Compost Fertilization in Organic Agriculture—A Comparison of the Impact on Corn Plants Using Field Spectroscopy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mollier, A.; Pellerin, S. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 1999, 50, 487–497. [Google Scholar] [CrossRef]
- Plénet, D.; Lemaire, G. Relationship between dynamics of nitroegen uptake and dry matter accumulation in maize crops. Detremination of critical N concentration. Plant Soil 1999, 216, 65–82. [Google Scholar] [CrossRef]
- Federolf, C.P.; Westerschulte, M.; Olfs, H.W.; Broll, G.; Trautz, D. Assesing crop performance in maize field trials using a vegetation index. Open Agric. 2018, 3, 250–263. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/aa6cd5/meta (accessed on 26 September 2022). [CrossRef]
- Erisman, J.W.; Galloway, J.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 2011, 3, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.J.M.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Blanke, J.; Boke-Olén, N.; Olin, S.; Chang, J.; Sahlin, U.; Lindeskog, M.; Lehsten, V. Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands. PLoS ONE 2018, 13, e0201058. [Google Scholar] [CrossRef] [Green Version]
- Bleken, M.A.; Steinshamn, H.; Hansen, S. High Nitrogen Costs of Dairy Production in Europe: Worsened by Intensification. Ambio A J. Hum. Environ. 2005, 34, 598–606. [Google Scholar] [CrossRef]
- van Grinsven, H.J.M.; ten Berge, H.F.M.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B.H.; Lalor, S.T.J.; Lesschen, J.P.; et al. Management regulation and environmental impacts of nitrogen fertilization in northwestern Europe under Nitrates Directive; a benchmark study. Biogeosciences 2012, 9, 5143–5160. [Google Scholar] [CrossRef] [Green Version]
- Heuwinkel, H.; Gutser, R.; Schmidhalter, U. Auswirkung einer Mulch-Statt Schnittnutzung von Kleegras auf Die N-Flüsse in Einer Fruchtfolge. In Tagungsband—Forschung für den Ökologischen Landbau in Bayern; Bayerische Landesanstalt für Landwirtschaft: Freising, Germany, 2005; pp. 71–79. Available online: https://lfl.bayern.de/mam/cms07/publikationen/daten/schriftenreihe/p_19819.pdf (accessed on 26 September 2022).
- Reinsch, T.; Loges, R.; Kluß, C.; Taube, F. Renovation and conversion of permanent grass-clover swards to pasture or crops: Effects on annual N2O emissions in the year after ploughing. Soil Tillage Res. 2018, 175, 119–129. [Google Scholar] [CrossRef]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.-J. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutr. Cycle Agroecosyst. 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Küstermann, B.; Christen, O.; Hülsbergen, K.-J. Modeling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric. Ecosyst. Environ. 2010, 135, 70–80. [Google Scholar] [CrossRef]
- Migliorini, P.; Moschini, V.; Tittarelli, F.; Ciaccia, C.; Benedettelli, S.; Vazzana, C.; Canali, S. Agronomic performance, carbon storage and nitrogen utilisation of long-term organic and conventional stockless arable systems in Mediterranean area. Eur. J. Agron. 2014, 52, 138–145. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agriculture systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Möller, K. Soil fertility status and nutrient input-output flows of specialised organic cropping systems: A review. Nutr. Cycle Agroecosyst. 2018, 112, 147–164. [Google Scholar] [CrossRef]
- Brock, C.; Oltmanns, M.; Matthes, C.; Schmehe, B.; Schaaf, H.; Burghardt, D.; Horst, H.; Spieß, H. Compost as an Option for Sustainable Crop Production at Low Stocking Rates in Organic Farming. Agronomy 2021, 11, 1078. [Google Scholar] [CrossRef]
- Dede, C.; Ozer, H.; Dede, O.H.; Celebi, A.; Ozdemir, S. Recycling Nutrient-Rich Municipal Wastes into Ready-to-Use Potting Soil: An Approach for the Sustainable Resource Circularity with Inorganic Porous Materials. Horticulturae 2023, 9, 203. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, N.; Lin, Y.; Zhan, Y.; Ding, X.; Liu, Y.; Zhang, A.; Ding, G.; Xu, T.; Li, J. Recycling of nutrients froom organic waste by advanced compost technology—A case study. Bioresour. Technol. 2021, 337, 125411. [Google Scholar] [CrossRef]
- Shaji, H.; Chandran, V.; Mathew, L. Chapter 13—Organic Fertilizers as a Route to Controlled Release of Nutrients. In Controlled Release Fertilizers for Sustainable Agriculture; Volova, L., Rakhimol, T., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 231–245. [Google Scholar] [CrossRef]
