Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2/EP Nanocomposites
2.2. Characterization
3. Results and Discussion
3.1. Materials Characterization
3.2. Mechanical and Thermophysical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gergely, A.; Bertóti, I.; Török, T.; Pfeifer, É.; Kálmán, E. Corrosion Protection with Zinc-Rich Epoxy Paint Coatings Embedded with Various Amounts of Highly Dispersed Polypyrrole-Deposited Alumina Monohydrate Particles. Prog. Org. Coat. 2013, 76, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Liu, F.; Han, E.-H. Protection of Epoxy Coatings Containing Polyaniline Modified Ultra-Short Glass Fibers. Prog. Org. Coat. 2013, 76, 571–580. [Google Scholar] [CrossRef]
- Jin, H.; Miller, G.M.; Pety, S.J.; Griffin, A.S.; Stradley, D.S.; Roach, D.; Sottos, N.R.; White, S.R. Fracture Behavior of a Self-Healing, Toughened Epoxy Adhesive. Int. J. Adhes. Adhes. 2013, 44, 157–165. [Google Scholar] [CrossRef]
- Park, C.-H.; Lee, S.-W.; Park, J.-W.; Kim, H.-J. Preparation and Characterization of Dual Curable Adhesives Containing Epoxy and Acrylate Functionalities. React. Funct. Polym. 2013, 73, 641–646. [Google Scholar] [CrossRef]
- Teh, P.L.; Jaafar, M.; Akil, H.M.; Seetharamu, K.N.; Wagiman, A.N.R.; Beh, K.S. Thermal and Mechanical Properties of Particulate Fillers Filled Epoxy Composites for Electronic Packaging Application. Polym. Adv. Technol. 2008, 19, 308–315. [Google Scholar] [CrossRef]
- Suh, S.W.; Kim, J.J.; Kim, S.H.; Park, B.K. Effect of PI Film Surface on Printing of Pd(II) Catalytic Ink for Electroless Copper Plating in the Printed Electronics. J. Ind. Eng. Chem. 2012, 18, 290–294. [Google Scholar] [CrossRef]
- Njuguna, J.; Pielichowski, K.; Alcock, J.R. Epoxy-Based Fibre Reinforced Nanocomposites. Adv. Eng. Mater. 2007, 9, 835–847. [Google Scholar] [CrossRef] [Green Version]
- Kandare, E.; Kandola, B.K.; Myler, P. Evaluating the Influence of Varied Fire-Retardant Surface Coatings on Post-Heat Flexural Properties of Glass/Epoxy Composites. Fire Saf. J. 2013, 58, 112–120. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy Clay Nanocomposites—Processing, Properties and Applications: A Review. Compos. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Lorenz, N.; Müller-Pabel, M.; Gerritzen, J.; Müller, J.; Gröger, B.; Schneider, D.; Fischer, K.; Gude, M.; Hopmann, C. Characterization and Modeling Cure- and Pressure-Dependent Thermo-Mechanical and Shrinkage Behavior of Fast Curing Epoxy Resins. Polym. Test. 2022, 108, 107498. [Google Scholar] [CrossRef]
- Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An Overview of Multifunctional Epoxy Nanocomposites. J. Mater. Chem. C 2016, 4, 5890–5906. [Google Scholar] [CrossRef]
- Balguri, P.K.; Samuel, D.G.H.; Thumu, U. A Review on Mechanical Properties of Epoxy Nanocomposites. Mater. Today Proc. 2021, 44, 346–355. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Samal, S.K. Recent Developments of Epoxy Nanocomposites Used for Aerospace and Automotive Application. In Advances in Mechatronics and Mechanical Engineering; Clarizia, G., Bernardo, P., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 162–190. ISBN 978-1-79981-530-3. [Google Scholar]
- Borrego, L.P.; Costa, J.D.M.; Ferreira, J.A.M.; Silva, H. Fatigue Behaviour of Glass Fibre Reinforced Epoxy Composites Enhanced with Nanoparticles. Compos. Part B Eng. 2014, 62, 65–72. [Google Scholar] [CrossRef]
