Methods for Detecting Picric Acid—A Review of Recent Progress
Abstract
:1. Introduction
2. Selected Fluorescence-Based PA Detection Mechanisms
2.1. Fundamentals of Fluorescence Quenching Methods
2.2. Resonance Energy Transfer (RET)
2.3. Photo-Induced Electron Transfer (PET)
2.4. Aggregation-Caused Quenching (ACQ)
2.5. Inner Filter Effect (IFE)
3. Sensors for Detecting and Measuring PA
3.1. Metal–Organic Frameworks Sensor
3.1.1. d-Block MOFs
3.1.2. Lanthanide-MOFs
3.2. Covalent Organic Polymers (COPs) and Covalent Organic Frameworks (COFs)
3.3. Carbon Dots
3.4. Polymers and Organic Molecules
Fluorescent Probe | LOD 1 | Selectivity 2 | Ref. |
---|---|---|---|
FP1 | 5.1 × 10−7 M | Limited for NACs 3; High for cations | [131] |
FP2 | 3.09 × 10−11 M | Average | [132] |
FP3a | 1.81 × 10−7 M | n/a | [133] |
FP3b | 1.4 × 10−6 M | n/a | [133] |
FP4 | n/a | Limited | [134] |
FP5 | 44.0 ppb | Limited/Average | [135] |
FP6a | n/a | Limited | [136] |
FP6b | n/a | Limited | [136] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez, G.; Perez, A.L. Organic acids without a carboxylic acid functional group. J. Chem. Educ. 2000, 77, 910. [Google Scholar] [CrossRef]
- Cooper, P.W. Explosives Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Muthurajan, H.; Sivabalan, R.; Talawar, M.; Asthana, S. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. J. Hazard. Mater. 2004, 112, 17–33. [Google Scholar] [PubMed]
- Shanmugaraju, S.; Joshi, S.A.; Mukherjee, P.S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J. Mater. Chem. 2011, 21, 9130–9138. [Google Scholar]
- Meredith, D.; Lee, C. A study of antiseptic compounds for the treatment of burns. J. Am. Pharm. Assoc. 1939, 28, 369–373. [Google Scholar]
- Volwiler, E.H. Medicinals and dyes. Ind. Eng. Chem. 1926, 18, 1336–1337. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Lopes, E. Solvent extraction of picric acid from aqueous solutions. J. Chem. Eng. Data 1996, 41, 698–700. [Google Scholar]
- Moore, J.F.; Sharer, J.D. Methods for quantitative creatinine determination. Curr. Protoc. Hum. Genet. 2017, 93, A-3O. [Google Scholar]
- Hancock, W.; Battersby, J.; Harding, D. The use of picric acid as a simple monitoring procedure for automated peptide synthesis. Anal. Biochem. 1975, 69, 497–503. [Google Scholar]
- Brown, G.I. The Big Bang: A History of Explosives; Sutton Pub Limited: Stroud, Gloucestershire, UK, 1998. [Google Scholar]
- Ludwig, H.R.; Cairelli, S.G.; Whalen, J.J. Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHS); United States Centers for Disease Control and Prevention: Atlanta, GA, USA, 1994. Available online: https://www.cdc.gov/niosh/idlh/pdfs/1994-IDLH-ValuesBackgroundDocs.pdf (accessed on 1 March 2023).
