Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Model Development
2.2.1. Bagged Decision Tree
2.2.2. Boosted Decision Tree
2.2.3. Gradient Boosted Decision Tree
2.3. Performance Evaluation Matrices
2.4. Shapley Analysis
3. Results and Discussion
3.1. Model Fitting Results
3.2. Future Prediction of GHG Emission by Developed AI Models and Mitigation Measures
3.3. Feature Importance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, J.R. Joseph Fourier, the ‘greenhouse effect’, and the quest for a universal theory of terrestrial temperatures. Endeavour 1999, 23, 72–75. [Google Scholar] [CrossRef]
- Liu, J.; Dumitrescu, C.E. Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation. Appl. Energy 2018, 230, 1205–1217. [Google Scholar] [CrossRef]
- Liu, J.; Dumitrescu, C.E. 3D CFD simulation of a CI engine converted to SI natural gas operation using the G-equation. Fuel 2018, 232, 833–844. [Google Scholar] [CrossRef]
- Olivier, J.G.; Schure, K.M.; Peters, J.A.H.W. Trends in global CO2 and total greenhouse gas emissions. PBL Neth. Environ. Assess. Agency 2017, 5, 1–11. [Google Scholar]
- Liu, J.; Li, Y.; Zhang, C.; Liu, Z. The effect of high altitude environment on diesel engine performance: Comparison of engine operations in Hangzhou, Kunming and Lhasa cities. Chemosphere 2022, 309, 136621. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Meng, Z.; Liu, Z. An examination of performance deterioration indicators of diesel engines on the plateau. Energy 2023, 262, 125587. [Google Scholar] [CrossRef]
- Climate Watch, Global Historical Emissions, 2022. Available online: http://cait.wri.org (accessed on 21 January 2023).
- Cetin, M.; Ecevit, E.; Yucel, A.G. The impact of economic growth, energy consumption, trade openness, and financial development on carbon emissions: Empirical evidence from Turkey. Environ. Sci. Pollut. Res. 2018, 25, 36589–36603. [Google Scholar] [CrossRef]
- Bayomi, N.; Fernandez, J.E. Towards sustainable energy trends in the Middle East: A study of four major emitters. Energies 2019, 12, 1615. [Google Scholar] [CrossRef] [Green Version]
- Baloch, M.A.; Danish; Meng, F.; Zhang, J.; Xu, Z. Financial instability and CO2 emissions: The case of Saudi Arabia. Environ. Sci. Pollut. Res. 2018, 25, 26030–26045. [Google Scholar] [CrossRef]
- Ari, I.; Şentürk, H. The relationship between GDP and methane emissions from solid waste: A panel data analysis for the G7. Sustain. Prod. Consum. 2020, 23, 282–290. [Google Scholar] [CrossRef]
- Pani, R.; Mukhopadhyay, U. Variance analysis of global CO2 emission–A management accounting approach for decomposition study. Energy 2011, 36, 486–499. [Google Scholar] [CrossRef]
- Saidi, K.; Hammami, S. The impact of CO2 emissions and economic growth on energy consumption in 58 countries. Energy Rep. 2015, 1, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, H.; McLellan, B.; Ishihara, K.N. Toward a CO2 zero emissions energy system in the Middle East region. Int. J. Green Energy 2014, 13, 682–694. [Google Scholar] [CrossRef]
- Mezghani, I.; Ben Haddad, H. Energy consumption and economic growth: An empirical study of the electricity consumption in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 75, 145–156. [Google Scholar] [CrossRef]