- Gojny, F.; Wichmann, M.; Fiedler, B.; Schulte, K. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites—A Comparative Study. Compos. Sci. Technol. 2005, 65, 2300–2313. [Google Scholar] [CrossRef]
- Huang, M.; Wen, X. Experimental Study on Photocatalytic Effect of Nano TiO2 Epoxy Emulsified Asphalt Mixture. Appl. Sci. 2019, 9, 2464. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ni, X. The Effect of the Inorganic Nanomaterials on the UV-Absorption, Rheological and Mechanical Properties of the Rapid Prototyping Epoxy-Based Composites. Polym. Bull. 2017, 74, 2063–2079. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, D.; He, Z.; Wang, D.; Zheng, Y. Enhanced Mechanical and Damping Properties of Epoxy Using Aggregated Nanoparticles Organic-Inorganic Hybrid as a Filler. Compos. Interfaces 2022, 29, 523–536. [Google Scholar] [CrossRef]
- Erkendirci, Ö.F.; Avcı, A. Effects of Nanomaterials on the Mechanical Properties of Epoxy Hybrid Composites. SN Appl. Sci. 2020, 2, 826. [Google Scholar] [CrossRef] [Green Version]
- Turaka, S.; Bandaru, A.K. Enhancement in Mechanical Properties of Glass/Epoxy Composites by a Hybrid Combination of Multi-Walled Carbon Nanotubes and Graphene Nanoparticles. Polymers 2023, 15, 1189. [Google Scholar] [CrossRef]
- Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. Epoxy Nanocomposites—Fracture and Toughening Mechanisms. Eng. Fract. Mech. 2006, 73, 2375–2398. [Google Scholar] [CrossRef]
- Hardoň, Š.; Kúdelčík, J.; Baran, A.; Michal, O.; Trnka, P.; Hornak, J. Influence of Nanoparticles on the Dielectric Response of a Single Component Resin Based on Polyesterimide. Polymers 2022, 14, 2202. [Google Scholar] [CrossRef] [PubMed]
- Kudelcik, J.; Hardon, S.; Hockicko, P.; Kudelcikova, M.; Hornak, J.; Prosr, P.; Trnka, P. Study of the Complex Permittivity of a Polyurethane Matrix Modified by Nanoparticles. IEEE Access 2021, 9, 49547–49556. [Google Scholar] [CrossRef]
- Ioannidou, T.; Anagnostopoulou, M.; Papoulis, D.; Christoforidis, K.C.; Vasiliadou, I.A. UiO-66/Palygorskite/TiO2 Ternary Composites as Adsorbents and Photocatalysts for Methyl Orange Removal. Appl. Sci. 2022, 12, 8223. [Google Scholar] [CrossRef]
- Rasim Mohammed, H.; Mohammed Hadi Shinen, D. Study the Optical Properties of Titanium Dioxide Nano Films. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Elahi, A.; Irfan, M.; Shakoor, A.; Niaz, N.A.; Mahmood, K.; Qasim, M. Effect of Loading Titanium Dioxide on Structural, Electrical and Mechanical Properties of Polyaniline Nanocomposites. J. Alloys Compd. 2015, 651, 328–332. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Irmawati, R.; Fen, Y.W.; Noryana Muhamad, E.; Eddin, F.B.K.; Anas, N.A.A.; Ramdzan, N.S.M.; Fauzi, N.I.M.; Adzir Mahdi, M. Surface Refractive Index Sensor Based on Titanium Dioxide Composite Thin Film for Detection of Cadmium Ions. Measurement 2022, 187, 110287. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Montini, T.; Fittipaldi, M.; Jaén, J.J.D.; Fornasiero, P. Photocatalytic Hydrogen Production by Boron Modified TiO2/Carbon Nitride Heterojunctions. ChemCatChem 2019, 11, 6408–6416. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, Y.; Chai, J.; Tian, J.; Jing, T.; Zhang, D.; Cheng, J.; Peng, H.; Liu, B.; Zheng, G. Highly Effective Photocatalytic Performance of {001}-TiO2/MoS2/RGO Hybrid Heterostructures for the Reduction of Rh B. RSC Adv. 2019, 9, 15033–15041. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Rozenberg, B.A.; Tenne, R. Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112. [Google Scholar] [CrossRef]
