Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Glidearc Reactor
2.3. Microbiological Analyzes
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optical Microscope
3.2. FTIR Spectra
3.3. Microbiological Analysis
4. Summary
- The non-equilibrium plasma generated in the mini glidearc reactor has a lethality potential against bacteria and yeast.
- Bacteria and yeast can be effectively removed from the porous surface of diatomaceous earth using non-equilibrium plasma.
- It is reasonable to conduct further studies to determine the possibility of removing other types of microorganisms from surfaces with irregular shape and structure.
- Further research involving the optimization of the diatomaceous earth plasma process that leads to the complete elimination of microorganisms from its surface will contribute to its reuse in the beer filtration process as well as in other industries, i.e., cosmetology, agriculture or chemical technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kristiansen, A.G.; Director, S. 50 Achievements in Brewing Science and Technology in 350 Years—Part 2. Brauwelt Int. 2014, 32, 60–62. [Google Scholar]
- Gong, X.; Tian, W.; Wang, L.; Bai, J.; Qiao, K.; Zhao, J. Biological Regeneration of Brewery Spent Diatomite and Its Reuse in Basic Dye and Chromium (III) Ions Removal. Process Saf. Environ. Prot. 2019, 128, 353–361. [Google Scholar] [CrossRef]
- Nanayakkara, R.; Gunathilake, C.; Dassanayake, R. Suitability of Reusing the Spent Diatomaceous Earth in Brick Production: A Review. Adv. Technol. 2022, 2022, 151–166. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, Wastewater and Waste Management in Brewing Industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
- Mathias, T.R.S.; De Mello, P.P.M.; Sérvulo, E.F.C. Solid Wastes in Brewing Process: A Review. J. Brew. Distill. 2014, 5, 1–9. [Google Scholar]
- Rangam, N.V.; Sudagar, A.J.; Ruszczak, A.; Borowicz, P.; Tóth, J.; Kövér, L.; Michałowska, D.; Roszko, M.Ł.; Noworyta, K.R.; Lesiak, B. Valorizing the Unexplored Filtration Waste of Brewing Industry for Green Silver Nanocomposite Synthesis. Nanomaterials 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Semião, M.A.; Haminiuk, C.W.I.; Maciel, G.M. Residual Diatomaceous Earth as a Potential and Cost Effective Biosorbent of the Azo Textile Dye Reactive Blue 160. J. Environ. Chem. Eng. 2020, 8, 103617. [Google Scholar] [CrossRef]
- Wille, C.L.; Wille, P.E.; da Rosa, J.M.; Boff, M.I.C.; Franco, C.R. Efficacy of Recovered Diatomaceous Earth from Brewery to Control Sitophilus Zeamais and Acanthoscelides Obtectus. J. Stored Prod. Res. 2019, 83, 254–260. [Google Scholar] [CrossRef]
- Cotes-Palomino, M.T.; Martínez-García, C.; Eliche-Quesada, D.; Pérez-Villarejo, L. Production of Ceramic Material Using Wastes from Brewing Industry. Key Eng. Mater. 2016, 663, 94–104. [Google Scholar] [CrossRef]
- Mateo, S.; Cuevas, M.; La Rubia, M.D.; Eliche-Quesada, D. Preliminary Study of the Use of Spent Diatomaceous Earth from the Brewing Industry in Clay Matrix Bricks. Adv. Appl. Ceram. 2017, 116, 77–84. [Google Scholar] [CrossRef]
- Nanayakkara, R.; Gunathilake, C. Development of Environmentally Friendly Bricks Using Spent Diatomaceous Earth. Sri Lankan J. Appl. Sci. 2022, 1, 11–17. [Google Scholar]
- Hegemann, D.; Brunner, H.; Oehr, C. Plasma Treatment of Polymers for Surface and Adhesion Improvement. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 208, 281–286. [Google Scholar] [CrossRef]
- Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface Modification of Polyester by Oxygen- and Nitrogen-Plasma Treatment. Surf. Interface Anal. 2008, 40, 1444–1453. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Diatczyk, J. RF Atmospheric Plasma Jet Surface Treatment of Paper. J. Phys. Appl. Phys. 2016, 49, 374001. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma Sterilization. Methods and Mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Brisset, J.-L.; Pawłat, J. Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-Discharge and Plasma Activated Water. Plasma Chem. Plasma Process. 2016, 36, 355–381. [Google Scholar] [CrossRef]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Wolny-Koładka, K. Possibility of Humid Municipal Wastes Hygienisation Using Gliding Arc Plasma Reactor. Water 2021, 13, 194. [Google Scholar] [CrossRef]
- Miebach, L.; Freund, E.; Clemen, R.; Weltmann, K.-D.; Metelmann, H.-R.; von Woedtke, T.; Gerling, T.; Wende, K.; Bekeschus, S. Conductivity Augments ROS and RNS Delivery and Tumor Toxicity of an Argon Plasma Jet. Free Radic. Biol. Med. 2022, 180, 210–219. [Google Scholar] [CrossRef]
- Maho, T.; Binois, R.; Brulé-Morabito, F.; Demasure, M.; Douat, C.; Dozias, S.; Escot Bocanegra, P.; Goard, I.; Hocqueloux, L.; Le Helloco, C.; et al. Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing. Appl. Sci. 2021, 11, 9598. [Google Scholar] [CrossRef]
- Przekora, A.; Audemar, M.; Pawłat, J.; Canal, C.; Thomann, J.-S.; Labay, C.; Wojcik, M.; Kwiatkowski, M.; Terebun, P.; Ginalska, G.; et al. Positive Effect of Cold Atmospheric Nitrogen Plasma on the Behavior of Mesenchymal Stem Cells Cultured on a Bone Scaffold Containing Iron Oxide-Loaded Silica Nanoparticles Catalyst. Int. J. Mol. Sci. 2020, 21, 4738. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef] [Green Version]
- Młotek, M.; Ulejczyk, B.; Woroszył, J.; Walerczak, I.; Krawczyk, K. Purification of the Gas after Pyrolysis in Coupled Plasma-Catalytic System. Pol. J. Chem. Technol. 2017, 19, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Jõgi, I.; Hołub, M.; Brandenburg, R. Non-Thermal Plasma Based Decomposition of Volatile Organic Compounds in Industrial Exhaust Gases. Int. J. Environ. Sci. Technol. 2015, 12, 3745–3754. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J. Electrical Discharges in Humid Environments: Generators, Effects, Application; Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2013. [Google Scholar]
- Gomez, E.; Rani, D.A.; Cheeseman, C.R.; Deegan, D.; Wise, M.; Boccaccini, A.R. Thermal Plasma Technology for the Treatment of Wastes: A Critical Review. J. Hazard. Mater. 2009, 161, 614–626. [Google Scholar] [CrossRef]
- Maćkiw, E.; Mąka, Ł.; Ścieżyńska, H.; Pawlicka, M.; Dziadczyk, P.; Rżanek-Boroch, Z. The Impact of Plasma-Modified Films with Sulfur Dioxide, Sodium Oxide on Food Pathogenic Microorganisms. Packag. Technol. Sci. 2015, 28, 285–292. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Appl. Sci. 2021, 11, 6164. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Yemeli, G.B.N.; Janda, M.; Machala, Z. Non-Thermal Plasma as a Priming Tool to Improve the Yield of Pea in Outdoor Conditions. Plasma Chem. Plasma Process. 2022, 42, 1143–1168. [Google Scholar] [CrossRef]
