Building XAI-Based Agents for IoT Systems
Abstract
:1. Introduction
1.1. The Need for Explainability in Smart Home Domain
1.2. Explainable Multi-Agent Systems for IoT
2. Agent-Based Method for Building Explainable IoT Systems
2.1. Reference Architecture for an Agent-Based IoT System
2.2. IoT System Implementation Method
3. Results—An Explainable Agent-Based Smart Home System
3.1. Experimental Setup
- (a)
- HP Pavilion all-in-one—24 computer—as IoT rule execution engine;
- (b)
- SONOFF T3 TX Series WIFI Wall Switch—light switches;
- (c)
- DANFOSS, TWA-K 24V, M30X1.5, NC—thermal actuators;
- (d)
- Asus wireless router for transmitting data;
- (e)
- SONOFF R2 4 Channel—relay block for switching lighting and heating;
- (f)
- SONOFF® RF Bridge 433 MHz—for ventilation control;
- (g)
- SONOFF® PIR2 Wireless Infrared Detector—for presence detection;
- (h)
- ESP32 microcontroller with DS18B20 temperature sensor—for indoor temperature measurements;
- (i)
- M5 Stack microcontroller with light sensor.
- i.
- Ubuntu20.04 Linux;
- ii.
- SQLite database;
- iii.
- Node.js 16 framework;
- iv.
- Pimatic—smart house control environment.
3.2. The Steps for Developing an Explainable Smart Home Control System
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussain, F.; Hussain, R.; Hossain, E. Explainable artificial intelligence (XAI): An engineering perspective. arXiv 2021, arXiv:2101.03613. [Google Scholar]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges towards Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.R.; Ahmed, W.; Pandya, S.; Maddikunta, P.K.R.; Alazab, M.; Gadekallu, T.R. A Survey of Explainable Artificial Intelligence for Smart Cities. Electronics 2023, 12, 1020. [Google Scholar] [CrossRef]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.R. (Eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-030-28953-9. [Google Scholar]
- Martin, S. Challenges and opportunities for XAI and GDPR compliance in the financial services sector. J. Bus. Res. 2021, 123, 192–203. [Google Scholar] [CrossRef]
- Angelov, P.P.; Soares, E.A.; Jiang, R.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1424. [Google Scholar] [CrossRef]
- McAreavey, K.; Bauters, K.; Liu, W. A Smart Home Testbed for Evaluating XAI with Non-Experts. In Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART’22), Online, 3–5 February 2022; Rocha, A.P., Steels, L., van den Herik, J., Eds.; 2022; Volume 3, pp. 773–784. [Google Scholar] [CrossRef]
- Islam, M.R.; Ahmed, M.U.; Barua, S.; Begum, S. A Systematic review of explainable artificial intelligence in terms of different application domains and tasks. Appl. Sci. 2022, 12, 1353. [Google Scholar] [CrossRef]
- Alzetta, F.; Giorgini, P.; Najjar, A.; Schumacher, M.I.; Calvaresi, D. In-Time Explainability in Multi-Agent Systems: Challenges, Opportunities, and Roadmap. In Explainable, Transparent Autonomous Agents and Multi-Agent Systems; EX-TRAAMAS 2020; Lecture Notes in Computer Science; Calvaresi, D., Najjar, A., Winikoff, M., Främling, K., Eds.; Springer: Cham, Switzerland, 2020; Volume 12175. [Google Scholar] [CrossRef]
- Houzé, E.; Diaconescu, A.; Dessalles, J.L.; Mengay, D.; Schumann, M. A decentralized approach to explanatory artificial intelligence for autonomic systems. In Proceedings of the 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), Washington, DC, USA, 17–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 115–120. [Google Scholar] [CrossRef]
- Das, D.; Nishimura, Y.; Vivek, R.P.; Takeda, N.; Fish, S.T.; Ploetz, T.; Chernova, S. Explainable activity recognition for smart home systems. arXiv 2021, arXiv:2105.09787. [Google Scholar]
- Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.Y.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy AI 2022, 9, 100169. [Google Scholar] [CrossRef]
- Houze, J.D.E.; Diaconescu, A.; Menga, D. A generic and modular architecture for self-explainable smart homes. In Proceedings of the 11th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 26–29 June 2018; pp. 389–394. [Google Scholar] [CrossRef]
- Ciatto, G.; Calegari, R.; Omicini, A.; Calvaresi, D. Towards XMAS: Explainability through multi-agent systems. In Proceedings of the 1st Workshop on Artificial Intelligence and Internet of Things Co-Located with the 18th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2019), Rende, CS, Italy, 22 November 2019; pp. 40–53. Available online: https://ceur-ws.org/Vol-2502/paper3.pdf (accessed on 18 March 2023).
- Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053. [Google Scholar] [CrossRef]
- Weitz, K.; Schiller, D.; Schlagowski, R.; Huber, T.; André, E. “Do you trust me?” Increasing User-Trust by Integrating Virtual Agents in Explainable AI Interaction Design. In Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents (IVA ’19). Association for Computing Machinery, New York, NY, USA, 7–9 July 2019. [Google Scholar] [CrossRef] [Green Version]
- Weitz, K.; Schiller, D.; Schlagowski, R.; Huber, T.; André, E. “Let me explain!”: Exploring the potential of virtual agents in explainable AI interaction design. J. Multimodal User Interfaces 2020, 15, 87–98. [Google Scholar] [CrossRef]
- Werner, C. Explainable AI through Rule-based Interactive Conversation. In Proceedings of the 23rd International Conference on Extending Database Technology (EDBT), Copenhagen, Denmark, 30 March–2 April 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Kraus, S.; Azaria, A.; Fiosina, J.; Greve, M.; Hazon, N.; Kolbe, L.; Lembcke, T.B.; Muller, J.P.; Schleibaum, S.; Vollrath, M. AI for explaining decisions in multi-agent environments. Proc. AAAI Conf. Artif. Intell. 2020, 34, 13534–13538. [Google Scholar] [CrossRef]
- Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K. Explainable agents and robots: Results from a systematic literature review. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, QC, Canada, 13–17 May 2019; International Foundation for Autonomous Agents and Multiagent Systems: Montreal, QC, Canada, 2019; pp. 1078–1088. [Google Scholar]
- Panisson, A.R.; Engelmann, D.C.; Bordini, R.H. Engineering explainable agents: An argumentation-based approach. In Engineering Multi-Agent Systems: 9th International Workshop, EMAS 2021, Virtual Event, 3–4 May 2021, Revised Selected Papers; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Malhi, A.; Knapic, S.; Främling, K. Explainable agents for less bias in human-agent decision making. In Explainable, Transparent Autonomous Agents and Multi-Agent Systems: Second International Workshop, EXTRAAMAS 2020, Auckland, New Zealand, 9–13 May 2020, Revised Selected Papers 2; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 23–38. [Google Scholar] [CrossRef]
- Stowers, K.; Kasdaglis, N.; Rupp, M.A.; Newton, O.B.; Chen, J.Y.C.; Barnes, M.J. The IMPACT of agent transparency on human performance. IEEE Trans. Hum. -Mach. Syst. 2020, 50, 245–253. [Google Scholar] [CrossRef]
- Calvaresi, D.; Mualla, Y.; Najjar, A.; Galland, S.; Schumacher, M. Explainable multi-agent systems through blockchain technology. In Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, 13–14 May 2019, Revised Selected Papers 1; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Calvo, I.; Espin, A.; Gil-García, J.M.; Fernández Bustamante, P.; Barambones, O.; Apiñaniz, E. Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings. Energies 2022, 15, 2270. [Google Scholar] [CrossRef]
- Aivaliotis, V.; Tsantikidou, K.; Sklavos, N. IoT-Based Multi-Sensor Healthcare Architectures and a Lightweight-Based Privacy Scheme. Sensors 2022, 22, 4269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, H.; Zhou, W.; Man, M. Application and Research of IoT Architecture for End-Net-Cloud Edge Computing. Electronics 2023, 12, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrovolskis, A.; Kazanavičius, E.; Kižauskienė, L. Building XAI-Based Agents for IoT Systems. Appl. Sci. 2023, 13, 4040. https://doi.org/10.3390/app13064040
Dobrovolskis A, Kazanavičius E, Kižauskienė L. Building XAI-Based Agents for IoT Systems. Applied Sciences. 2023; 13(6):4040. https://doi.org/10.3390/app13064040
Chicago/Turabian StyleDobrovolskis, Algirdas, Egidijus Kazanavičius, and Laura Kižauskienė. 2023. "Building XAI-Based Agents for IoT Systems" Applied Sciences 13, no. 6: 4040. https://doi.org/10.3390/app13064040
APA StyleDobrovolskis, A., Kazanavičius, E., & Kižauskienė, L. (2023). Building XAI-Based Agents for IoT Systems. Applied Sciences, 13(6), 4040. https://doi.org/10.3390/app13064040