Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland
Abstract
:1. Introduction
2. Background
2.1. Energy Harvesting
2.2. Parametric Design
3. Methodology
3.1. Introduction to Solar Energy Harvesting Based on Parametric Design in Architecture
3.2. Research Subject and Site Analysis
4. Design
4.1. Selection of Building Elevations for Energy Generation via Solar Panel Facade Systems
4.2. Design of Kinetic Solar Panel Facade System
5. Analysis
6. Results and Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alboaouh, K.A.; Mohagheghi, S. Impact of rooftop photovoltaics on the distribution system. J. Renew. Energy 2020, 2020, 4831434. [Google Scholar] [CrossRef]
- Hong, T.; Lee, M.; Koo, C.; Jeong, K.; Kim, J. Development of a method for estimating the rooftop solar photovoltaic (PV) po-tential by analyzing the available rooftop area using Hillshade analysis. Appl. Energy 2017, 194, 320–332. [Google Scholar] [CrossRef]
- Gernaat, D.E.; de Boer, H.S.; Dammeier, L.C.; van Vuuren, D.P. The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Appl. Energy 2020, 279, 115705. [Google Scholar] [CrossRef]
- Muñoz-Rodríguez, F.; Jiménez-Castillo, G.; Rus-Casas, C. Photovoltaic Rooftops in Smart Energy Systems in Handbook of Smart Energy Systems; Springer: New York, NY, USA, 2022; pp. 1–28. [Google Scholar]
- Jabi, W. Parametric Design for Architecture; Hachette: London, UK, 2013; pp. 15–16. [Google Scholar]
- Panya, D.S.; Kim, T.H.; Choo, S.H. A methodology of interactive motion facades design through parametric strategies. Appl. Sci. 2020, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Assasi, R. Parametric Design, A Historical and Theoretical Overview. In Proceedings of the International Conference on Emerging Technologies in Architectural Design (ICETAD 2019), Toronto, ON, Canada, 17–18 October 2019. [Google Scholar]
- International Energy Agency. Available online: https://www.iea.org/topics/buildings (accessed on 15 August 2022).
- Bushra, N. A comprehensive analysis of parametric design approaches for solar integration with buildings: A literature review. Renew. Sustain. Energy Rev. 2022, 168, 112849. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy Build. 2017, 139, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Bande, L.; Hamad, H.; Alqahtani, D.; Alnahdi, N.; Ghunaim, A.; Fikry, F.; Alkhatib, O. Design of Innovative Paramet-ric/Dynamic Facade Integrated in the Library Extension Building on UAEU Campus. Buildings 2022, 12, 1101. [Google Scholar] [CrossRef]
- Bott, H.; Grassl, G.C.; Anders, S. Sustainable Urban Planning; Edition Detail: Berlin, Germany, 2019; p. 201. [Google Scholar]
- Kim, H.J.; Choi, W.S.; Kim, J.W. A study on parametric design tool for residential buildings securing valid sunlight hours on the winter solstice. J. Asian Archit. Build. Eng. 2022, 21, 1657–1676. [Google Scholar] [CrossRef]
- Toutou, A.; Fikry, M.; Mohamed, W. The parametric based optimization framework daylighting and energy performance in residential buildings in hot arid zone. Alex. Eng. J. 2018, 57, 3595–3608. [Google Scholar] [CrossRef]
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Ryu, H.; Yoon, H.J.; Kim, S.W. Hybrid energy harvesters: Toward sustainable energy harvesting. Adv. Mater. 2019, 31, 1802898. [Google Scholar] [CrossRef]
- Icaza, D.; Borge-Diez, D.; Pulla Galindo, S.; Flores-Vázquez, C. Modeling and simulation of a hybrid system of solar panels and wind turbines for the supply of autonomous electrical energy to organic architectures. Energies 2020, 13, 4649. [Google Scholar] [CrossRef]
- Škvorc, P.; Kozmar, H. Wind energy harnessing on tall buildings in urban environments. Renew. Sustain. Energy Rev. 2021, 152, 111662. [Google Scholar] [CrossRef]