- Meyer, R.; Köhler, J.; Homburg, A. Explosives; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kaur, M.; Mehta, S.K.; Kansal, S.K. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 180, 37–43. [Google Scholar]
- Chowdhury, A.; Mukherjee, P.S. Electron-rich triphenylamine-based sensors for picric acid detection. J. Org. Chem. 2015, 80, 4064–4075. [Google Scholar]
- Wyman, J.F.; Serve, M.P.; Hobson, D.W.; Lee, L.H.; Uddin, D.E. Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J. Toxicol. Environ. Health 1992, 37, 313–327. [Google Scholar] [CrossRef]
- Nagarkar, S.S.; Desai, A.V.; Samanta, P.; Ghosh, S.K. Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Trans. 2015, 44, 15175–15180. [Google Scholar] [PubMed]
- Wyman, J.; Guard, H.; Won, W.; Quay, J. Conversion of 2, 4, 6-trinitrophenol to a mutagen by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 1979, 37, 222–226. [Google Scholar]
- Giorgi, G. Reduction of picric acid in the liver, kidney and spleen. J. Chem. Soc. Abstr. 1925, 128, i733. [Google Scholar]
- Cooper, K.R.; Burton, D.T.; Goodfellow, W.L.; Rosenblatt, D.H. Bioconcentration and metabolism of picric acid (2,4, 6-trinitrophenol) and picramic acid (2-amino-4, 6-dinitrophenol) in rainbow trout Salmo Gairdneri. J. Toxicol. Environ. Health Part A Curr. Issues 1984, 14, 731–747. [Google Scholar] [CrossRef]
- Findlay, A. CXIII.—The solubility of mannitol, picric acid, and anthracene. J. Chem. Soc. Trans. 1902, 81, 1217–1221. [Google Scholar]
- Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K. Fate and effects of picric acid and 2, 6-DNT in marine environments: Toxicity of degradation products. Mar. Pollut. Bull. 2005, 50, 1205–1217. [Google Scholar] [PubMed]
- Salinas, Y.; Martínez-Máñez, R.; Marcos, M.D.; Sancenón, F.; Costero, A.M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261–1296. [Google Scholar]
- Zimmermann, J.; Zeug, A.; Röder, B. A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Phys. Chem. Chem. Phys. 2003, 5, 2964–2969. [Google Scholar] [CrossRef]
- Vollmer, F.; Rettig, W.; Birckner, E. Photochemical mechanisms producing large fluorescence stokes shifts. J. Fluoresc. 1994, 4, 65–69. [Google Scholar]
- Förster, T. Intermolecular energy migration and fluroescence. Ann. Phys. 1948, 2, 55–75. [Google Scholar] [CrossRef]
- Albers, A.E.; Okreglak, V.S.; Chang, C.J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 2006, 128, 9640–9641. [Google Scholar] [PubMed]
- Du, F.; Min, Y.; Zeng, F.; Yu, C.; Wu, S. A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 2014, 10, 964–972. [Google Scholar]
- Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 1978, 47, 819–846. [Google Scholar] [PubMed]
- Haldar, D.; Dinda, D.; Saha, S.K. High selectivity in water soluble MoS 2 quantum dots for sensing nitro explosives. J. Mater. Chem. C 2016, 4, 6321–6326. [Google Scholar]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [PubMed] [Green Version]
- Thomas, S.W.; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [PubMed]
- Meaney, M.S.; McGuffin, V.L. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching. Anal. Chim. Acta 2008, 610, 57–67. [Google Scholar]
- Czeslik, C.B. Valeur: Molecular Fluorescence—Principles and Applications. Z. Phys. Chem. 2002, 216, 1137–1140. [Google Scholar]
- Pina, F.; Bernardo, M.A.; García-España, E. Fluorescent chemosensors containing polyamine receptors. Eur. J. Inorg. Chem. 2000, 2000, 2143–2157. [Google Scholar]
- de Silva, A.P.; Fox, D.B.; Moody, T.S.; Weir, S.M. The development of molecular fluorescent switches. Trends Biotechnol. 2001, 19, 29–34. [Google Scholar] [PubMed]
- Czarnik, A.W. Fluorescent Chemosensors of Ion and Molecule Recognition. In Interfacial Design and Chemical Sensing; American Chemical Society: Washington, DC, USA, 1994; Chapter 27; pp. 314–323. [Google Scholar] [CrossRef]
