Hash Indexing-Based Image Matching for 3D Reconstruction
Abstract
:Featured Application
Abstract
1. Introduction
- We propose the use of hash indexing to replace the original brute force matching for image matching and present a HashMatch for 3D reconstruction.
- We propose the use of the Haar wavelet feature transformation to construct a big and robust hash table for the located feature points for feature descriptor indexing.
- We have designed a parallel architecture for hash matching to speed up the image matching process and save computing time. Additionally, a systematic experiment conducted on several benchmarking datasets is provided to assess the HashMatch against the state-of-the-art methods.
2. Related Works
2.1. Image Matching
2.2. 3D Reconstruction
3. The Proposed Method
Algorithm 1 HashMatch. |
Input: Image collection |
Step 1: Use the SURF feature to detect feature points for each image in image collection . Step 2: Use the SURF feature to compute feature descriptors for each located feature point. Step 3: Create a hash table for all feature descriptors: for idx = 1 to : (1) Compute Haar wavelet coefficients for each descriptor via Equation (8); (2) Calculate the values of ,, , and via Equations (9)–(12); (3) Assign values to the members of hash table htable via Equations (13)–(16); Step 4: Indexing hash table for given numbers and : (1) Compute the values of , , and according to Equation (18); (2) Calculate the indexing table for locating feature descriptors via Equation (19); Step 5: Measure the difference between feature descriptor and via L2-distance; Step 6: Repeat Step 4~Step 5. This should result in a set of feature correspondences for each image pairs. |
3.1. Feature Detection
3.2. Descriptor Extraction
3.3. Hash Matching
3.3.1. Creating a Hash Table
3.3.2. Hash Indexing
4. Experimental Results
4.1. Evaluation on the EdgeFoci Dataset
4.2. Evaluating HashMatch with Different Features
4.3. Evaluation on the Open-Source Dataset
4.4. Evaluation on Strecha’s Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, R.; Guo, Z.; Zhang, X. Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sens. 2021, 13, 1633. [Google Scholar] [CrossRef]
- Wang, W.; Lv, Z.; Li, X.; Han, G.; Xu, W.; Zhang, B.; Zhu, Y.; Yan, Y. Spatial Query Based Virtual Reality GIS Analysis Platform. Neurocomputing 2018, 274, S0925231217306719. [Google Scholar] [CrossRef]
- Lv, Z.; Li, X.; Li, W. Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing 2017, 254, 71–78. [Google Scholar] [CrossRef]
- Lan, R.; Lu, H.; Zhou, Y.; Liu, Z.; Luo, X. An LBP encoding scheme jointly using quaternionic representation and angular information. Neural Comput. Appl. 2019, 32, 4317–4323. [Google Scholar] [CrossRef]
- Lan, R.; Zhou, Y.; Liu, Z.; Luo, X. Prior Knowledge-Based Probabilistic Collaborative Representation for Visual Recognition. IEEE Trans. Cybern. 2020, 50, 1498–1508. [Google Scholar] [CrossRef]
- Cao, M.; Zheng, L.; Jia, W.; Lu, H.; Liu, X. Accurate 3-D Reconstruction Under IoT Environments and Its Applications to Augmented Reality. IEEE Trans. Ind. Inform. 2021, 17, 2090–2100. [Google Scholar] [CrossRef]
- Cao, M.; Zheng, L.; Jia, W.; Liu, X. Joint 3D Reconstruction and Object Tracking for Traffic Video Analysis Under IoV Environment. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3577–3591. [Google Scholar] [CrossRef]
- Liang, A.; Li, Q.; Chen, Z.; Zhang, D.; Zhu, J.; Yu, J.; Fang, X. Spherically Optimized RANSAC Aided by an IMU for Fisheye Image Matching. Remote Sens. 2021, 13, 2017. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Alcantarilla, P.F.; Bartoli, A.; Davison, A.J. KAZE features. In Proceedings of the Computer Vision–ECCV, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 214–227. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the Computer Vision (ICCV) International Conference, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. LIFT: Learned Invariant Feature Transform. arXiv 2016, arXiv:1603.09114. [Google Scholar]
- Suárez, I.; Sfeir, G.; Buenaposada, J.M.; Baumela, L. BELID: Boosted Efficient Local Image Descriptor; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Revaud, J.; Weinzaepfel, P.; De Souza, C.; Pion, N.; Csurka, G.; Cabon, Y.; Humenberger, M. R2d2: Repeatable and reliable detector and descriptor. arXiv 2019, arXiv:1906.06195. [Google Scholar]
- Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; Sattler, T. D2-Net: A Trainable CNN for Joint Description and Detection of Local Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zhao, J.; Ma, J.; Tian, J.; Ma, J.; Zhang, D. A robust method for vector field learning with application to mismatch removing. CVPR 2011 2011, 31, 2977–2984. [Google Scholar]