- Irzhak, V. Kinetic Features of Synthesis of Epoxy Nanocomposites. In Nanorods and Nanocomposites; Sasani Ghamsari, M., Dhara, S., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78984-468-9. [Google Scholar]
- Al-Turaif, H. Surface Coating Properties of Different Shape and Size Pigment Blends. Prog. Org. Coat. 2009, 65, 322–327. [Google Scholar] [CrossRef]
- Rubab, Z.; Afzal, A.; Siddiqi, H.M.; Saeed, S. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites. Sci. World J. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, Y.-K.; Kim, S.-J.; Kim, B.-H.; Yoon, H.-S.; Jung, S.-C. Rapid Degradation of Methyl Orange Using Hybrid Advanced Oxidation Process and Its Synergistic Effect. J. Ind. Eng. Chem. 2016, 35, 205–210. [Google Scholar] [CrossRef]
- Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. FEMS Microbiol. Lett. 1985, 29, 211–214. [Google Scholar] [CrossRef]
- Al-Turaif, H.A. Effect of Nano TiO2 Particle Size on Mechanical Properties of Cured Epoxy Resin. Prog. Org. Coat. 2010, 69, 241–246. [Google Scholar] [CrossRef]
- Kusiak-Nejman, E.; Morawski, A.W. TiO2/Graphene-Based Nanocomposites for Water Treatment: A Brief Overview of Charge Carrier Transfer, Antimicrobial and Photocatalytic Performance. Appl. Catal. B Environ. 2019, 253, 179–186. [Google Scholar] [CrossRef]
- Al-Ajaj, I.A.; Abd, M.M.; Jaffer, H.I. Mechanical Properties of Micro and Nano TiO2/Epoxy Composites. IJMMME 2013, 1, 93–97. [Google Scholar] [CrossRef]
- Bittmann, B.; Haupert, F.; Schlarb, A.K. Preparation of TiO2/Epoxy Nanocomposites by Ultrasonic Dispersion and Their Structure Property Relationship. Ultrason. Sonochem. 2011, 18, 120–126. [Google Scholar] [CrossRef]
- Kumar, K.; Ghosh, P.K.; Kumar, A. Improving Mechanical and Thermal Properties of TiO2-Epoxy Nanocomposite. Compos. Part B Eng. 2016, 97, 353–360. [Google Scholar] [CrossRef]
- Goyat, M.S.; Rana, S.; Halder, S.; Ghosh, P.K. Facile Fabrication of Epoxy-TiO2 Nanocomposites: A Critical Analysis of TiO2 Impact on Mechanical Properties and Toughening Mechanisms. Ultrason. Sonochem. 2018, 40, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Goyat, M.S.; Ghosh, P.K. Impact of Ultrasonic Assisted Triangular Lattice like Arranged Dispersion of Nanoparticles on Physical and Mechanical Properties of Epoxy-TiO2 Nanocomposites. Ultrason. Sonochem. 2018, 42, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Bittmann, B.; Haupert, F.; Schlarb, A.K. Ultrasonic Dispersion of Inorganic Nanoparticles in Epoxy Resin. Ultrason. Sonochem. 2009, 16, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Islam, M.S. Fabrication and Characterization of TiO2–Epoxy Nanocomposite. Mater. Sci. Eng. A 2008, 487, 574–585. [Google Scholar] [CrossRef]
- Berestenko, V.I.; Torbov, V.I.; Chukalin, V.I.; Kurkin, E.N.; Balikhin, I.L.; Domashnev, I.A.; Troitsky, V.N.; Gurov, S.V. Microwave chloride process for the production of titanium dioxide. Plasmochemistry 2011, 45, 468–472. [Google Scholar] [CrossRef]
- ASTM D882-10; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2010. Available online: https://www.astm.org/d0882-10.html (accessed on 16 November 2019).
- ISO 179-1:2010; Plastics—Determination of Charpy impact properties—Part 1: Non-instrumented impact test. Beuth-Verlag: Berlin, Germany, 2010.