- Lucchi, E.; Lopez, C.S.; Franco, G. A conceptual framework on the integration of solar energy systems in heritage sites and buildings. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012113. [Google Scholar] [CrossRef]
- Hao, D.; Qi, L.; Tairab, A.M.; Ahmed, A.; Azam, A.; Luo, D.; Pan, Y.; Zhang, Z.; Yan, J. Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. Renew. Energy 2022, 188, 678–697. [Google Scholar] [CrossRef]
- Loferski, J.J. The first forty years: A brief history of the modern photovoltaic age. Prog. Photovolt. Res. Appl. 1993, 1, 67–78. [Google Scholar] [CrossRef]
- Bogue, R. Solar-powered sensors: A review of products and applications. Sens. Rev. 2012, 32, 95–100. [Google Scholar] [CrossRef]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Yu, C.; Park, J.; Youn, J.R.; Song, Y.S. Sustainable solar energy harvesting using phase change material (PCM) embedded pyroelectric system. Energy Convers. Manag. 2022, 253, 115145. [Google Scholar] [CrossRef]
- Páez-Montoro, A.; García-Valderas, M.; Olías-Ruíz, E.; López-Ongil, C. Solar energy harvesting to improve capabilities of wearable devices. Sensors 2022, 22, 3950. [Google Scholar] [CrossRef]
- Dutton, A.; Halliday, J.; Blanch, M. The Feasibility of Building-Mounted/Integrated Wind Turbines (BUWTs): Achieving Their Potential for Carbon Emission Reductions; Energy Research Unit, CCLRC: Didcot, UK, 2005; pp. 77–83. [Google Scholar]
- Juan, Y.H.; Wen, C.Y.; Li, Z.; Yang, A.S. Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays. Appl. Energy 2021, 299, 117304. [Google Scholar] [CrossRef]
- Grant, A.; Johnstone, C.; Kelly, N. Urban wind energy conversion: The potential of ducted turbines. Renew. Energy 2008, 33, 1157–1163. [Google Scholar] [CrossRef] [Green Version]
- Henderson, A.R.; Morgan, C.; Smith, B.; Sørensen, H.C.; Barthelmie, R.J.; Boesmans, B. Offshore wind energy in Europe—A review of the state-of-the-art. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2003, 6, 35–52. [Google Scholar] [CrossRef]
- Nazir, M.S.; Mahdi, A.J.; Bilal, M.; Sohail, H.M.; Ali, N.; Iqbal, H.M. Environmental impact and pollution-related challenges of renewable wind energy paradigm—A review. Sci. Total Environ. 2019, 683, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Briand, D.; Yeatman, E.; Roundy, S.; Brand, O.; Fedder, G.K.; Hierold, C.; Korvink, J.G.; Tabata, O. Micro Energy Harvesting; Wiley, Online Library: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gould, C.; Edwards, R. Review on micro-energy harvesting technologies. In Proceedings of the 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal, 6–9 September 2016. [Google Scholar]
- Monedero, J. Parametric design: A review and some experiences. Autom. Constr. 2000, 9, 369–377. [Google Scholar] [CrossRef]
- Oxman, R. Thinking difference: Theories and models of parametric design thinking. Des. Stud. 2017, 52, 4–39. [Google Scholar] [CrossRef]
- Woodbury, R.; Williamson, S.; Beesley, P. Parametric modelling as a design representation in architecture:a process account. In Proceedings of the Canadian Design Engineering Network (CDEN) Conference, Toronto, ON, Canada, 24–26 July 2006. [Google Scholar]
- Hernandez, C.R.B. Thinking parametric design: Introducing parametric Gaudi. Des. Stud. 2006, 27, 309–324. [Google Scholar] [CrossRef]
- Smith, P. BIM implementation–global strategies. Procedia Eng. 2014, 85, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Revit Software. Available online: https://www.autodesk.com/products/revit/overview?plc=RVT&term=1-YEAR&support=ADVANCED&quantity=1 (accessed on 18 June 2022).
- Dynamo, a Revit Software Plug-In. Available online: http://dynamobim.org/download (accessed on 25 June 2022).
- Insight, a Revit Software Plug-In. Available online: https://www.autodesk.com/products/insight/overview (accessed on 28 June 2022).