- Birks, J.B. Photophysics of Aromatic Molecules; Indian Association for the Cultivation of Science: Kolkata, India, 1972. [Google Scholar]
- Zhai, D.; Xu, W.; Zhang, L.; Chang, Y.T. The role of “disaggregation” in optical probe development. Chem. Soc. Rev. 2014, 43, 2402–2411. [Google Scholar] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Panigrahi, S.K.; Mishra, A.K. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100318. [Google Scholar]
- Chen, S.; Yu, Y.L.; Wang, J.H. Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [PubMed]
- Kimball, J.; Chavez, J.; Ceresa, L.; Kitchner, E.; Nurekeyev, Z.; Doan, H.; Szabelski, M.; Borejdo, J.; Gryczynski, I.; Gryczynski, Z. On the origin and correction for inner filter effects in fluorescence Part I: Primary inner filter effect-the proper approach for sample absorbance correction. Methods Appl. Fluoresc. 2020, 8, 033002. [Google Scholar]
- Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231. [Google Scholar]
- Groen, J.C.; Peffer, L.A.; Pérez-Ramirez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [PubMed]
- Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Hydrocarbon separations in a metal–organic framework with open iron (II) coordination sites. Science 2012, 335, 1606–1610. [Google Scholar]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.; Houk, R. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar]
- Zhu, Q.L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512. [Google Scholar] [PubMed]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal–organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.Ö.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal–organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.X.; Ren, H.B.; Yan, X.P. Fluorescent metal–organic framework MIL-53 (Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Anal. Chem. 2013, 85, 7441–7446. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.l.; Shi, Y.X.; Chen, H.H.; Lang, J.P. A Zn (II) coordination polymer and its photocycloaddition product: Syntheses, structures, selective luminescence sensing of iron (III) ions and selective absorption of dyes. Dalton Trans. 2015, 44, 18795–18803. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, S.; Liu, Y.; Miao, J.; Li, S.; Zhang, L.; Shi, Z.; Zheng, Z. Cation sensing by a luminescent metal–organic framework with multiple Lewis basic sites. Inorg. Chem. 2013, 52, 2799–2801. [Google Scholar] [CrossRef]
- Zhang, S.T.; Yang, J.; Wu, H.; Liu, Y.Y.; Ma, J.F. Systematic Investigation of High-Sensitivity Luminescent Sensing for Polyoxometalates and Iron (III) by MOFs Assembled with a New Resorcin [4] arene-Functionalized Tetracarboxylate. Chem. Eur. J. 2015, 21, 15806–15819. [Google Scholar]
- Chen, S.; Shi, Z.; Qin, L.; Jia, H.; Zheng, H. Two new luminescent Cd (II)-metal–organic frameworks as bifunctional chemosensors for detection of cations Fe3+, anions CrO42–, and Cr2O72–in aqueous solution. Cryst. Growth Des. 2017, 17, 67–72. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, G.P.; Zhou, X.; Li, J.; Ning, Y.; Wang, Y.Y. Three new luminescent Cd (II)-MOFs by regulating the tetracarboxylate and auxiliary co-ligands, displaying high sensitivity for Fe 3+ in aqueous solution. Dalton Trans. 2015, 44, 10385–10391. [Google Scholar] [CrossRef]
- Liu, Q.; Ning, D.; Li, W.J.; Du, X.M.; Wang, Q.; Li, Y.; Ruan, W.J. Metal–organic framework-based fluorescent sensing of tetracycline-type antibiotics applicable to environmental and food analysis. Analyst 2019, 144, 1916–1922. [Google Scholar] [CrossRef]
