Full-Field Vibration Measurements by Using High-Speed Two-Dimensional Digital Image Correlation
Abstract
:1. Introduction
2. Principle of the Method
2.1. Two-Dimensional Digital Image Correlation (2D-DIC)
2.2. Estimate Both in-Plane and Out-of-Plane Displacements in Vibration Measurements
2.3. Sensitivity of the In-Plane Displacement and Out-of-Plane Displacement Measurements
- ■
- Determining the FOV and the minimum object distance according to the practical measurement needs;
- ■
- Setting the distance between the camera and the measured object to the predetermined minimum object distance for obtaining the maximum out-of-plane displacement sensitivity;
- ■
- Choosing a high-resolution camera or a camera array for ensuring a high in-plane displacement sensitivity;
- ■
- Selecting the focal length of the imaging lens that allows the camera to image the full range of the predetermined FOV at the minimum object distance.
3. Experiment and Result
3.1. In-Plane and Out-of-Plane Translation Tests
3.2. Out-of-Plane Displacement Sensitivity Assessment
3.3. Single-Frequency Vibration Measurement
3.4. Measurement of Natural Frequencies and Mode Shapes of a Rectangular Cantilever Panel
4. Conclusions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Dorn, C.; Mancini, T.; Talken, Z.; Kenyon, G.; Farrar, C.; Mascareñas, D. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 2017, 85, 567–590. [Google Scholar] [CrossRef]
- Pedrini, G.; Osten, W.; Gusev, M.E. High-speed digital holographic interferometry for vibration measurement. Appl. Opt. 2006, 45, 3456–3462. [Google Scholar] [CrossRef]
- Dreier, F.; Günther, P.; Pfister, T.; Czarske, J.W.; Fischer, A. Interferometric Sensor System for Blade Vibration Measurements in Turbomachine Applications. IEEE Trans. Instrum. Meas. 2013, 62, 2297–2302. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Hu, M.; Feng, Z.; Gao, H.; Yang, Y.; Zhou, R. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement. Chin. Opt. Lett. 2011, 9, 090607. [Google Scholar] [CrossRef]
- Vallan, A.; Casalicchio, M.L.; Perrone, G. Displacement and Acceleration Measurements in Vibration Tests Using a Fiber Optic Sensor. IEEE Trans. Instrum. Meas. 2010, 59, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Halkon, B.J.; Rothberg, S.J. Vibration measurements using continuous scanning laser Doppler vibrometry: Theoretical velocity sensitivity analysis with applications. Meas. Sci. Technol. 2003, 14, 382–393. [Google Scholar] [CrossRef]
- Rothberg, S.J.; Allen, M.S.; Castellini, P.; Di Maio, D.; Dirckx, J.J.J.; Ewins, D.J.; Halkon, B.J.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2016, 99, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Nassif, H.H.; Gindy, M.; Davis, J. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT E Int. 2005, 38, 213–218. [Google Scholar] [CrossRef]
- Halkon, B.J.; Rothberg, S.J. Vibration measurements using continuous scanning laser vibrometry: Advanced aspects in rotor applications. Mech. Syst. Signal Process. 2006, 20, 1286–1299. [Google Scholar] [CrossRef]
- Allen, M.S.; Sracic, M.W. A new method for processing impact excited continuous-scan laser Doppler vibrometer measurements. Mech. Syst. Signal Process. 2010, 24, 721–735. [Google Scholar] [CrossRef]
- Yu, L.; Pan, B. Single-camera high-speed stereo-digital image correlation for full-field vibration measurement. Mech. Syst. Signal Process. 2017, 94, 374–383. [Google Scholar] [CrossRef]
- Peters, W.H.; Ranson, W.F. Digital imaging techniques in experimental stress analysis. Opt. Eng. 1982, 21, 427–431. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 152–154. [Google Scholar] [CrossRef]
- Dong, B.; Li, C.; Pan, B. Fluorescent 2D digital image correlation with built-in coaxial illumination for deformation measurement in space-constrained scenarios. Exp. Mech. 2021, 61, 653661. [Google Scholar] [CrossRef]
- Dong, B.; Li, C.; Pan, B. Ultrasensitive video extensometer using single-camera dual field-of-view telecentric imaging system. Opt. Lett. 2019, 44, 4499–4502. [Google Scholar] [CrossRef]
- Sutton, M.; Reu, P.; Turner, D. Advances in digital image correlation: Extreme-scale applications, algorithms, and uncertainty quantification preface. Exp. Mech. 2018, 58, 1016. [Google Scholar]
- Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Dong, B.; Zeng, F.; Pan, B. A simple and practical single-camera stereo-digital image correlation using a color camera and x-cube prism. Sensors 2019, 19, 4726. [Google Scholar] [CrossRef] [Green Version]
- Zaletelj, K.; Agrež, V.; Slavič, J.; Boltežar, M. Laser-light speckle formation for deflection-shape identification using digital image correlation. Mech. Syst. Signal Process. 2021, 161, 107899. [Google Scholar] [CrossRef]
- Dong, B.; Li, C.; Pan, B. Fluorescent digital image correlation applied for macroscale deformation measurement. Appl. Phys. Lett. 2020, 117, 044101. [Google Scholar] [CrossRef]
- Beberniss, T.J.; Ehrhardt, D.A. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations. Mech. Syst. Signal Process. 2017, 86, 34–48. [Google Scholar] [CrossRef]
- Hunady, R.; Pavelka, P.; Lengvarsky, P. Vibration and modal analysis of a rotating disc using high-speed 3D digital image correlation. Mech. Syst. Signal Process. 2019, 121, 201–214. [Google Scholar] [CrossRef]
- Chabrier, R.; Sadoulet-Reboul, E.; Chevallier, G.; Foltête, E.; Jeannin, T. Full-field measurements with digital image correlation for vibro-impact characterization. Mech. Syst. Signal Process. 2021, 156, 107658. [Google Scholar] [CrossRef]
- Su, Z.; Pan, J.; Zhang, S.; Wu, S.; Yu, Q.; Zhang, D. Characterizing dynamic deformation of marine propeller blades with stroboscopic stereo digital image correlation. Mech. Syst. Signal Process. 2022, 162, 108072. [Google Scholar] [CrossRef]
- Sun, G.; Wang, Y.; Luo, Q.; Li, Q. Vibration-based damage identification in composite plates using 3D-DIC and wavelet analysis. Mech. Syst. Signal Process. 2022, 173, 108890. [Google Scholar] [CrossRef]
- Barone, S.; Neri, P.; Paoli, A.; Razionale, A.V. Low-frame-rate single camera system for 3D full-field high-frequency vibration measurements. Mech. Syst. Signal Process. 2019, 123, 143–152. [Google Scholar] [CrossRef]
- Xie, R.; Yu, L.; Zhu, W.; Pan, B. Experimental study on flow-induced full-field vibration of a flexible splitter plate behind a cylinder using stereo-digital image correlation. J. Vib. Acoust. Trans. ASME 2021, 143, 034501. [Google Scholar] [CrossRef]
- Pan, B.; Yu, L.; Wu, D. High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: Error analysis and experimental verification. Exp. Mech. 2013, 53, 1719–1733. [Google Scholar] [CrossRef]
- Pan, B.; Asundi, A.; Xie, H.; Gao, J. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt. Lasers Eng. 2009, 47, 865–874. [Google Scholar] [CrossRef]
- Shao, X.; Chen, Z.; Dai, X.; He, X. Camera array-based digital image correlation for high-resolution strain measurement. Rev. Sci. Instrum. 2018, 89, 105110. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Pan, B. A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation. Exp. Mech. 2017, 57, 1161–1181. [Google Scholar] [CrossRef]
- Fu, B.; Li, C.; Dong, B.; Ou, P. Enhanced digital gradient sensing using backlight digital speckle targets. Sensors 2020, 20, 6557. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Wu, D.; Xia, Y. An active imaging digital image correlation method for deformation measurement insensitive to ambient light. Opt. Laser Technol. 2012, 44, 204–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Huang, P.; Ni, Z.; Xie, S.; Bai, Y.; Dong, B. Full-Field Vibration Measurements by Using High-Speed Two-Dimensional Digital Image Correlation. Appl. Sci. 2023, 13, 4257. https://doi.org/10.3390/app13074257
Lin Y, Huang P, Ni Z, Xie S, Bai Y, Dong B. Full-Field Vibration Measurements by Using High-Speed Two-Dimensional Digital Image Correlation. Applied Sciences. 2023; 13(7):4257. https://doi.org/10.3390/app13074257
Chicago/Turabian StyleLin, Yuankun, Pinbo Huang, Zihao Ni, Shengli Xie, Yulei Bai, and Bo Dong. 2023. "Full-Field Vibration Measurements by Using High-Speed Two-Dimensional Digital Image Correlation" Applied Sciences 13, no. 7: 4257. https://doi.org/10.3390/app13074257
APA StyleLin, Y., Huang, P., Ni, Z., Xie, S., Bai, Y., & Dong, B. (2023). Full-Field Vibration Measurements by Using High-Speed Two-Dimensional Digital Image Correlation. Applied Sciences, 13(7), 4257. https://doi.org/10.3390/app13074257