- Wang, F.; Xue, N.; Yu, J.; Xia, G. Zero-Assignment Constraint for Graph Matching With Outliers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Jiang, X.; Ma, J.; Jiang, J.; Guo, X. Robust Feature Matching Using Spatial Clustering With Heavy Outliers. IEEE Trans. Image Process. 2020, 29, 736–746. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, S.; Shen, T.; Wang, J.; Fang, T.; Quan, L. Progressive Large Scale-Invariant Image Matching in Scale Space. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Han, X.; Leung, T.; Jia, Y.; Sukthankar, R.; Berg, A.C. Matchnet: Unifying feature and metric learning for patch-based matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Brown, M.; Szeliski, R.; Winder, S. Multi-image matching using multi-scale oriented patches. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005. [Google Scholar]
- Yu, Y.F.; Xu, G.; Huang, K.K.; Zhu, H.; Chen, L.; Wang, H. Dual Calibration Mechanism based L2,p-Norm for Graph Matching. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2343–2358. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, G.; Jiang, M.; Zhu, H.; Dai, D.; Yan, H. Joint Transformation Learning via the L2,1-Norm Metric for Robust Graph Matching. IEEE Trans. Cybern. 2019, 31, 2343–2358. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Gehrig, D.; Rebecq, H.; Gallego, G.; Scaramuzza, D. EKLT: Asynchronous Photometric Feature Tracking Using Events and Frames. Int. J. Comput. Vis. 2019, 128, 601–618. [Google Scholar] [CrossRef]
- Zach, C.; Gallup, D.; Frahm, J.-M. Fast gain-adaptive KLT tracking on the GPU. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Hwangbo, M.; Kim, J.-S.; Kanade, T. Inertial-aided KLT feature tracking for a moving camera. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis, MS, USA, 11–15 October 2009. [Google Scholar]
- Poling, B.; Lerman, G.; Szlam, A. Better feature tracking through subspace constraints. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Zhao, L.; Li, X.; Xiao, J.; Wu, F.; Zhuang, Y. Metric learning driven multi-task structured output optimization for robust keypoint tracking. In Proceedings of the 29th {AAAI} Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 3864–3870. [Google Scholar]
- Lin, W.-Y.; Liu, S.; Jiang, N.; Do, M.N.; Tan, P.; Lu, J. RepMatch: Robust Feature Matching and Pose for Reconstructing Modern Cities. In Computer Vidion—ECCV 2016, Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Roth, L.; Kuhn, A.; Mayer, H. Wide-Baseline Image Matching with Projective View Synthesis and Calibrated Geometric Verification. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 85–95. [Google Scholar] [CrossRef]
- Lowry, S.; Andreasson, H. LOGOS: Local Geometric Support for High-Outlier Spatial Verification. In Proceedings of the International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [Google Scholar]
- Zhao, C.; Cao, Z.; Li, C.; Li, X.; Yang, J. NM-Net: Mining reliable neighbors for robust feature correspondences. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Yi, K.M.; Trulls, E.; Ono, Y.; Lepetit, V.; Salzmann, M.; Fua, P. Learning to Find Good Correspondences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image Matching from Handcrafted to Deep Features: A Survey. Int. J. Comput. Vis. 2021, 129, 23–79. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. In ACM Transactions on Graphics (TOG); ACM: New York, NY, USA, 2006; pp. 835–846. [Google Scholar]
- Wu, C. Towards linear-time incremental structure from motion. In Proceedings of the International Conference on 3D Vision-3DV, Seattle, WA, USA, 29 June–1 July 2013. [Google Scholar]
- Sweeney, C.; Fragoso, V.; Höllerer, T.; Turk, M. Large Scale SfM with the Distributed Camera Model. In Proceedings of the 4th International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar]
- Zhu, S.; Zhang, R.; Zhou, L.; Shen, T.; Fang, T.; Tan, P.; Quan, L. Very Large-Scale Global SfM by Distributed Motion Averaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Schönberger, J.L.; Frahm, J.-M. Structure-from-motion revisited. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Heinly, J.; Schönberger, J.L.; Dunn, E.; Frahm, J.M. Reconstructing the world* in six days. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Agarwal, S.; Snavely, N.; Simon, I.; Seitz, S.M.; Szeliski, R. Building rome in a day. In Proceedings of the 12th International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009. [Google Scholar]
- Furukawa, Y.; Ponce, J. Accurate, Dense, and Robust Multi-View Stereopsis. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–23 June 2007. [Google Scholar]
- Goesele, M.; Curless, B.; Seitz, S.M. Multi-View Stereo Revisited. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Galliani, S.; Lasinger, K.; Schindler, K. Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. In Proceedings of the International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015. [Google Scholar]
