0.021 |
| 4.495 | 0.201 | −0.005 | 4.589 | 0.166 | −0.011 |
800 | | 1.298 | 0.861 | 0.078 | 1.705 | 0.909 | 0.135 |
| 3.307 | 0.049 | 0.004 | 3.921 | 0.046 | 0.021 |
| 4.524 | 0.194 | 0.024 | 4.566 | 0.155 | −0.034 |
900 | | 1.293 | 0.789 | 0.075 | 1.581 | 0.763 | 0.081 |
| 3.304 | 0.037 | 0.003 | 3.904 | 0.039 | 0.019 |
| 4.514 | 0.180 | 0.013 | 4.608 | 0.149 | 0.008 |
1000 | | 1.318 | 0.681 | 0.061 | 1.649 | 0.679 | 0.049 |
| 3.306 | 0.033 | −0.007 | 3.918 | 0.033 | 0.018 |
| 4.509 | 0.157 | 0.009 | 4.579 | 0.126 | −0.021 |
Table 4.
SRs of the NGLog–Weib distribution for Set V and Set VI.
Table 4.
SRs of the NGLog–Weib distribution for Set V and Set VI.
n | Est. | | |
---|
MLE | MSE | Bias | MLE | MSE | Bias |
---|
25 | | 1.912 | 5.439 | 0.512 | 1.856 | 5.523 | 0.656 |
| 3.739 | 0.662 | 0.239 | 0.765 | 0.148 | 0.073 |
| 1.071 | 0.079 | 0.071 | 1.065 | 0.082 | 0.065 |
50 | | 1.839 | 4.769 | 0.439 | 1.813 | 4.927 | 0.613 |
| 3.642 | 0.429 | 0.142 | 0.768 | 0.122 | 0.068 |
| 1.048 | 0.059 | 0.048 | 1.033 | 0.056 | 0.033 |
75 | | 1.852 | 4.411 | 0.392 | 1.727 | 4.380 | 0.527 |
| 3.594 | 0.324 | 0.094 | 0.758 | 0.109 | 0.058 |
| 1.032 | 0.048 | 0.031 | 1.018 | 0.044 | 0.018 |
100 | | 1.764 | 4.034 | 0.364 | 1.649 | 3.721 | 0.449 |
| 3.562 | 0.259 | 0.062 | 0.753 | 0.091 | 0.053 |
| 1.033 | 0.043 | 0.028 | 1.016 | 0.038 | 0.016 |
200 | | 1.696 | 2.981 | 0.297 | 1.523 | 2.986 | 0.323 |
| 3.527 | 0.160 | 0.027 | 0.731 | 0.074 | 0.031 |
| 1.019 | 0.031 | 0.019 | 1.015 | 0.031 | 0.015 |
300 | | 1.539 | 2.221 | 0.209 | 1.443 | 2.177 | 0.243 |
| 3.497 | 0.122 | −0.003 | 0.725 | 0.057 | 0.025 |
| 1.024 | 0.026 | 0.015 | 1.012 | 0.024 | 0.012 |
400 | | 1.530 | 1.952 | 0.135 | 1.319 | 1.726 | 0.119 |
| 3.503 | 0.102 | 0.009 | 0.707 | 0.046 | 0.007 |
| 1.021 | 0.022 | 0.015 | 1.019 | 0.020 | 0.012 |
500 | | 1.580 | 1.657 | 0.120 | 1.311 | 1.526 | 0.094 |
| 3.515 | 0.087 | 0.002 | 0.703 | 0.041 | 0.004 |
| 1.011 | 0.018 | 0.011 | 1.019 | 0.019 | 0.010 |
600 | | 1.506 | 1.381 | 0.072 | 1.223 | 1.217 | 0.088 |
| 3.499 | 0.071 | −0.005 | 0.695 | 0.034 | −0.005 |
| 1.014 | 0.017 | 0.009 | 1.022 | 0.016 | 0.009 |
700 | | 1.472 | 1.148 | 0.010 | 1.273 | 1.106 | 0.073 |
| 3.495 | 0.059 | −0.014 | 0.703 | 0.031 | 0.003 |
| 1.015 | 0.014 | 0.002 | 1.015 | 0.015 | 0.005 |
800 | | 1.410 | 1.055 | −0.009 | 1.209 | 0.954 | 0.053 |
| 3.486 | 0.056 | −0.023 | 0.694 | 0.028 | 0.002 |
| 1.022 | 0.013 | 0.009 | 1.018 | 0.013 | 0.001 |
900 | | 1.368 | 0.927 | 0.007 | 1.284 | 0.798 | 0.084 |
| 3.476 | 0.052 | −0.001 | 0.707 | 0.024 | 0.002 |
| 1.023 | 0.011 | 0.005 | 1.009 | 0.012 | 0.001 |
1000 | | 1.431 | 0.878 | 0.002 | 1.253 | 0.688 | 0.026 |
| 3.496 | 0.049 | −0.004 | 0.702 | 0.019 | −0.003 |
| 1.014 | 0.009 | 0.004 | 1.012 | 0.011 | 0.011 |
Table 6.