- Hartl, W.; Erhart, E. Crop nitrogen recovery and soil nitrogen dynamics in a 10-year field experiment with biowaste compost. J. Plant Nutr. Soil Sci. 2005, 168, 781–788. [Google Scholar] [CrossRef]
- Ros, G.H.; Hanegraaf, M.C.; Hoffland, E.; van Riemsdijk, W.H. Predicting soil N-mineralization: Relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 2011, 43, 1714–1722. [Google Scholar] [CrossRef]
- Baxter, S.J.; Oliver, M.A.; Gaunt, J. A geostatical analysis of the spatial variation of soil mineral nitrogen and potentially available nitrogen within an arable field. J. Precis. Agric. 2003, 4, 213–226. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1984; ISBN 0471870927. [Google Scholar]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Rambo, L.; Ma, B.L.; Xiong, Y.; Regis Ferreira da Silva, P. Leaf and canopy optical characteristics as crop-N-status indicators for field nitrogen management in corn. J. Plant Nutr. Soil Sci. 2010, 173, 434–443. [Google Scholar] [CrossRef]
- Maidl, F.-X. Verfahren zur Bestimmung des Düngerbedarfs, Insbesondere des Stickstoff-Düngerbedarfs und Vorrichtung zur Durchführung des Verfahrens. German Patent DE102011050877A1, 6 June 2011. [Google Scholar]
- Spicker, A. Entwicklung von Verfahren der Teilflächenspezifischen Stickstoffdüngung zu Wintergerste (Hordeum vulgare) und Winterraps (Brassica napus L.) auf Grundlage Reflexionsoptischer Messungen. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2016. Available online: https://mediatum.ub.tum.de/doc/1292540/1292540.pdf (accessed on 20 September 2020).
- Osborne, S.L.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R. Detection of Phosphorus and Nitrogen deficiencies in Corn Using Spectral Radiance Measurements. Agron. J. 2002, 94, 1215–1221. [Google Scholar] [CrossRef] [Green Version]
- Winterhalter, L.; Mistele, B.; Japatong, S.; Schmidhalter, U. High-Throughput Sensing of Aerial Biomass and Above-Ground Nitrogen Uptake in the Vegetative Stage of well-Watered and Drought Stressed Tropical Maize Hybrids. Crop Sci. 2011, 51, 479–489. [Google Scholar] [CrossRef]
- Barret, F.; Houlès, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Herrera, J.; Rubio, G.; Häner, L.; Delgado, J.; Lucho-Constantino, C.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Doughtry, C.S.T.; Upchurch, D.R. Remote Sensing for Cop Management. Photogramm. Eng. Remote Sens. 2003, 6, 647–664. [Google Scholar] [CrossRef] [Green Version]
- Link, A.; Panitzki, M.; Reusch, S. Hydro-N-Sensor: Tractor-mounted remote sensing for variable nitrogen fertilization. In Proceedings of the 6th International Conference on Precision Agriculture and Other Precision Resources Management, Minneapolis, MN, USA, 14–17 July 2002; pp. 1012–1017. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of the Retrogradation of Natural Vegetation. 1974, Final Report Type III, Greenbelt, NSA-GSFC, 1–371. Available online: https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf (accessed on 20 September 2021).
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Xia, T.; Miao, Y.; Wu, D.; Shao, H.; Khosla, R.; Mi, G. Active Optical Sensing of Spring Maize for In-Season Diagnosis of Nitrogen Status Based on Nitrogen Nutrition Index. Remote Sens. 2016, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Yao, X.; Jia, W.; Tian, Y.; Ni, J.; Cao, W.; Zhu, Y. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Above-Ground Plant Nitrogen Uptake in Winter Wheat. Sensors 2013, 13, 3109–3130. [Google Scholar] [CrossRef] [Green Version]
- Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’état des couverts vegetaux. In Proceedings of the 4th International Colloquium on Spectral Signatures in Remote Sensing, Aussois, France, 18–22 January 1988; pp. 279–286. [Google Scholar]
- Mistele Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Sticksel, E.; Schächtl, J.; Huber, G.; Liebler, J.; Maidl, F.X. Diurnal variation in hyperspectral vegetation indices related to winter wheat biomass formation. Precis. Agric. 2004, 5, 509–520. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchantis, V.; Bonfil, D.J. Ground Level LAI Assessment of Wheat and Potatoe Crops by Sentinel-2 Bands. European Space Agency, (Special Publication) ESA SP. 707. Available online: https://researchgate.net/profile/Arnon-Karnieli/publication/285987056_Ground_level_LAI_assessment_of_wheat_And_potatoe_crops_by_Sentinel-2_bands/links/5aa3b4f90f7e9badd9a8249c/Ground-level-LAI-assesment-of-wheat-and-potaote-crops-by-sentinel-2-bands.pdf (accessed on 26 September 2022).