- Kuhn, A.; Hirschmüller, H.; Scharstein, D.; Mayer, H. A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. Int. J. Comput. Vis. 2017, 124, 2–17. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Shen, T.; Fang, T.; Quan, L. Recurrent mvsnet for high-resolution multi-view stereo depth inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Kazhdan, M.; Bolitho, M.; Hoppe, H. Poisson surface reconstruction. In Proceedings of the Eurographics Symposium on Geometry Processing, Sardinia, Italy, 26–28 June 2006. [Google Scholar]
- Zhou, K.; Gong, M.; Huang, X.; Guo, B. Data-Parallel Octrees for Surface Reconstruction. IEEE Trans. Vis. Comput. Graph. 2011, 17, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Waechter, M.; Moehrle, N.; Goesele, M. Let There Be Color! Large-Scale Texturing of 3D Reconstructions. In Computer Vision—ECCV 2014, Proseedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 836–850. [Google Scholar]
- Ummenhofer, B.; Brox, T. Global, Dense Multiscale Reconstruction for a Billion Points. Int. J. Comput. Vis. 2017, 125, 82–94. [Google Scholar] [CrossRef]
- Kelly, T.; Femiani, J.; Wonka, P.; Mitra, N.J. BigSUR: Large-scale Structured Urban Reconstruction. Acm Trans. Graph. 2017, 36, 204. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Gall, J.; Zheng, H.; Liu, Y.; Fang, L. SurfaceNet: An End-to-End 3D Neural Network for Multiview Stereopsis. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superpoint: Self-supervised interest point detection and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Yang, X.; Cheng, K.-T. LDB: An ultra-fast feature for scalable augmented reality on mobile devices. In Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR) IEEE Conference, Atlanta, GA, USA, 5–8 November 2012. [Google Scholar]
- Ziegler, A.; Christiansen, E.; Kriegman, D.; Belongie, S.J. Locally uniform comparison image descriptor. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012. [Google Scholar]
- Levi, G.; Hassner, T. LATCH: Learned Arrangements of Three Patch Codes. arXiv 2015, arXiv:1501.03719. [Google Scholar]
- Zhang, G.; Liu, H.; Dong, Z.; Jia, J.; Wong, T.-T.; Bao, H. ENFT: Efficient Non-Consecutive Feature Tracking for Robust Structure-from-Motion. arXiv 2015, arXiv:1510.08012. [Google Scholar]
- Mishkin, D.; Matas, J.; Perdoch, M. MODS: Fast and robust method for two-view matching. Comput. Vis. Image Underst. 2015, 141, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.Y.; Wang, F.; Cheng, M.M.; Yeung, S.K.; Torr, P.H.S.; Do, M.N.; Lu, J. CODE: Coherence Based Decision Boundaries for Feature Correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Balntas, V.; Ng, T.; Barroso-Laguna, A.; Demiris, Y.; Mikolajczyk, K. D2D: Keypoint Extraction with Describe to Detect Approach. arXiv 2020, arXiv:2005.13605. [Google Scholar]
- Zitnick, C.L.; Ramnath, K. Edge foci interest points. In Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006. [Google Scholar]
Method | Sequence | |||||||
---|---|---|---|---|---|---|---|---|
Boat | Graffiti | Light | Notre Dame | Obama | Painted Ladies | Rushmore | Yosemite | |
KNN + RatioTest | 95 | 70 | 501 | 70 | 21 | 39 | 17 | 23 |
ENFT [61] | 141 | 96 | 698 | 89 | 25 | 80 | 23 | 28 |
MODS [62] | 101 | 83 | 564 | 142 | 42 | 47 | 18 | 32 |
RepMatch [32] | 117 | 120 | 721 | 137 | 60 | 69 | 35 | 41 |
CODE [63] | 98 | 109 | 706 | 110 | 58 | 53 | 29 | 47 |
D2D + KNN [64] | 167 | 203 | 792 | 89 | 81 | 90 | 42 | 59 |
R2D2 + KNN [15] | 130 | 178 | 807 | 120 | 90 | 83 | 53 | 62 |
HashMatch (Ours) | 558 | 378 | 1263 | 307 | 328 | 407 | 286 | 613 |
Quantitative Analysis | Method | |||||||
---|---|---|---|---|---|---|---|---|
BRSK + HM | ORB + HM | AKAZE + HM | KAZE + HM | SIFT + HM | SURF + HM | SURF + VGG + HM | SIFT + VGG + HM | |
Features | 19,808 | 20,000 | 11,896 | 11,434 | 38,991 | 45,944 | 45,944 | 38,991 |
Matches | 3037 | 3857 | 4571 | 4699 | 6437 | 8539 | 7945 | 4808 |
Ratio of Inliers | 79.34% | 81.14% | 88.56% | 89.67 | 91.56 | 97.72 | 89.76 | 84.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Jiang, H.; Zhao, H. Hash Indexing-Based Image Matching for 3D Reconstruction. Appl. Sci. 2023, 13, 4518. https://doi.org/10.3390/app13074518
Cao M, Jiang H, Zhao H. Hash Indexing-Based Image Matching for 3D Reconstruction. Applied Sciences. 2023; 13(7):4518. https://doi.org/10.3390/app13074518
Chicago/Turabian StyleCao, Mingwei, Haiyan Jiang, and Haifeng Zhao. 2023. "Hash Indexing-Based Image Matching for 3D Reconstruction" Applied Sciences 13, no. 7: 4518. https://doi.org/10.3390/app13074518
APA StyleCao, M., Jiang, H., & Zhao, H. (2023). Hash Indexing-Based Image Matching for 3D Reconstruction. Applied Sciences, 13(7), 4518. https://doi.org/10.3390/app13074518