- Shi, Z.Q.; Guo, Z.J.; Zheng, H.G. Two luminescent Zn (ii) metal–organic frameworks for exceptionally selective detection of picric acid explosives. Chem. Commun. 2015, 51, 8300–8303. [Google Scholar] [CrossRef]
- Ghosh, P.; Saha, S.K.; Roychowdhury, A.; Banerjee, P. Recognition of an explosive and mutagenic water pollutant, 2, 4, 6-trinitrophenol, by cost-effective luminescent MOFs. Eur. J. Inorg. Chem. 2015, 2015, 2851–2857. [Google Scholar] [CrossRef]
- Mukherjee, S.; Desai, A.V.; Manna, B.; Inamdar, A.I.; Ghosh, S.K. Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2, 4, 6-trinitrophenol (TNP) in water. Cryst. Growth Des. 2015, 15, 4627–4634. [Google Scholar] [CrossRef]
- Asha, K.; Bhattacharyya, K.; Mandal, S. Discriminative detection of nitro aromatic explosives by a luminescent metal–organic framework. J. Mater. Chem. C 2014, 2, 10073–10081. [Google Scholar] [CrossRef]
- Pal, T.K.; Chatterjee, N.; Bharadwaj, P.K. Linker-induced structural diversity and photophysical property of MOFs for selective and sensitive detection of nitroaromatics. Inorg. Chem. 2016, 55, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Zhang, N.; Zhang, X.; Wang, Y.; Zhao, L.; Yang, Q. A stable Cu-MOF as a dual function sensor with high selectivity and sensitivity detection of picric acid and CrO42-in aqueous solution. Microchem. J. 2020, 153, 104498. [Google Scholar] [CrossRef]
- Mostakim, S.; Biswas, S. A thiadiazole-functionalized Zr (IV)-based metal–organic framework as a highly fluorescent probe for the selective detection of picric acid. CrystEngComm 2016, 18, 3104–3113. [Google Scholar]
- Bünzli, J.C.G.; Comby, S.; Chauvin, A.S.; Vandevyver, C.D. New opportunities for lanthanide luminescence. J. Rare Earths 2007, 25, 257–274. [Google Scholar] [CrossRef]
- Pearson, R.G. Hard and soft acids and bases—The evolution of a chemical concept. Coord. Chem. Rev. 1990, 100, 403–425. [Google Scholar] [CrossRef]
- Xu, H.; Cao, C.S.; Kang, X.M.; Zhao, B. Lanthanide-based metal–organic frameworks as luminescent probes. Dalton Trans. 2016, 45, 18003–18017. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, C.; Wu, Z.; Pan, Y.; Ye, C.; Mu, Z.; Luo, X.; Chen, W.; Liu, W. Construction of multifunctional luminescent lanthanide MOFs by hydrogen bond functionalization for picric acid detection and fluorescent dyes encapsulation. ACS Sustain. Chem. Eng. 2020, 8, 13497–13506. [Google Scholar] [CrossRef]
- Liu, W.; Huang, X.; Chen, C.; Xu, C.; Ma, J.; Yang, L.; Wang, W.; Dou, W.; Liu, W. Function-Oriented: The Construction of Lanthanide MOF Luminescent Sensors Containing Dual-Function Urea Hydrogen-Bond Sites for Efficient Detection of Picric Acid. Chem. Eur. J. 2019, 25, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Rajak, R.; Saraf, M.; Verma, S.K.; Kumar, R.; Mobin, S.M. Dy (iii)-Based metal–organic framework as a fluorescent probe for highly selective detection of picric acid in aqueous medium. Inorg. Chem. 2019, 58, 16065–16074. [Google Scholar] [CrossRef]
- Liu, W.; Huang, X.; Xu, C.; Chen, C.; Yang, L.; Dou, W.; Chen, W.; Yang, H.; Liu, W. A Multi-responsive Regenerable Europium–Organic Framework Luminescent Sensor for Fe3+, CrVI Anions, and Picric Acid. Chem. Eur. J. 2016, 22, 18769–18776. [Google Scholar] [CrossRef]
- Ju, P.; Zhang, E.; Jiang, L.; Zhang, Z.; Hou, X.; Zhang, Y.; Yang, H.; Wang, J. A novel microporous Tb-MOF fluorescent sensor for highly selective and sensitive detection of picric acid. RSC Adv. 2018, 8, 21671–21678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Zhu, F.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Highly selective luminescent sensing of picric acid based on a water-stable europium metal–organic framework. J. Solid State Chem. 2017, 245, 127–131. [Google Scholar] [CrossRef]