- Sekhavat Pour, Z.; Ghaemy, M.; Bordbar, S.; Karimi-Maleh, H. Effects of Surface Treatment of TiO2 Nanoparticles on the Adhesion and Anticorrosion Properties of the Epoxy Coating on Mild Steel Using Electrochemical Technique. Prog. Org. Coat. 2018, 119, 99–108. [Google Scholar] [CrossRef]
- Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
- Dan, S.; Gu, H.; Tan, J.; Zhang, B.; Zhang, Q. Transparent Epoxy/TiO2 Optical Hybrid Films with Tunable Refractive Index Prepared via a Simple and Efficient Way. Prog. Org. Coat. 2018, 120, 252–259. [Google Scholar] [CrossRef]
- Bukichev, Y.; Bogdanova, L.; Spirin, M.; Shershnev, V.; Shilov, G.; Dzhardimalieva, G. Composite Materials Based on Epoxy Matrix and Titanium Dioxide (IV) Nanoparticles: Synthesis, Microstructure and Properties. Vestn. Mosk. Aviatsionnogo Inst. 2021, 28, 224–237. [Google Scholar] [CrossRef]
- Wang, H.; Liu, P.; Cheng, X.; Shui, A.; Zeng, L. Effect of Surfactants on Synthesis of TiO2 Nano-Particles by Homogeneous Precipitation Method. Powder Technol. 2008, 188, 52–54. [Google Scholar] [CrossRef]
- Godinez, I.G.; Darnault, C.J.G.; Khodadoust, A.P.; Bogdan, D. Deposition and Release Kinetics of Nano-TiO2 in Saturated Porous Media: Effects of Solution Ionic Strength and Surfactants. Environ. Pollut. 2013, 174, 106–113. [Google Scholar] [CrossRef]
- Lee, C.H.; Rhee, S.W.; Choi, H.W. Preparation of TiO2 Nanotube/Nanoparticle Composite Particles and Their Applications in Dye-Sensitized Solar Cells. Nanoscale Res. Lett. 2012, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Al-Taweel, S.; Saud, H. New Route for Synthesis of Pure Anatase TiO2 Nanoparticles via Utrasound-Assisted Sol-Gel Method. J. Chem. Pharm. Res. 2016, 8, 620–626. [Google Scholar]
- Khore, S.K.; Tellabati, N.V.; Apte, S.K.; Naik, S.D.; Ojha, P.; Kale, B.B.; Sonawane, R.S. Green Sol–Gel Route for Selective Growth of 1D Rutile N–TiO2: A Highly Active Photocatalyst for H2 Generation and Environmental Remediation under Natural Sunlight. RSC Adv. 2017, 7, 33029–33042. [Google Scholar] [CrossRef] [Green Version]
- Grishchenko, A.E.; Ruchin, A.E.; Koroleva, S.G.; Skazka, V.S.; Bogdanova, L.M.; Rosenberg, B.A.; Enikolopyan, N.S. Investigation of the Structure of the Surface Layers of Epoxy Resin Films; Reports of the Academy of Sciences of the USSR; Academy of Sciences of the USSR: Saint Petersburg, Russia, 1983; Volume 269, pp. 1384–1386. [Google Scholar]
- Rozenberg, B.A.; Irzhak, V.I.; Bogdanova, L.M. The Role of Diffusion of Free Volume at Volume Relaxation of Amorphous Polymers. In Relaxation in Polymers; Pietralla, M., Pechhold, W., Eds.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt, Germany, 1989; Volume 80, pp. 187–197. ISBN 978-3-7985-0832-3. [Google Scholar]
- Chukanov, N.V. Infrared Spectra of Mineral Species: Extended Library; Springer Geochemistry/Mineralogy: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7127-7. [Google Scholar]
- Fadl, A.M.; Abdou, M.I.; Al-Elaa, S.A.; Hamza, M.A.; Sadeek, S.A. Evaluation the Anti-Corrosion Behavior, Impact Resistance, Acids and Alkali Immovability of Nonylphenol Ethoxylate/TiO2 Hybrid Epoxy Nanocomposite Coating Applied on the Carbon Steel Surface. Prog. Org. Coat. 2019, 136, 105263. [Google Scholar] [CrossRef]
- Li, W.; Song, B.; Zhang, S.; Zhang, F.; Liu, C.; Zhang, N.; Yao, H.; Shi, Y. Using 3-Isocyanatopropyltrimethoxysilane to Decorate Graphene Oxide with Nano-Titanium Dioxide for Enhancing the Anti-Corrosion Properties of Epoxy Coating. Polymers 2020, 12, 837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Du, L.; Jia, S.; Sui, G.; Zhang, Y.; Zhuang, Y.; Li, B.; Xing, Z. Synthesis and Photocatalytic Properties of Visible-Light-Responsive, Three-Dimensional, Flower-like La–TiO2/g-C3N4 Heterojunction Composites. RSC Adv. 2018, 8, 29645–29653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunnamareddy, M.; Diravidamani, B.; Rajendran, R.; Singaram, B.; Varadharajan, K. Synthesis of Silver and Sulphur Codoped TiO2 Nanoparticles for Photocatalytic Degradation of Methylene Blue. J. Mater. Sci. Mater. Electron. 2018, 29, 18111–18119. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.; Chitsazzadeh, M. Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxy-Based Nanocomposites. Polym. Test. 2011, 30, 548–556. [Google Scholar] [CrossRef]