- Tavakolo, H.; Mohtasebi, S.S.; Alimardi, R.; Gebbers, R. Evaluation of different sensing approaches concerning to nondestructive estimation of leave area index (LAI) for winter wheat. Int. J. Smart Sens. Intell. Syst. 2017, 7, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Anbaufläche von Getreide Weltweit. Available online: https://de.statista.com/statistic/daten/studie/28883/umfrage/anbaufläche-von-getreide-weltweit/ (accessed on 20 September 2022).
- Anbaufläche von Biomais seit 2007 Versiebenfacht. 2021. Available online: https://www.bwagrar.de/Pflanzenbau/Ackerbau/Anbauflaeche-von-Biomais-seit-2007-versiebenfacht,QUIEPTcwMzUwNjUmTUIEPTUyOTIw.html (accessed on 20 September 2022).
- Trautmann, N.; Olynciw, E. Compost Microorganisms. 1996, Cornell Composting—Science and Engineering, Cornell Waste Management Institute, Cornell University. Available online: https://compost.css.cornell.edu/microorg.html (accessed on 26 September 2022).
- Meier, U. Entwicklungsstadien Mono- und Dikotyler Pflanzen—BBCH Monografie, 2001, Biologische Bundesanstalt für Land- und Forstwirtschaft, 2. Auflage; pp. 1–15. Available online: https://openagrar.de/servlets/MCRFileNodeServlet/openagrar_derivate_00010429/BBCH-Skala_de.pdf (accessed on 20 September 2021).
- Maidl, F.X.; Schächtl, J.; Huber, G. Strategies for Site-Specific Nitrogen Fertilization on Winter Wheat. In Proceedings of the 7th International Conference on Precision Agriculture and Other Precision Resources Management, Hyatt Regency, Minneapolis, MN, USA, 25–28 July 2004. [Google Scholar]
- Maidl, F.X. Einsatz von N-Sensoren zur Maisdüngung. In Mais; DLG-Verlag GmbH: Frankfurt am Main, Germany, 2012; pp. 18–20. [Google Scholar]
- Huete, A.R.; Jackson, R.D. Soil and Atmosphere Influences on the Spectra of Partial Canopies. Remote Sens. Environ. 1988, 25, 89–105. [Google Scholar] [CrossRef]
- Ruicheng, Q.; Shang, W.; Man, Z.; Han, L.; Hong, S.; Gang, L.; Minzan, L. Sensors for measuring plant phenotyping: A review. Int. J. Agric. Biol. Eng. 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kipp, S.; Mistele, B.; Baresel, P.; Schmidhalter, U. High-throughput phenotyping early plant vigour of winter wheat. Eur. J. Agron. 2014, 52, 271–278. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Mechanisms of Nitrogen Use in Maize. Agronomy 2018, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Crespo, C.; Martínez, R.D.; Wyngaard, N.; Divito, G.; Cuesta, N.M.; Barbieri, P. Nitrogen diagnosis for double-cropped maize. Eur. J. Agron. 2022, 140, 12660. [Google Scholar] [CrossRef]
- Scharf, P.; Wiebold, W.; Lory, J. Corn Yield Response to Nitrogen Fertilizer Timing and Deficiency Level. Agron. J. 2002, 94, 435–441. [Google Scholar] [CrossRef]
- Siqueira, R.; Mandal, D.; Longchamps, L.; Khosla, R. Assessing Nitrogen Variability at Early Stages of Maize Using Mobile Fluorescence Sensing. Remote Sens. 2022, 14, 5077. [Google Scholar] [CrossRef]
- Hülsbergen, K.J.; Maidl, F.X.; Mittermayer, M.; Weng, J.; Kern, A. Digital Basiertes Stickstoffmanagement in Landwirtschaftlichen Betrieben—Emissionsminderung Durch Optimierte Stickstoffkreisläufe und Sensorgestützte Teilflächenspezifische Düngung; Projektbericht; Technische Universität München: Munich, Germany, 2020; Available online: https://dbu.de/OPAC/ab/DBU-Abschlussbericht-AZ-30743_01-Hauptbericht.pdf (accessed on 20 September 2022).
