Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PNR | photon-number-resolving |
HPD | hybrid photodetector |
BS | beam splitter |
CCD | coupled-charged device |
CMOS | complementary metal-oxide-semiconductor |
References
- Valencia, A.; Scarcelli, G.; D’Angelo, M.; Shih, Y.H. Two-photon imaging with thermal light. Phys. Rev. Lett. 2005, 94, 063601. [Google Scholar] [CrossRef] [PubMed]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef] [PubMed]
- Martienssen, W.; Spiller, E. Coherence and fluctuations in light beams. Am. J. Phys. 1964, 32, 919–926. [Google Scholar] [CrossRef]
- Arecchi, F.T. Measurement of the Statistical Distribution of Gaussian and Laser Sources. Phys. Rev. Lett. 1995, 15, 912. [Google Scholar] [CrossRef]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Correlated imaging, quantum and classical. Phys. Rev. A 2004, 70, 013802. [Google Scholar] [CrossRef]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar] [CrossRef]
- Bache, M.; Brambilla, E.; Gatti, A.; Lugiato, L.A. Ghost imaging using homodyne detection. Phys. Rev. A 2004, 70, 023823. [Google Scholar] [CrossRef]
- Bache, M.; Brambilla, E.; Gatti, A.; Lugiato, L.A. Ghost imaging schemes: Fast and broadband. Opt. Express 2004, 12, 6067. [Google Scholar] [CrossRef]
- Crosby, S.; Castelletto, S.; Aruldoss, C.; Scholten, R.E.; Roberts, A. Modelling of classical ghost images obtained using scattered light. New J. Phys. 2007, 9, 285. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Lugiato, L.A.; Gatti, A. Differential Ghost Imaging. Phys. Rev. Lett. 2010, 104, 253603. [Google Scholar] [CrossRef]
- Allevi, A. Mesoscopic States of Light for the Detection of Weakly Absorbing Objects. Photonics 2022, 9, 819. [Google Scholar] [CrossRef]
- Mudry, E.; Belkebir, K.; Girard, J.; Savatier, J.; Le Moal, E.; Nicoletti, C.; Allain, M.; Sentenac, A. Structured illumination microscopy using unknown speckle patterns. Nat. Photon. 2012, 6, 312–315. [Google Scholar] [CrossRef]
- Kulkarni, R.; Pal, P.; Banoth, E. Spatio-temporal analysis of dynamic speckle patterns using singular value decomposition. Opt. Lasers Eng. 2021, 142, 106588. [Google Scholar] [CrossRef]
- Erkmen, B.I.; Shapiro, J.H. Signal-to-noise ratio of Gaussian-state ghost imaging. Phys. Rev. A 2009, 79, 023833. [Google Scholar] [CrossRef]
- Iskhakov, T.; Allevi, A.; Kalashnikov, D.A.; Sala, V.G.; Takeuchi, M.; Bondani, M.; Chekhova, M. Noise reduction measurements and new ghost imaging protocols. Eur. Phys. J. Spec. Top. 2011, 199, 127–138. [Google Scholar] [CrossRef]
- Ragy, S.; Adesso, G. Nature of light correlations in ghost imaging. Sci. Rep. 2012, 2, 651. [Google Scholar] [CrossRef]
- Dove, J.; Shapiro, J.H. Speckled speckled speckle. Opt. Express 2020, 28, 22105. [Google Scholar] [CrossRef]
- Bromberg, Y.; Cao, H. Generating non-Rayleigh speckles with tailored intensity statistics. Phys. Rev. Lett. 2014, 112, 213904. [Google Scholar] [CrossRef]
- Bender, N.; Yilmaz, H.; Bromberg, Y.; Cao, H. Customizing speckle intensity statistics. Optica 2018, 5, 595–600. [Google Scholar] [CrossRef]
- Alves, S.B.; Cavalcante, H.L.D.S.; de Oliveira, G.F., Jr.; Passerat de Silans, T.; Vidal, I.; Chevrollier, M.; Oriá, M. Controlling the intensity statistics of speckle patterns: From normal to subthermal or superthermal distributions. Phys. Rev. A 2019, 99, 033838. [Google Scholar] [CrossRef]
- Li, Z.; Nie, X.; Yang, F.; Liu, X.; Liu, D.; Dong, X.; Zhao, X.; Peng, T.; Zubairy, M.S.; Scully, M.O. Sub-Rayleigh second-order correlation imaging using spatially distributive colored noise speckle patterns. Opt. Express 2021, 29, 19621–19630. [Google Scholar] [CrossRef] [PubMed]
- Allevi, A.; Bondani, M. Direct detection of super-thermal photon-number statistics in second-harmonic generation. Opt. Lett. 2015, 40, 3089–3092. [Google Scholar] [CrossRef] [PubMed]
- Allevi, A.; Cassina, S.; Bondani, M. Super-thermal light for imaging applications. Quantum Meas. Quantum Metrol. 2017, 4, 26–34. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Burlington, MA, USA; San Diego, CA, USA; London, UK, 2008; pp. 84–91. [Google Scholar]
- O’ Donnell, K.A. Speckle statistics of doubly scattered light. J. Opt. Soc. Am. 1982, 72, 1459–1463. [Google Scholar] [CrossRef]
- Newman, D. K distributions from doubly scattered light. J. Opt. Soc. Am. A 1985, 2, 22–26. [Google Scholar] [CrossRef]