- Yu, H.H.; Chi, J.Q.; Su, Z.M.; Li, X.; Sun, J.; Zhou, C.; Hu, X.L.; Liu, Q. A water-stable terbium metal–organic framework with functionalized ligands for the detection of Fe 3+ and Cr 2 O 7 2- ions in water and picric acid in seawater. CrystEngComm 2020, 22, 3638–3643. [Google Scholar] [CrossRef]
- Song, X.Z.; Song, S.Y.; Zhao, S.N.; Hao, Z.M.; Zhu, M.; Meng, X.; Wu, L.L.; Zhang, H.J. Single-Crystal-to-Single-Crystal transformation of a europium (III) metal–organic framework producing a multi-responsive luminescent sensor. Adv. Funct. Mater. 2014, 24, 4034–4041. [Google Scholar] [CrossRef]
- Xiao, J.D.; Qiu, L.G.; Ke, F.; Yuan, Y.P.; Xu, G.S.; Wang, Y.M.; Jiang, X. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. J. Mater. Chem. A 2013, 1, 8745–8752. [Google Scholar] [CrossRef]
- Li, L.; Cheng, J.; Liu, Z.; Song, L.; You, Y.; Zhou, X.; Huang, W. Ratiometric Luminescent Sensor of Picric Acid Based on the Dual-Emission Mixed-Lanthanide Coordination Polymer. ACS Appl. Mater. Interfaces 2018, 10, 44109–44115. [Google Scholar] [CrossRef]
- Zhou, X.H.; Li, L.; Li, H.H.; Li, A.; Yang, T.; Huang, W. A flexible Eu (III)-based metal–organic framework: Turn-off luminescent sensor for the detection of Fe (III) and picric acid. Dalton Trans. 2013, 42, 12403–12409. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Qiu, L.G.; Yuan, Y.P.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater. 2012, 221, 147–154. [Google Scholar] [CrossRef]
- Sang, N.; Zhan, C.; Cao, D. Highly sensitive and selective detection of 2, 4, 6-trinitrophenol using covalent-organic polymer luminescent probes. J. Mater. Chem. A 2015, 3, 92–96. [Google Scholar] [CrossRef]
- Geng, T.; Chen, G.; Zhang, C.; Ma, L.; Zhang, W.; Xia, H. A superacid-catalyzed synthesis of fluorescent covalent triazine based framework containing perylene tetraanhydride bisimide for sensing to o-nitrophenol with ultrahigh sensitivity. J. Macromol. Sci. Part A 2019, 56, 1004–1011. [Google Scholar] [CrossRef]
- Ponnuvel, K.; Banuppriya, G.; Padmini, V. Highly efficient and selective detection of picric acid among other nitroaromatics by NIR fluorescent organic fluorophores. Sens. Actuators B Chem. 2016, 234, 34–45. [Google Scholar] [CrossRef]
- Hu, Y.J.; Tan, S.Z.; Shen, G.L.; Yu, R.Q. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole. Anal. Chim. Acta 2006, 570, 170–175. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, L.; Ma, W.; Qi, Q.; Zhang, W.; Xu, B.; Liu, L.; Tian, W. Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection. Chin. Chem. Lett. 2021, 32, 1037–1040. [Google Scholar] [CrossRef]
- Xiang, Z.; Cao, D. Synthesis of luminescent covalent–organic polymers for detecting nitroaromatic explosives and small organic molecules. Macromol. Rapid Commun. 2012, 33, 1184–1190. [Google Scholar] [CrossRef]
- Faheem, M.; Aziz, S.; Jing, X.; Ma, T.; Du, J.; Sun, F.; Tian, Y.; Zhu, G. Dual luminescent covalent organic frameworks for nitro-explosive detection. J. Mater. Chem. A 2019, 7, 27148–27155. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Yan, Y.; Xia, F.; Huang, A.; Xian, Y. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2, 4, 6-trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9, 13415–13421. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, A.; Soriano, M.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016, 52, 1311–1326. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.B.; Liu, M.L.; Li, C.M.; Huang, C.Z. Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci. 2019, 270, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Meziani, M.J.; Lu, F.; Wang, H.; Luo, P.G.; Lin, Y.; Harruff, B.A.; Veca, L.M.; Murray, D.; et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319. [Google Scholar] [CrossRef] [Green Version]