- Alkhathlan, K.; Javid, M. Energy consumption, carbon emissions and economic growth in Saudi Arabia: An aggregate and disaggregate analysis. Energy Policy 2013, 62, 1525–1532. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, A.; Shafiullah; Rahman, M.S.; Arifuzzaman; Islam, K.; Islam, M.M.; Rahman, S.M. A critical, temporal analysis of Saudi Arabia’s initiatives for greenhouse gas emissions reduction in the energy sector. Sustainability 2022, 14, 12651. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahman, S.M.; Shafiullah, M.; Hasan, M.A.; Gazder, U.; Al Mamun, A.; Mansoor, U.; Kashifi, M.T.; Reshi, O.; Arifuzzaman, M.; et al. Energy demand of the road transport sector of Saudi Arabia–application of a causality-based machine learning model to en-sure sustainable environment. Sustainability 2022, 14, 16064. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahman, M.S.; Chowdhury, S.R.; Elhaj, A.; Razzak, S.A.; Abu Shoaib, S.; Islam, K.; Islam, M.M.; Rushd, S.; Rahman, S.M. Greenhouse gas emissions in the industrial processes and product use sector of Saudi Arabia—An emerging challenge. Sustainability 2022, 14, 7388. [Google Scholar] [CrossRef]
- Rahman, M.; Rahman, S.; Rahman, M.; Hasan, A.; Shoaib, S.; Rushd, S. Greenhouse gas emissions from solid waste management in Saudi Arabia—Analysis of growth dynamics and mitigation opportunities. Appl. Sci. 2021, 11, 1737. [Google Scholar] [CrossRef]
- Ridzuan, N.H.A.M.; Marwan, N.F.; Khalid, N.; Ali, M.H.; Tseng, M.-L. Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resour. Conserv. Recycl. 2020, 160, 104879. [Google Scholar] [CrossRef]
- Solarin, S.A.; Al-Mulali, U.; Gan, G.G.G.; Shahbaz, M. The impact of biomass energy consumption on pollution: Evidence from 80 developed and developing countries. Environ. Sci. Pollut. Res. 2018, 25, 22641–22657. [Google Scholar] [CrossRef] [PubMed]
- De Souza Mendonça, A.K.; Barni, G.D.A.C.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Kalra, S.; Lamba, R.; Sharma, M. Machine learning based analysis for relation between global temperature and concentrations of greenhouse gases. J. Inf. Optim. Sci. 2020, 41, 73–84. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renew. Energy 2020, 167, 99–115. [Google Scholar] [CrossRef]
- Javanmard, M.E.; Ghaderi, S. A hybrid model with applying machine learning algorithms and optimization model to forecast greenhouse gas emissions with energy market data. Sustain. Cities Soc. 2022, 82, 103886. [Google Scholar] [CrossRef]
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M. A new machine learning algorithm to explore the CO2 emissions-energy use-economic growth trilemma. Ann. Oper. Res. 2022, 1–19. [Google Scholar] [CrossRef]
- Ahmed, M.; Shuai, C. Analysis of energy consumption and greenhouse gas emissions trend in China, India, the USA, and Russia. Int. J. Environ. Sci. Technol. 2022, 1–16. [Google Scholar] [CrossRef]
- Ahmed, M.; Shuai, C.; Ahmed, M. Influencing factors of carbon emissions and their trends in China and India: A machine learning method. Environ. Sci. Pollut. Res. 2022, 29, 48424–48437. [Google Scholar] [CrossRef]
- Qin, J.; Gong, N. The estimation of the carbon dioxide emission and driving factors in China based on machine learning methods. Sustain. Prod. Consum. 2022, 33, 218–229. [Google Scholar] [CrossRef]
- Li, S.; Siu, Y.W.; Zhao, G. Driving factors of CO2 emissions: Further study based on machine learning. Front. Environ. Sci. 2021, 9, 721517. [Google Scholar] [CrossRef]
- Bakay, M.S.; Ağbulut, Ü. Electricity production based forecasting of greenhouse gas emissions in Turkey with deep learning, support vector machine and artificial neural network algorithms. J. Clean. Prod. 2020, 285, 125324. [Google Scholar] [CrossRef]
- Ağbulut, Ü. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141–157. [Google Scholar] [CrossRef]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total. Environ. 2020, 741, 140338. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Singh, S.K. Machine learning-based time series models for effective CO2 emission prediction in India. Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef]