The , , , , and values for infected guinea pigs data (dataset 1).
Table 6.
The , , , , and values for infected guinea pigs data (dataset 1).
Models | | | | | | |
---|
NGLog–Weib | 0.014 | 0.978 | 9.322 | - | - | - |
APTra–Weib | 0.003 | 6.818 | 1.190 | - | - | - |
NExpo–Weib | 0.004 | 1.040 | - | - | - | - |
MO–Weib | 0.002 | 1.243 | - | - | - | 2.372 |
FRL–Weib | 0.003 | 1.223 | - | - | - | 8.160 |
Kumar–Weib | 0.014 | 0.938 | - | 3.760 | 1.334 | - |
Table 7.
The GFMs and p-values of the competing models for infected guinea pigs data (dataset 1).
Table 7.
The GFMs and p-values of the competing models for infected guinea pigs data (dataset 1).
Models | CM | AD | KS | p-Values |
---|
NGLog–Weib | 0.079 | 0.092 | 0.086 | 0.665 |
APTra–Weib | 0.804 | 0.138 | 0.171 | 0.029 |
NExpo–Weib | 0.089 | 0.522 | 0.295 | 0.067 |
MO–Weib | 0.161 | 0.941 | 0.173 | 0.027 |
FRLog–Weib | 0.192 | 1.124 | 0.182 | 0.017 |
Kumar–Weib | 0.082 | 0.523 | 0.092 | 0.580 |
Table 8.
The DMs of the competing models for infected guinea pigs data (dataset 1).
Table 8.
The DMs of the competing models for infected guinea pigs data (dataset 1).
Models | AIC | BIC | CAIC | HQIC |
---|
NGLog–Weib | 856.654 | 863.485 | 857.007 | 859.373 |
APTra–Weib | 864.127 | 870.957 | 864.479 | 866.846 |
NExpo–Weib | 902.709 | 907.262 | 902.883 | 904.521 |
MO–Weib | 865.711 | 872.541 | 866.064 | 868.430 |
FRLog–Weib | 868.085 | 874.915 | 868.438 | 870.804 |
Kumar–Weib | 859.492 | 868.599 | 860.089 | 863.117 |
Table 9.
The , , , , and for head and neck cancer data (dataset 2).
Table 9.
The , , , , and for head and neck cancer data (dataset 2).
Models | | | | | | |
---|
NGLog–Weib | 0.707 | 0.325 | 53.292 | - | - | - |
APTra–Weib | 0.003 | 0.245 | 0.993 | - | - | - |
NExpo–Weib | 0.003 | 1.023 | - | - | - | - |
MO–Weib | 0.003 | 1.001 | - | - | - | 0.508 |
FRL–Weib | 0.029 | 0.762 | - | - | - | 5.722 |
Kumar–Weib | 0.416 | 0.459 | - | 12.665 | 0.490 | - |
Table 10.
The GFMs and p-values of the competing models for head and neck cancer data (dataset 2).
Table 10.
The GFMs and p-values of the competing models for head and neck cancer data (dataset 2).
Models | CM | AD | KS | p-Values |
---|
NGLog–Weib | 0.020 | 0.128 | 0.062 | 0.992 |
APTra–Weib | 0.093 | 0.554 | 0.106 | 0.672 |
NExpo–Weib | 0.087 | 0.515 | 0.101 | 0.727 |
MO–Weib | 0.095 | 0.562 | 0.113 | 0.593 |
FRLog–Weib | 0.191 | 1.096 | 0.134 | 0.379 |
Kumar–Weib | 0.022 | 0.136 | 0.065 | 0.985 |
Table 11.
The DMs of the competing models for head and neck cancer, dataset 2.
Table 11.
The DMs of the competing models for head and neck cancer, dataset 2.
Models | AIC | BIC | CAIC | HQIC |
---|
NGLog–Weib | 560.793 | 566.146 | 561.393 | 562.778 |
APTra–Weib | 567.772 | 573.124 | 568.371 | 569.757 |
NExpo–Weib | 565.157 | 568.725 | 565.450 | 566.480 |
MO–Weib | 568.208 | 573.562 | 568.808 | 570.194 |
FRLog–Weib | 572.884 | 578.236 | 573.484 | 574.869 |
Kumar–Weib | 562.711 | 569.848 | 563.737 | 565.358 |
Table 12.