- Barakat, R.; Salawitch, R.J. Second and fourth-order statistics of doubly scattered speckle. Opt. Acta Int. J. Opt. 1986, 33, 79–89. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M. Spatial superbunching of light. Model sources. Opt. Lett. 2019, 44, 4012–4015. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts & Company: Greenwood Village, CO, USA, 2007. [Google Scholar]
- Yoshimura, T.; Fujiwara, K. Statistical properties of doubly scattered image speckle. J. Opt. Soc. Am. A 1992, 9, 91–95. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Wang, Z.; Zhang, F.; Chen, H.; Zheng, H.; Liu, J.; Li, F.L.; Xu, Z. Superbunching pseudothermal light with intensity modulated laser light and rotating groundglass. Opt. Commun. 2019, 437, 330–336. [Google Scholar] [CrossRef]
- Avenhaus, M.; Coldenstrodt-Ronge, H.B.; Laiho, K.; Mauerer, W.; Walmsley, I.A.; Silberhorn, C. Photon Number Statistics of Multimode Parametric down-Conversion. Phys. Rev. Lett. 2008, 101, 053601. [Google Scholar] [CrossRef]
- Peřina, J., Jr.; Hamar, M.; Michálek, V.; Haderka, O. Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera. Phys. Rev. A 2012, 85, 023816. [Google Scholar] [CrossRef]
- Hartmann, S.; Friedrich, F.; Molitor, A.; Reichert, M.; Elsäßer, W.; Walser, R. Tailored quantum statistics from broadband states of light. New J. Phys. 2015, 17, 043039. [Google Scholar] [CrossRef]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Phase-reference monitoring in coherent-state discrimination assisted by a photon-number resolving detector. Sci. Rep. 2016, 6, 26025. [Google Scholar] [CrossRef]
- Bina, M.; Allevi, A.; Bondani, M.; Olivares, S. Homodyne-like detection for coherent state-discrimination in the presence of phase noise. Opt. Express 2017, 25, 10685–10692. [Google Scholar] [CrossRef]
- Straka, I.; Mika, J.; Ježek, M. Generator of arbitrary classical photon statistics. Opt. Express 2018, 26, 8998–9010. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, Y.; Wang, S.; Shen, M.; Taher, T.; Tang, H.X. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nat. Photon. 2023, 17, 112–119. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Multi-mode twin-beam states in the mesoscopic intensity domain. Phys. Lett. A 2022, 423, 127828. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Novel scheme for secure data transmission based on mesoscopic twin beams and photon-number-resolving detectors. Sci. Rep. 2022, 12, 15621. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Feasibility of a Novel Quantum Communication Protocol in Jerlov Type I Water. Entropy 2023, 25, 16. [Google Scholar] [CrossRef]
- Available online: https://www.hamamatsu.com/eu/en/product/cameras/qcmos-cameras/C15550-20UP.html (accessed on 31 March 2023).
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Allevi, A.; Olivares, S.; Bondani, M. Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states. Phys. Rev. A 2012, 85, 063835. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M.; Andreoni, A. Photon-number correlations by photon-number resolving detectors. Opt. Lett. 2010, 35, 1707–1709. [Google Scholar] [CrossRef] [PubMed]
- Bondani, M.; Allevi, A.; Agliati, A.; Andreoni, A. Self-consistent characterization of light statistics. J. Mod. Opt. 2009, 56, 226–231. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Statistics of twin-beam states by photon-number resolving detectors up to pump depletion. J. Opt. Soc. Am. B 2014, 31, B14–B19. [Google Scholar] [CrossRef]
- Allevi, A.; Bondani, M. Nonlinear and quantum optical properties and applications of intense twin-beams. Adv. At. Mol. Opt. Phys. 2017, 66, 49–110. [Google Scholar]
- Liu, J.; Zhuang, R.; Zhang, X.; Wei, C.; Zheng, H.; Zhou, Y.; Chen, H.; He, Y.; Xu, Z. Simple and efficient way to generate superbunching pseudothermal light. Opt. Commun. 2021, 498, 127264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianciardi, C.; Allevi, A.; Bondani, M. Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Appl. Sci. 2023, 13, 4490. https://doi.org/10.3390/app13074490
Bianciardi C, Allevi A, Bondani M. Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Applied Sciences. 2023; 13(7):4490. https://doi.org/10.3390/app13074490
Chicago/Turabian StyleBianciardi, Camilla, Alessia Allevi, and Maria Bondani. 2023. "Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime" Applied Sciences 13, no. 7: 4490. https://doi.org/10.3390/app13074490
APA StyleBianciardi, C., Allevi, A., & Bondani, M. (2023). Experimental Validation of the Statistical Properties of Speckled-Speckle Fields in the Mesoscopic Intensity Regime. Applied Sciences, 13(7), 4490. https://doi.org/10.3390/app13074490