- Mahapatra, S.; Ali, M.H.; Samal, K. Assessment of compost maturity-stability indices and recent development of composting bin. Energy Nexus 2022, 6, 100062. [Google Scholar] [CrossRef]
- Muscolo, A.; Papalia, T.; Setterini, G.; Mallamaci, C.; Jeske-Kaczanowska, A. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. J. Clean. Prod. 2018, 195, 93–101. [Google Scholar] [CrossRef]
- Zou, J.M. The effect of Different C/N Ratios on the Composting of Pig Manure and Edible Fungus Residue with Rice Bran. Compost. Sci. Util. 2017, 25, 120–129. [Google Scholar] [CrossRef]
- Wild, B.; Schnecker, J.; Alves, R.J.E.; Barsukov, P.; Bárta, J.; Čapek, P.; Gentsch, N.; Gittel, A.; Guggenberger, G.; Lashinsky, N.; et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol. Biochem. 2014, 75, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Maslov, M.N.; Maslova, O.A. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. CATENA 2022, 210, 105922. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Chang, S.X. Temperature sensitivity of soil carbon and nitrogen mineralization: Impacts of nitrogen species and land use type. Plant Soil 2013, 372, 597–608. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agruicultural Practices in Modern Agriculture. Agriculture 2021, 11, 944. [Google Scholar] [CrossRef]
- Liu, C.W.; Sung, Y.; Chen, B.C.; Lai, H.Y. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sative L.). Int. J. Environ. Res. Public Health 2014, 11, 4427–4440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compost | Application Rate (kg N ha−1) | Dry Matter (%) | N (%) | C/N (Ratio) | P2O5 (%) | K2O (%) |
---|---|---|---|---|---|---|
Biogas fermentation residue | 120 | 23.6 | 1.65 | 26.5 | 1.12 | 2.78 |
Farmyard manure (matured) | 120 | 22.2 | 1.86 | 17.9 | 0.81 | 4.10 |
Organic waste compost (fresh) | 120 | 55.1 | 1.57 | 16.7 | 0.65 | 1.09 |
240 | ||||||
Organic waste compost (matured) | 120 | 63.4 | 1.72 | 12.5 | 0.91 | 1.64 |
240 | ||||||
Green compost (fresh) | 120 | 59.2 | 2.12 | 18.5 | 0.74 | 1.33 |
240 | ||||||
Green compost (matured) | 120 | 56.9 | 1.44 | 15.7 | 0.59 | 1.07 |
240 | ||||||
Microbial carbonized compost | 120 | 45.1 | 1.52 | 12.3 | 0.69 | 2.09 |
240 |
Vegetation Index | Formula | Reference |
---|---|---|
REIP | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strenner, M.; Chmelíková, L.; Hülsbergen, K.-J. Compost Fertilization in Organic Agriculture—A Comparison of the Impact on Corn Plants Using Field Spectroscopy. Appl. Sci. 2023, 13, 3676. https://doi.org/10.3390/app13063676
Strenner M, Chmelíková L, Hülsbergen K-J. Compost Fertilization in Organic Agriculture—A Comparison of the Impact on Corn Plants Using Field Spectroscopy. Applied Sciences. 2023; 13(6):3676. https://doi.org/10.3390/app13063676
Chicago/Turabian StyleStrenner, Martin, Lucie Chmelíková, and Kurt-Jürgen Hülsbergen. 2023. "Compost Fertilization in Organic Agriculture—A Comparison of the Impact on Corn Plants Using Field Spectroscopy" Applied Sciences 13, no. 6: 3676. https://doi.org/10.3390/app13063676
APA StyleStrenner, M., Chmelíková, L., & Hülsbergen, K.-J. (2023). Compost Fertilization in Organic Agriculture—A Comparison of the Impact on Corn Plants Using Field Spectroscopy. Applied Sciences, 13(6), 3676. https://doi.org/10.3390/app13063676