- Selvi, B.R.; Jagadeesan, D.; Suma, B.; Nagashankar, G.; Arif, M.; Balasubramanyam, K.; Eswaramoorthy, M.; Kundu, T.K. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: Delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 2008, 8, 3182–3188. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E.P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Zhang, Z.L.; Huang, B.H.; Peng, J.; Zhang, M.; Pang, D.W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 41, 5116–5118. [Google Scholar] [CrossRef]
- Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 2010, 49, 6726–6744. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.L.; Niu, K.Y.; Sun, J.; Yang, J.; Zhao, N.Q.; Du, X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484–488. [Google Scholar] [CrossRef]
- Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.K.; Sun, X.; Ding, Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744–745. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 34, 5118–5120. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef]
- Liu, Z.; Zou, H.; Wang, N.; Yang, T.; Peng, Z.; Wang, J.; Li, N.; Huang, C. Photoluminescence of carbon quantum dots: Coarsely adjusted by quantum confinement effects and finely by surface trap states. Sci. China Chem. 2018, 61, 490–496. [Google Scholar] [CrossRef]
- Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Ed. 2015, 54, 5360–5363. [Google Scholar] [CrossRef]
- Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984. [Google Scholar] [CrossRef]
- Liu, M.L.; Yang, L.; Li, R.S.; Chen, B.B.; Liu, H.; Huang, C.Z. Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chem. 2017, 19, 3611–3617. [Google Scholar] [CrossRef]
- Liu, H.; He, Z.; Jiang, L.P.; Zhu, J.J. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications. ACS Appl. Mater. Interfaces 2015, 7, 4913–4920. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Zhu, Y.; Jiang, H.; Tan, D.; Xu, Z.; Mei, T.; Li, J.; Xue, L.; Wang, X. Green emitting N, S-co-doped carbon dots for sensitive fluorometric determination of Fe (III) and Ag (I) ions, and as a solvatochromic probe. Microchim. Acta 2018, 185, 1–10. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, S.W.; Kim, M.K.; Shin, D.Y.; Shin, D.H.; Kim, C.O.; Yang, S.B.; Park, J.H.; Hwang, E.; Choi, S.H.; et al. Anomalous behaviors of visible luminescence from graphene quantum dots: Interplay between size and shape. ACS Nano 2012, 6, 8203–8208. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, B.; Li, L.s. Colloidal graphene quantum dots with well-defined structures. Accounts Chem. Res. 2013, 46, 2254–2262. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, S.; Dai, L.; Li, L.s. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 18932–18935. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 2010, 49, 4430–4434. [Google Scholar] [CrossRef] [PubMed]
- Essner, J.B.; Kist, J.A.; Polo-Parada, L.; Baker, G.A. Artifacts and errors associated with the ubiquitous presence of fluorescent impurities in carbon nanodots. Chem. Mater. 2018, 30, 1878–1887. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, X.; Song, Y.; Lu, S.; Yang, B. Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today 2016, 11, 128–132. [Google Scholar] [CrossRef]
- Schneider, J.; Reckmeier, C.J.; Xiong, Y.; von Seckendorff, M.; Susha, A.S.; Kasak, P.; Rogach, A.L. Molecular fluorescence in citric acid-based carbon dots. J. Phys. Chem. C 2017, 121, 2014–2022. [Google Scholar] [CrossRef]
- Ray, S.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Yang, S.T.; Cao, L.; Luo, P.G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M.J.; Liu, Y.; Qi, G.; Sun, Y.P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309. [Google Scholar] [CrossRef] [Green Version]