- Amarpuri, L.; Yadav, N.; Kumar, G.; Agrawal, S. Prediction of CO2 emissions using deep learning hybrid approach: A Case Study in Indian Context. In Proceedings of the 2019 Twelfth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, P.K.; Pandey, A.K.; Ahuja, S.; Kiran, R. Multiple forecasting approach: A prediction of CO2 emission from the paddy crop in India. Environ. Sci. Pollut. Res. 2022, 29, 25461–25472. [Google Scholar] [CrossRef]
- Shi, J.; Xu, B.; Zhou, X.; Hou, J. A cloud-based energy management strategy for hybrid electric city bus considering real-time passenger load prediction. J. Energy Storage 2022, 45, 103749. [Google Scholar] [CrossRef]
- Cai, W.; Wei, R.; Xu, L.; Ding, X. A method for modelling greenhouse temperature using gradient boost decision tree. Inf. Process. Agric. 2022, 9, 343–354. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Yan, Y.; Zhang, W.; Shao, D. A novel heterogeneous ensemble approach to variable selection for gas-liquid two-phase CO2 flow metering. Int. J. Greenh. Gas Control. 2021, 110, 103418. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Næss, P. Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo. Transp. Res. Part A Policy Pract. 2018, 110, 107–117. [Google Scholar] [CrossRef]
- Beucher, A.; Møller, A.; Greve, M. Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma 2019, 352, 351–359. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Kim, J. Development of a CO2 emission benchmark for achieving the national CO2 emission reduction target by 2030. Energy Build. 2018, 158, 86–94. [Google Scholar] [CrossRef]
- Peng, H.; Nishiyama, Y.; Sezaki, K. Estimation of Greenhouse Gas Emission Reduction from Shared Micromobility System. In Proceedings of the 2021 IEEE Green Energy and Smart Systems Conference (IGESSC), Long Beach, CA, USA, 1 November 2021; pp. 3–5. [Google Scholar] [CrossRef]
- Koch, J.; Gotfredsen, J.; Schneider, R.; Troldborg, L.; Stisen, S.; Henriksen, H.J. High resolution water table modeling of the shallow groundwater using a knowledge-guided gradient boosting decision tree model. Front. Water 2021, 3, 1–2. [Google Scholar] [CrossRef]
- Abu Alsaud, S.; Katterbauer, K.; Alqasim, A.; Marsala, A. A Decision Tree Framework for Tracking CO2 Fronts in Carbonate Reservoirs from Deep Measurements Data. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 21 February 2022. [Google Scholar] [CrossRef]
- Kahia, M.; Moulahi, T.; Mahfoudhi, S.; Boubaker, S.; Omri, A. A machine learning process for examining the linkage among disaggregated energy consumption, economic growth, and environmental degradation. Resour. Policy 2022, 79, 103104. [Google Scholar] [CrossRef]
- Alaraj, M.; Kumar, A.; Alsaidan, I.; Rizwan, M.; Jamil, M. Energy production forecasting from Solar photovoltaic plants based on meteorological parameters for Qassim region, Saudi Arabia. IEEE Access 2021, 9, 83241–83251. [Google Scholar] [CrossRef]
- Mallick, J.; Almesfer, M.K.; Alsubih, M.; Talukdar, S.; Ahmed, M.; Ben Kahla, N. Developing a new method for future groundwater potentiality mapping under climate change in Bisha watershed, Saudi Arabia. Geocarto Int. 2022, 37, 1–33. [Google Scholar] [CrossRef]
- Al-Najjar, D.; Al-Najjar, H.; Al-Rousan, N.; Assous, H.F. Developing machine learning techniques to investigate the impact of air quality indices on tadawul exchange index. Complex 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Barashid, K.; Munshi, A.; Alhindi, A. Wind farm power prediction considering layout and wake effect: Case study of Saudi Arabia. Energies 2023, 16, 938. [Google Scholar] [CrossRef]
- Gütschow, J.; Jeffery, M.L.; Gieseke, R.; Gebel, R.; Stevens, D.; Krapp, M.; Rocha, M. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 2016, 8, 571–603. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. World Development Indicators DataBank. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 12 March 2023).