- Brust, H.; Nishime, T.M.C.; Wannicke, N.; Mui, T.S.M.; Horn, S.; Quade, A.; Weltmann, K.-D. A Medium-Scale Volume Dielectric Barrier Discharge System for Short-Term Treatment of Cereal Seeds Indicates Improved Germination Performance with Long-Term Effects. J. Appl. Phys. 2021, 129, 044904. [Google Scholar] [CrossRef]
- Bradu, C.; Kutasi, K.; Magureanu, M.; Puač, N.; Živković, S. Reactive Nitrogen Species in Plasma-Activated Water: Generation, Chemistry and Application in Agriculture. J. Phys. Appl. Phys. 2020, 53, 223001. [Google Scholar] [CrossRef]
- Sirgedaitė-Šėžienė, V.; Lučinskaitė, I.; Mildažienė, V.; Ivankov, A.; Koga, K.; Shiratani, M.; Laužikė, K.; Baliuckas, V. Changes in Content of Bioactive Compounds and Antioxidant Activity Induced in Needles of Different Half-Sib Families of Norway Spruce (Picea Abies (L.) H. Karst) by Seed Treatment with Cold Plasma. Antioxidants 2022, 11, 1558. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Yamamoto, K. Variations in Plant Growth Characteristics due to Oxygen Plasma Irradiation on Leaf and Seed. Agronomy 2022, 12, 259. [Google Scholar] [CrossRef]
- Zambon, Y.; Contaldo, N.; Laurita, R.; Várallyay, E.; Canel, A.; Gherardi, M.; Colombo, V.; Bertaccini, A. Plasma Activated Water Triggers Plant Defence Responses. Sci. Rep. 2020, 10, 19211. [Google Scholar] [CrossRef] [PubMed]
- Laroussi, M. Low Temperature Plasma-Based Sterilization: Overview and State-of-the-Art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Roth, S.; Feichtinger, J.; Hertel, C. Response of Deinococcus Radiodurans to Low-Pressure Low-Temperature Plasma Sterilization Processes. J. Appl. Microbiol. 2010, 109, 1521–1530. [Google Scholar] [CrossRef]
- Popelka, A.; Kronek, J.; Novák, I.; Kleinová, A.; Mičušík, M.; Špírková, M.; Omastová, M. Surface Modification of Low-Density Polyethylene with Poly(2-Ethyl-2-Oxazoline) Using a Low-Pressure Plasma Treatment. Vacuum 2014, 100, 53–56. [Google Scholar] [CrossRef]
- Schutze, A.; Jeong, J.Y.; Babayan, S.E.; Park, J.; Selwyn, G.S.; Hicks, R.F. The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. IEEE Trans. Plasma Sci. 1998, 26, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- Moreau, S.; Moisan, M.; Tabrizian, M.; Barbeau, J.; Pelletier, J.; Ricard, A.; Yahia, L. Using the Flowing Afterglow of a Plasma to Inactivate Bacillus Subtilis Spores: Influence of the Operating Conditions. J. Appl. Phys. 2000, 88, 1166–1174. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.-H.; Rafiee, M.; Mohebi Morad, M.; Khojastehpour, M.; Khani, M.R.; Rohani, A.; Shokri, B.; Martynenko, A. Impact of Gliding Arc Plasma Pretreatment on Drying Efficiency and Physicochemical Properties of Grape. Innov. Food Sci. Emerg. Technol. 2020, 63, 102381. [Google Scholar] [CrossRef]
- Šerá, B.; Vanková, R.; Roháček, K.; Šerý, M. Gliding Arc Plasma Treatment of Maize (Zea Mays L.) Grains Promotes Seed Germination and Early Growth, Affecting Hormone Pools, but Not Significantly Photosynthetic Parameters. Agronomy 2021, 11, 2066. [Google Scholar] [CrossRef]
- Chiappim, W.; da Sampaio, A.G.; Miranda, F.; Fraga, M.; Petraconi, G.; da Silva Sobrinho, A.; Kostov, K.; Koga-Ito, C.; Pessoa, R. Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus Aureus, Escherichia Coli, and Candida Albicans. Water 2021, 13, 1480. [Google Scholar] [CrossRef]