- Bourlinos, A.B.; Bakandritsos, A.; Kouloumpis, A.; Gournis, D.; Krysmann, M.; Giannelis, E.P.; Polakova, K.; Safarova, K.; Hola, K.; Zboril, R. Gd (III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 2012, 22, 23327–23330. [Google Scholar] [CrossRef]
- Zhao, H.X.; Liu, L.Q.; De Liu, Z.; Wang, Y.; Zhao, X.J.; Huang, C.Z. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 2011, 47, 2604–2606. [Google Scholar] [CrossRef]
- Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. Int. Ed. 2012, 51, 7185–7189. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, Q.; Long, Y.; Cheng, Z.; Chen, S.; Zheng, H.; Huang, Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, X.; Ma, H. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew. Chem. Int. Ed. 2012, 51, 6432–6435. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Li, P.; Zhang, Y.; Dong, C. One step hydrothermal synthesis of carbon nanodots to realize the fluorescence detection of picric acid in real samples. Sens. Actuators B Chem. 2018, 258, 580–588. [Google Scholar] [CrossRef]
- Ye, Q.; Yan, F.; Shi, D.; Zheng, T.; Wang, Y.; Zhou, X.; Chen, L. N, B-doped carbon dots as a sensitive fluorescence probe for Hg2+ ions and 2, 4, 6-trinitrophenol detection for bioimaging. J. Photochem. Photobiol. B Biol. 2016, 162, 1–13. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Zhang, Y.; Li, N.; Liu, S.G.; Liu, T.; Li, N.B.; Luo, H.Q. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sens. Actuators B Chem. 2017, 240, 949–955. [Google Scholar] [CrossRef]
- Khan, Z.M.; Saifi, S.; Shumaila; Aslam, Z.; Khan, S.A.; Zulfequar, M. A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. J. Photochem. Photobiol. A Chem. 2020, 388, 112201. [Google Scholar] [CrossRef]
- Kalanidhi, K.; Nagaraaj, P. Facile and Green synthesis of fluorescent N-doped carbon dots from betel leaves for sensitive detection of Picric acid and Iron ion. J. Photochem. Photobiol. A Chem. 2021, 418, 113369. [Google Scholar]
- Ahmed, H.M.; Ghali, M.; Zahra, W.; Ayad, M.M. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119967. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Yan, F.; Zheng, T.; Wang, Y.; Zhou, X.; Chen, L. P-doped carbon dots act as a nanosensor for trace 2, 4, 6-trinitrophenol detection and a fluorescent reagent for biological imaging. RSC Adv. 2015, 5, 98492–98499. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, N.; Bai, R.; Bao, Y. Aggregation-enhanced FRET-active conjugated polymer nanoparticles for picric acid sensing in aqueous solution. J. Mater. Chem. C 2018, 6, 266–270. [Google Scholar] [CrossRef]
- Malik, A.H.; Hussain, S.; Kalita, A.; Iyer, P.K. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Appl. Mater. Interfaces 2015, 7, 26968–26976. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yao, J.; Zhuang, Z.; Ni, C.; Yao, H.; Su, D.; Zhou, J.; Zhao, Z. AEE-active conjugated polymers based on di(naphthalen-2-yl)-1,2-diphenylethene for sensitive fluorescence detection of picric acid. Dyes Pigment. 2020, 174, 108041. [Google Scholar] [CrossRef]
- Guo, L.; Cao, D.; Yun, J.; Zeng, X. Highly selective detection of picric acid from multicomponent mixtures of nitro explosives by using COP luminescent probe. Sens. Actuators B Chem. 2017, 243, 753–760. [Google Scholar] [CrossRef]
- Bauri, K.; Saha, B.; Mahanti, J.; De, P. A nonconjugated macromolecular luminogen for speedy, selective and sensitive detection of picric acid in water. Polym. Chem. 2017, 8, 7180–7187. [Google Scholar] [CrossRef]
- Pherkkhuntod, C.; Ervithayasuporn, V.; Chanmungkalakul, S.; Wang, C.; Liu, X.; Harding, D.J.; Kiatkamjornwong, S. Water-soluble polyaromatic-based imidazolium for detecting picric acid: Pyrene vs. anthracene. Sens. Actuators B Chem. 2021, 330, 129287. [Google Scholar] [CrossRef]