- Kadavi, P.R.; Lee, C.-W.; Lee, S. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models. Environ. Earth Sci. 2019, 78, 116. [Google Scholar] [CrossRef]
- Shapley, L. A Value for N-Person Games. Contributions to the Theory of Games. Ann. Math. Stud. 1953, 2, 307–317. [Google Scholar] [CrossRef]
- Shahriar, M.S.; Shafiullah; Rana, J.; Ali, A.; Ahmed, A.; Rahman, S.M. Neurogenetic approach for real-time damping of low-frequency oscillations in electric networks. Comput. Electr. Eng. 2020, 83, 106600. [Google Scholar] [CrossRef]
- Shafiullah, M.; Abido, M.A.; Al-Mohammed, A.H. Chapter 3-Artificial intelligence techniques. In Power System Fault Diagnosis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 69–100. [Google Scholar] [CrossRef]
- Shafiullah, M.; AlShumayri, K.A.; Alam, M.S. Machine learning tools for active distribution grid fault diagnosis. Adv. Eng. Softw. 2022, 173, 103279. [Google Scholar] [CrossRef]
- Jamal, A.; Reza, I. Shafiullah Modeling retroreflectivity degradation of traffic signs using artificial neural networks. IATSS Res. 2022, 46, 499–514. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Wang, R.; Zhang, M.; Huang, Y.; Hu, J.; Peng, J. Measuring the critical influence factors for predicting carbon dioxide emissions of expanding megacities by XGBoost. Atmos 2022, 13, 599. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y. Modeling and predicting city-level CO2 emissions using open access data and machine learning. Environ. Sci. Pollut. Res. 2021, 28, 19260–19271. [Google Scholar] [CrossRef]
- Timofeev, A.V.; Piirainen, V.Y.; Bazhin, V.Y.; Titov, A.B. Operational analysis and medium-term forecasting of the greenhouse gas generation intensity in the cryolithozone. Atmos 2021, 12, 1466. [Google Scholar] [CrossRef]
- Romeiko, X.X.; Guo, Z.; Pang, Y. Comparison of Support Vector Machine and Gradient Boosting Regression Tree for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts: A case study in corn production. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3277–3284. [Google Scholar] [CrossRef]
- Cui, X.; Shaojun, E.; Niu, D.; Chen, B.; Feng, J. Forecasting of carbon emission in China based on gradient boosting decision tree optimized by modified whale optimization algorithm. Sustainability 2021, 13, 12302. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2013, 41, 647–665. [Google Scholar] [CrossRef]
Model | Hyper-Parameters |
---|---|
Feed forward neural network (FFNN) | 3 layers (input, hidden, and output), tan sigmoid activation function, resilient backpropagation training algorithm, and 3 nodes in the hidden layer. |
Bagged decision tree | Employed number of trees = 1000; learning rate = 0.001 |
Boosted decision tree | Employed number of trees = 5000; learning rate = 0.001 |
Gradient boosted decision tree | Employed number of learning cycles and bins = 100 and 50. boosting method = least square. |
Model | Stage | RMSE (GtCO2e) | MAPE (GtCO2e) | RSR | WIA | R2 |
---|---|---|---|---|---|---|
Bagged decision tree | Training | 0.87 | 0.31 | 0.454 | 0.95 | 0.898 |
Testing | 0.84 | 0.29 | 0.438 | 0.95 | 0.901 | |
Boosted decision tree | Training | 0.98 | 0.33 | 0.508 | 0.94 | 0.873 |
Testing | 0.94 | 0.33 | 0.489 | 0.94 | 0.878 | |
Gradient boosted decision tree | Training | 1.01 | 0.34 | 0.527 | 0.93 | 0.864 |
Testing | 1.00 | 0.35 | 0.523 | 0.93 | 0.862 | |
Feedforward neural network (FFNN) | Training | 1.18 | 0.43 | 0.612 | 0.91 | 0.878 |
Testing | 1.13 | 0.39 | 0.588 | 0.91 | 0.879 |
Linear Regression | Bagged Decision Tree | Boosted Decision Tree | Gradient Boosted Decision Tree | Feed Forward Neural Network |
---|---|---|---|---|
(Million ton CO2eq.) | ||||
904.97 | 867.36 | 873.62 | 852.29 | 815.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Shafiullah, M.; Alam, M.S.; Rahman, M.S.; Alsanad, M.A.; Islam, M.M.; Islam, M.K.; Rahman, S.M. Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia. Appl. Sci. 2023, 13, 3832. https://doi.org/10.3390/app13063832
Rahman MM, Shafiullah M, Alam MS, Rahman MS, Alsanad MA, Islam MM, Islam MK, Rahman SM. Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia. Applied Sciences. 2023; 13(6):3832. https://doi.org/10.3390/app13063832
Chicago/Turabian StyleRahman, Muhammad Muhitur, Md Shafiullah, Md Shafiul Alam, Mohammad Shahedur Rahman, Mohammed Ahmed Alsanad, Mohammed Monirul Islam, Md Kamrul Islam, and Syed Masiur Rahman. 2023. "Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia" Applied Sciences 13, no. 6: 3832. https://doi.org/10.3390/app13063832
APA StyleRahman, M. M., Shafiullah, M., Alam, M. S., Rahman, M. S., Alsanad, M. A., Islam, M. M., Islam, M. K., & Rahman, S. M. (2023). Decision Tree-Based Ensemble Model for Predicting National Greenhouse Gas Emissions in Saudi Arabia. Applied Sciences, 13(6), 3832. https://doi.org/10.3390/app13063832