- Mousavi, M.; Hosseini, S.M.; Hosseini, H.; Abedi, A.-S.; Khani, M.; Heshmati, A.; Abhari, K.; Shahraz, F.; Taghizadeh, M.; Akhavan, A. Gliding Arc Plasma Discharge Conditions on Microbial, Physicochemical, and Sensory Properties of Shrimp (Litopenaeus Vannamei): In Vivo and In Vitro Studies. Food Bioprocess Technol. 2022, 15, 2327–2343. [Google Scholar] [CrossRef]
- Pawłat, J.; Starek, A.; Sujak, A.; Kwiatkowski, M.; Terebun, P.; Budzeń, M. Effects of Atmospheric Pressure Plasma Generated in GlidArc Reactor on Lavatera Thuringiaca L. Seeds’ Germination. Plasma Process. Polym. 2018, 15, 1700064. [Google Scholar] [CrossRef]
- Starek, A.; Pawłat, J.; Chudzik, B.; Kwiatkowski, M.; Terebun, P.; Sagan, A.; Andrejko, D. Evaluation of Selected Microbial and Physicochemical Parameters of Fresh Tomato Juice after Cold Atmospheric Pressure Plasma Treatment during Refrigerated Storage. Sci. Rep. 2019, 9, 8407. [Google Scholar] [CrossRef] [Green Version]
- Pawłat, J.; Terebun, P.; Kwiatkowski, M.; Tarabová, B.; Kovaľová, Z.; Kučerová, K.; Machala, Z.; Janda, M.; Hensel, K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-Gliding Arc Discharge. Plasma Chem. Plasma Process. 2019, 39, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Wolny-Koładka, K.; Żukowski, W. Mixed Municipal Solid Waste Hygienisation for Refuse-Derived Fuel Production by Ozonation in the Novel Configuration Using Fluidized Bed and Horizontal Reactor. Waste Biomass Valorization 2019, 10, 575–583. [Google Scholar] [CrossRef]
- Böhme, K.; Fernández-No, I.C.; Barros-Velázquez, J.; Gallardo, J.M.; Calo-Mata, P.; Cañas, B. Species Differentiation of Seafood Spoilage and Pathogenic Gram-Negative Bacteria by MALDI-TOF Mass Fingerprinting. J. Proteome Res. 2010, 9, 3169–3183. [Google Scholar] [CrossRef]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef]
- Seng, P.; Rolain, J.-M.; Fournier, P.E.; La Scola, B.; Drancourt, M.; Raoult, D. MALDI-TOF-Mass Spectrometry Applications in Clinical Microbiology. Future Microbiol. 2010, 5, 1733–1754. [Google Scholar] [CrossRef]
- Reka, A.A.; Pavlovski, B.; Fazlija, E.; Berisha, A.; Pacarizi, M.; Daghmehchi, M.; Sacalis, C.; Jovanovski, G.; Makreski, P.; Oral, A. Diatomaceous Earth: Characterization, Thermal Modification, and Application. Open Chem. 2021, 19, 451–461. [Google Scholar] [CrossRef]
- Galotta, A.; Giust, E.; Bortolotti, M.; Sorarù, G.D.; Sglavo, V.M.; Biesuz, M. Cold Sintering of Diatomaceous Earth. J. Am. Ceram. Soc. 2021, 104, 4329–4340. [Google Scholar] [CrossRef]
- Fatoni, A.; Koesnarpadi, S.; Hidayati, N. Synthesis, Characterization and Application of Diatomaceous Earth—4,4-Diaminodiphenylether-O-Hydroxybenzaldehyde as an Adsorbent of Ag(i) Metal Ion. Indones. J. Chem. 2010, 10, 315–319. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Pilarski, K.; Adamski, M.; Zaborowicz, M.; Cais-Sokolińska, D.; Wolna-Maruwka, A.; Niewiadomska, A. Eco-Friendly and Effective Diatomaceous Earth/Peat (DEP) Microbial Carriers in the Anaerobic Biodegradation of Food Waste Products. Energies 2022, 15, 3442. [Google Scholar] [CrossRef]
- Wang, J.Y.; De Belie, N.; Verstraete, W. Diatomaceous Earth as a Protective Vehicle for Bacteria Applied for Self-Healing Concrete. J. Ind. Microbiol. Biotechnol. 2012, 39, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Prehn, F.; Timmermann, E.; Kettlitz, M.; Schaufler, K.; Günther, S.; Hahn, V. Inactivation of Airborne Bacteria by Plasma Treatment and Ionic Wind for Indoor Air Cleaning. Plasma Process. Polym. 2020, 17, 2000027. [Google Scholar] [CrossRef]