- Goel, A.; Malhotra, R. Efficient detection of Picric acid by pyranone based Schiff base as a chemosensor. J. Mol. Struct. 2022, 1249, 131619. [Google Scholar] [CrossRef]
Compound | Density (g/cm3] | Detonation Velocity (m/s) | Lead Block Test [cm3 Pb/10g] | Impact Sensitivity [Nm] | Friction Sensitivity [N] |
---|---|---|---|---|---|
PA | 1.77 | 7350 | 315 | 7.4 | 353 |
Lead Azide | 4.8 | 4500 | 110 | 2.5–4 | 0.1–1 |
RDX | 1.82 | 8700 | 480 | 7.5 | 120 |
HMX | 1.87 | 9100 | 480 | 7.4 | 120 |
TNT | 1.47 | 6900 | 480 | 15 | 353 |
PETN | 1.76 | 8400 | 523 | 3 | 60 |
MOFs | Structure | Solvent | Detection Limit [M] | KSV 1 [M−1] | Ref. |
---|---|---|---|---|---|
3D Porous | H2O | 1 × 10−6 | 6 × 104 | [59] | |
3D Porous | H2O | 1.63 ppm | 10.83 × 104 | [60] | |
3D framework | ethanol | not applicable | 4.22 × 103 | [61] | |
3D Porous | H2O | 4 × 10−6 | 2.385 × 104 | [59] | |
3D interpenetrated | ethanol | 1.98 ppm | 3.84 × 104 | [62] | |
3D network | H2O | 2.71 × 10−7 | 1.36 × 105 | [63] | |
3D Porous | methanol | 1.63 × 10−6 | 2.49 × 104 | [64] |
Metal-Organic Framework | Structure 1 | Solvent | LOD | KSV 2 [M−1] | Ref. |
---|---|---|---|---|---|
3DP | DMF | 5 × 10−6 M | 2912 | [69] | |
Eu2L2 3 | 2DL/3DF | DMF | 1 ×10−5 M | 1359 | [70] |
Tb2L2 3 | 2DL/3DF | DMF | 5 × 10−6 M | 4995 | [70] |
2DL | H2O | 7.1 × 10−7 M | 8550 | [71] | |
([Eu2L1.5(H2O)2EtOH]·DMF)n | 3DP | DMF | 1×10−5 | 2001 | [72] |
2DL/3DF | methanol | 1 × 10−7 | 38,910 | [73] | |
Eu(naphthalenedicarboxylic acid) | n/a | H2O | 1.64 × 10−7 | 3220 | [74] |
3DH | H2O | 1.02 × 10−5 | 5890 | [75] | |
Eu-MOF | MP | DMF | n/a | 1500 | [76] |
Nanowire | Ethanol | 8.1 × 10−8 | 3410 | [77] | |
TbL 4 | n/a | Tris-HCl buffer | 1.1 × 10−7 M | 1.6 × 105 | [78] |
Tb0.01Gd0.99L 4 | n/a | Tris-HCl buffer | 4.1 × 10−7 M | 4.42 × 104 | [78] |
GdL4 | n/a | Tris-HCl buffer | 4.0 × 10−7 M | 4.48×104 | [78] |
Material | Sensing Mechanism | KSV (M) | LOD | Ref. |
---|---|---|---|---|
MAEC-PMA | static quenching | 2.95 × 104 | 93.3 nM | [85] |
COP-401 | PET (dynamic quenching) | 8.3 × 104 | <1 ppm | [82] |
COP-301 | PET (dynamic quenching) | 2.6 × 105 | <1 ppm | [82] |
A-NS | static quenching | 8 × 105 | 90 nM | [86] |
SNW-1 | quenching | 9.5 × 104 | 50 nM | [81] |
COP-3 | PET (static quenching) | 1.45 × 104 | <1 ppm | [87] |
DL-COF | static quenching | 2.24 × 106 | 57.31 nM | [88] |
PI-COF | PET, IFE | 1 × 107 | 0.25 M | [89] |
Main Substrates | Solvent | Quantum Yield of C-Dots [%] | Linear Range (µM) | Detection Limit (nM) | Ref. |
---|---|---|---|---|---|
Grapes, rhodamine 6G | H2O | 18.67 | 0.06–79.4 | 10 | [124] |
citric acid anhydrous, ethylenediamine | H2O | 29.01 | 1–10 | 10 | [125] |
malonic acid, urea | H2O | 12.6 | 0.1–26.5 | 51 | [126] |
L-Lysine, thiourea | H2O | 53.19 | 1–10 | 240 | [127] |
Betel leave | H2O | 4.21 | 0.3–3.3 | 110 | [128] |
Gelatine, aniline | H2O | 17 | 0.37–1.42 | 56 | [129] |
Sucrose, phosphoric acid | not applicable | 21.8 | 0.2–17.0 | 16.9 | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabin, M.; Łapkowski, M.; Jarosz, T. Methods for Detecting Picric Acid—A Review of Recent Progress. Appl. Sci. 2023, 13, 3991. https://doi.org/10.3390/app13063991
Fabin M, Łapkowski M, Jarosz T. Methods for Detecting Picric Acid—A Review of Recent Progress. Applied Sciences. 2023; 13(6):3991. https://doi.org/10.3390/app13063991
Chicago/Turabian StyleFabin, Magdalena, Mieczysław Łapkowski, and Tomasz Jarosz. 2023. "Methods for Detecting Picric Acid—A Review of Recent Progress" Applied Sciences 13, no. 6: 3991. https://doi.org/10.3390/app13063991
APA StyleFabin, M., Łapkowski, M., & Jarosz, T. (2023). Methods for Detecting Picric Acid—A Review of Recent Progress. Applied Sciences, 13(6), 3991. https://doi.org/10.3390/app13063991