- Irzhak, V.I.; Uflyand, I.E. Epoxy Nanocomposites with Metal-Containing Fillers: Synthesis, Structure and Properties (Review). J. Appl. Chem. 2022, 95, 138–163. [Google Scholar] [CrossRef]
- Sagar, J.S.; Kashyap, S.J.; Madhu, G.M.; Dixit, P. Investigation of Mechanical, Thermal and Electrical Parameters of Gel Combustion-Derived Cubic Zirconia/Epoxy Resin Composites for High-Voltage Insulation. Cerâmica 2020, 66, 186–196. [Google Scholar] [CrossRef]
- Sagar, J.S.; Madhu, G.M.; Koteswararao, J.; Dixit, P. Studies on Thermal and Mechanical Behavior of Nano TiO2—Epoxy Polymer Composite. Commun. Sci. Technol. 2022, 7, 38–44. [Google Scholar] [CrossRef]
- Zunjarrao, S.C.; Sriraman, R.; Singh, R.P. Effect of Processing Parameters and Clay Volume Fraction on the Mechanical Properties of Epoxy-Clay Nanocomposites. J. Mater. Sci. 2006, 41, 2219–2228. [Google Scholar] [CrossRef]
- Nayak, R.K.; Dash, A.; Ray, B.C. Effect of Epoxy Modifiers (Al2O3/SiO2/TiO2) on Mechanical Performance of Epoxy/Glass Fiber Hybrid Composites. Procedia Mater. Sci. 2014, 6, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, L.; Mohammadi, Z.; Derakhshan, A.A. Thermal Stability and Dynamic Mechanical Properties of Nano and Micron-TiO2 Particles Reinforced Epoxy Composites: Effect of Mixing Method. Iran. J. Chem. Eng. 2013, 10, 16–29. [Google Scholar]
- Parameswaranpillai, J.; George, A.; Pionteck, J.; Thomas, S. Investigation of Cure Reaction, Rheology, Volume Shrinkage and Thermomechanical Properties of Nano-TiO2 Filled Epoxy/DDS Composites. J. Polym. 2013, 2013, 1–17. [Google Scholar] [CrossRef] [Green Version]
dav TiO2, nm | Ti, wt. % (Calc.) | Ti, wt. % (Exp.) |
---|---|---|
46 | 59.95 | 59.54 ± 0.06 |
100 | 59.95 | 59.59 ± 0.01 |
Particle Size, nm | TiO2, wt. % | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 10 | 15 | |
46 (System I) | 172 | 168 | 169 | 171 | 171 | 173 | - | - |
100 (System II) | - | - | 168 | 168 | 166 | - | - | |
21 (Rajabi L., 2013) [73] | 51.3 | 61 | 60.5 | - | - | 63.5 | 60.5 | |
48 (Goyat M., 2018) [44] | 62 | 65 | 68 | 71 | - | 75 | 80 | 63 |
48 (Goyat M., 2018) [45] | 70 | 77 | 80 | 85 | - | 89 | 100 | 82 |
Nanoparticle Size, nm | TiO2 wt. % | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
46 (System I) | 347 | 369 | 368 | 367 | 368 | 368 |
100 (System II) | 374 | 372 | 372 | 371 | 371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukichev, Y.S.; Bogdanova, L.M.; Lesnichaya, V.A.; Chukanov, N.V.; Golubeva, N.D.; Dzhardimalieva, G.I. Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles. Appl. Sci. 2023, 13, 4488. https://doi.org/10.3390/app13074488
Bukichev YS, Bogdanova LM, Lesnichaya VA, Chukanov NV, Golubeva ND, Dzhardimalieva GI. Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles. Applied Sciences. 2023; 13(7):4488. https://doi.org/10.3390/app13074488
Chicago/Turabian StyleBukichev, Yurii S., Lyudmila M. Bogdanova, Valentina A. Lesnichaya, Nikita V. Chukanov, Nina D. Golubeva, and Gulzhian I. Dzhardimalieva. 2023. "Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles" Applied Sciences 13, no. 7: 4488. https://doi.org/10.3390/app13074488
APA StyleBukichev, Y. S., Bogdanova, L. M., Lesnichaya, V. A., Chukanov, N. V., Golubeva, N. D., & Dzhardimalieva, G. I. (2023). Mechanical and Thermophysical Properties of Epoxy Nanocomposites with Titanium Dioxide Nanoparticles. Applied Sciences, 13(7), 4488. https://doi.org/10.3390/app13074488