- Maeda, K.; Toyokawa, Y.; Shimizu, N.; Imanishi, Y.; Sakudo, A. Inactivation of Salmonella by Nitrogen Gas Plasma Generated by a Static Induction Thyristor as a Pulsed Power Supply. Food Control 2015, 52, 54–59. [Google Scholar] [CrossRef]
- Ryu, Y.-H.; Kim, Y.-H.; Lee, J.-Y.; Shim, G.-B.; Uhm, H.-S.; Park, G.; Choi, E.H. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma. PLoS ONE 2013, 8, e66231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soušková, H.; Scholtz, V.; Julák, J.; Kommová, L.; Savická, D.; Pazlarová, J. The Survival of Micromycetes and Yeasts under the Low-Temperature Plasma Generated in Electrical Discharge. Folia Microbiol. 2011, 56, 77–79. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting Soil PH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Polčic, P.; Machala, Z. Effects of Non-Thermal Plasma on Yeast Saccharomyces Cerevisiae. Int. J. Mol. Sci. 2021, 22, 2247. [Google Scholar] [CrossRef]
- Alkawareek, M.Y.; Algwari, Q.T.; Laverty, G.; Gorman, S.P.; Graham, W.G.; O’Connell, D.; Gilmore, B.F. Eradication of Pseudomonas Aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma. PLoS ONE 2012, 7, e44289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duske, K.; Wegner, K.; Donnert, M.; Kunert, U.; Podbielski, A.; Kreikemeyer, B.; Gerling, T.; Weltmann, K.-D.; Nebe, B.; Bader, R. Comparative In Vitro Study of Different Atmospheric Pressure Plasma Jets Concerning Their Antimicrobial Potential and Cellular Reaction. Plasma Process. Polym. 2015, 12, 1050–1060. [Google Scholar] [CrossRef]
- Lee, K.-N.; Paek, K.-H.; Ju, W.-T.; Lee, Y.-H. Sterilization of Bacteria, Yeast, and Bacterial Endospores by Atmospheric-Pressure Cold Plasma Using Helium and Oxygen. J. Microbiol. 2006, 44, 269–275. [Google Scholar] [PubMed]
No. | Microorganism | Media | Temperature (°C) | Time (h) |
---|---|---|---|---|
1. | Bacteria | TSA agar, BTL, Poland | 37 | 24 |
2. | Mold fungi | MEA agar, BTL, Poland | 28 | 72 |
3. | Staphylococcus spp. | Mannitol salt agar, BTL, Poland | 37 | 24 |
4. | Escherichia coli | TBX agar, BTL, Poland | 44 | 24 |
5. | Salmonella spp. | SS agar, BTL, Poland | 37 | 24 |
6. | Clostridium perfringens | SC agar, BTL, Poland | 37 | 24 |
7. | Yeast | YPD agar, BTL, Poland | 28 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolny-Koładka, K.; Zdaniewicz, M.; Bodziacki, S.; Terebun, P.; Kwiatkowski, M.; Zarzeczny, D.; Pawłat, J. Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process. Appl. Sci. 2023, 13, 4081. https://doi.org/10.3390/app13074081
Wolny-Koładka K, Zdaniewicz M, Bodziacki S, Terebun P, Kwiatkowski M, Zarzeczny D, Pawłat J. Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process. Applied Sciences. 2023; 13(7):4081. https://doi.org/10.3390/app13074081
Chicago/Turabian StyleWolny-Koładka, Katarzyna, Marek Zdaniewicz, Stanisław Bodziacki, Piotr Terebun, Michał Kwiatkowski, Dawid Zarzeczny, and Joanna Pawłat. 2023. "Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process" Applied Sciences 13, no. 7: 4081. https://doi.org/10.3390/app13074081
APA StyleWolny-Koładka, K., Zdaniewicz, M., Bodziacki, S., Terebun, P., Kwiatkowski, M., Zarzeczny, D., & Pawłat, J. (2023). Effect of Non-Equilibrium Plasma on Microorganisms Colonizing Diatomaceous Earth after the Beer Filtration Process. Applied Sciences, 13(7), 4081. https://doi.org/10.3390/app13074081