The , , , , and values for COVID-19 data (dataset 3).
Table 12.
The , , , , and values for COVID-19 data (dataset 3).
Models | | | | | | |
---|
NGLog–Weib | 0.477 | 1.481 | 22.931 | - | - | - |
APTra–Weib | 0.206 | 171.542 | 1.954 | - | - | - |
NExpo–Weib | 0.004 | 3.909 | - | - | - | - |
MO–Weib | 0.039 | 2.833 | - | - | - | 1.928 |
FRLog–Weib | 0.008 | 3.569 | - | - | - | −0.544 |
Kumar–Weib | 0.695 | 1.064 | - | 13.024 | 2.112 | - |
Table 13.
The GFMs and p-values of the competing models for COVID-19 data (dataset 3).
Table 13.
The GFMs and p-values of the competing models for COVID-19 data (dataset 3).
Models | CM | AD | KS | p-Values |
---|
NGLog–Weib | 0.092 | 0.536 | 0.106 | 0.813 |
APTra–Weib | 0.103 | 0.582 | 0.123 | 0.649 |
NExpo–Weib | 0.137 | 0.794 | 0.144 | 0.446 |
MO–Weib | 0.182 | 1.035 | 0.141 | 0.474 |
FRL–Weib | 0.163 | 0.937 | 0.148 | 0.411 |
Kumar–Weib | 0.093 | 0.539 | 0.106 | 0.795 |
Table 14.
The DMs of the competing models for COVID-19 data (dataset 3).
Table 14.
The DMs of the competing models for COVID-19 data (dataset 3).
Models | AIC | BIC | CAIC | HQIC |
---|
NGLog–Weib | 102.028 | 106.778 | 102.778 | 103.686 |
APTra–Weib | 103.616 | 108.366 | 104.366 | 105.274 |
NExpo–Weib | 104.294 | 107.461 | 104.657 | 105.399 |
MO–Weib | 109.443 | 114.195 | 110.193 | 111.101 |
FRLog–Weib | 108.532 | 113.283 | 109.282 | 110.190 |
Kumar–Weib | 104.002 | 110.336 | 105.292 | 106.213 |
Table 15.
The , , , , and values for the patients receiving analgesics’ data (dataset 4).
Table 15.
The , , , , and values for the patients receiving analgesics’ data (dataset 4).
Models | | | | | | |
---|
NGLog–Weib | 2.091 | 1.009 | 78.683 | - | - | - |
APTra–Weib | 0.021 | 0.016 | 3.620 | - | - | - |
NExpo–Weib | 0.046 | 3.323 | - | - | - | - |
MO–Weib | 0.003 | 4.408 | - | - | - | 0.044 |
FRLog–Weib | 0.005 | −0.986 | - | - | - | 4.828 |
Kumar–Weib | 2.349 | 1.469 | - | 33.285 | 0.339 | - |
Table 16.
The GFMs and p-values of the competing models for the patients receiving analgesics’ data (dataset 4).
Table 16.
The GFMs and p-values of the competing models for the patients receiving analgesics’ data (dataset 4).
Models | CM | AD | KS | p-Values |
---|
NGLog–Weib | 0.058 | 0.344 | 0.146 | 0.850 |
APTra–Weib | 0.132 | 0.779 | 0.158 | 0.701 |
NExpo–Weib | 0.153 | 0.904 | 0.181 | 0.527 |
MO–Weib | 0.076 | 0.457 | 0.165 | 0.802 |
FRLog–Weib | 0.141 | 0.852 | 0.223 | 0.273 |
Kumar–Weib | 0.060 | 0.359 | 0.156 | 0.833 |
Table 17.
The DMs of the competing models for the patients receiving analgesics’ data (dataset 4).
Table 17.
The DMs of the competing models for the patients receiving analgesics’ data (dataset 4).
Models | AIC | BIC | CAIC | HQIC |
---|
NGLog–Weib | 38.699 | 41.687 | 40.199 | 39.282 |
APTra–Weib | 43.418 | 46.404 | 44.917 | 44.000 |
NExpo–Weib | 42.936 | 44.927 | 43.642 | 43.325 |
MO–Weib | 40.781 | 43.769 | 42.283 | 41.363 |
FRLog–Weib | 44.704 | 47.691 | 46.203 | 45.286 |
Kumar–Weib | 39.924 | 43.907 | 42.591 | 40.702 |