- Reinberg, G.W. Architecture for a Solar Future; Birkhauser: Basel, Switzerland, 2021; pp. 13–17. [Google Scholar]
- Salimzadeh, N.; Vahdatikhaki, F.; Hammad, A. Parametric modeling and surface-specific sensitivity analysis of PV module layout on building skin using BIM. Energy Build. 2020, 216, 109953. [Google Scholar] [CrossRef]
- Jayathissa, P.; Caranovic, S.; Hofer, J.; Nagy, Z.; Schlueter, A. Performative design environment for kinetic photovoltaic ar-chitecture. Autom. Constr. 2018, 93, 339–347. [Google Scholar] [CrossRef]
- Hofer, J.; Groenewolt, A.; Jayathissa, P.; Nagy, Z.; Schlueter, A. Parametric analysis and systems design of dynamic photovoltaic shading modules. Energy Sci. Eng. 2016, 4, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Zang, H.; Gao, S.; Chen, T.; Xiao, J.; Cheng, L.; Wei, Z.; Sun, G. Optimal tilt angle and orientation of photovoltaic modules using HS algorithm in different climates of China. Appl. Sci. 2017, 7, 1028. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Koo, C.; Hong, T.; Oh, J.; Jeong, K. A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind. Appl. Energy 2016, 179, 211–227. [Google Scholar] [CrossRef]
- Lim, H.; Cho, S.H.; Moon, J.; Jun, D.Y.; Kim, S.H. Effects of Reflectance of Backsheets and Spacing between Cells on Photovoltaic Modules. Appl. Sci. 2022, 12, 443. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Lobaccaro, G.; Goia, F.; Chaudhary, G. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Appl. Energy 2019, 247, 731–744. [Google Scholar] [CrossRef]
- Flickr. Available online: https://www.flickr.com/photos/marcteer/5459146616/in/photolist-9jpy6w-9jpxSq-eXht8m-tp5HC7-t3BDLg-3aa28q-c39zY-UC1oD6-2n1KK8N-PgqX4-pnHCmr-sDqSpT-hAem6g-2jVyreW-c39jo9-owDL2h-2hzH4sN-edgf9y-pCG3nP-8iRbr6-2kQJ1n3-dobqhE-ef31RN-62ruG7-656ooz-mcxWLj-q6vfvT-2hZwNjR-fUWrGV-e27N36-o9dPcj-eX63CD-fHiHyD-ddJqZp-36CmsU-ggwZ2j-Sc8sEo-fUVwbd-AqkZ92-vfsiyR-JrP5bX-4GPSQX-5DRXcL-3B2B53-8szJN-3B2xiE-ja67WH-3B2EHy-g53787-hj6qzv (accessed on 12 January 2023).
- Google Maps. Available online: https://www.google.com/maps/place/Walkeweg+61,+4053+Basel,+%EC%8A%A4%EC%9C%84%EC%8A%A4/@47.5416222,7.6094535,17z/data=!3m1!4b1!4m6!3m5!1s0x4791b830721fb075:0x4226c7a9bed34898!8m2!3d47.5416222!4d7.6094535!16s%2Fg%2F11c1y3qg3z (accessed on 28 January 2023).
- Baker, A. How to Calculate Your Peak Sun-Hours. Available online: http://waterfrontballparkdistrict.com.s3.amazonaws.com/10.%20Remainder/AR%200078729-%20AR%200078739.pdf (accessed on 10 January 2023).
- Foster, R.; Ghassemi, M.; Cota, A. Solar Energy: Renewable Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2009; p. 45. [Google Scholar]
- Solarhub. Available online: https://solarhub.net.au/product/q-cells-q-peak-duo/ (accessed on 3 February 2023).
- Calabrò, E. An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation. J. Renew. Energy 2013, 2013, 307547. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.M.; Grace, D.; Runeson, G. Energy and economic analysis of environmental upgrading of existing office buildings. Constr. Econ. Build. 2022, 20, 82–102. [Google Scholar] [CrossRef]
- Nadia, A.R.; Isa, N.A.M.; Desa, M.K.M. Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system. J. King Saud Univ.-Eng. Sci. 2020, 32, 459–469. [Google Scholar]
- Rambhowan, Y.; Oree, V. Improving the dual-axis solar tracking system efficiency via drive power consumption optimization. Appl. Sol. Energy 2014, 50, 74–80. [Google Scholar] [CrossRef]
Macro-Energy Source | Micro-Energy Source |
---|---|
Solar, wind, and geothermal | Piezoelectric, thermoelectric, photoelectric, and electromagnetic |
Propagation-Based Systems | Constraint-Based Systems |
---|---|
A system that computes from known to unknown using data flow models | A system that solves sets of continuous and discontinuous constraints |
Type | Parameter | Value |
---|---|---|
Solar panel module | Model | Q. PEAK DUO ML-G11 |
Length (mm) | 2054 | |
Width (mm) | 1134 | |
Power capacity (kW/unit) | 500 Wp | |
Efficiency (%) | 21.5% |
N. | Month | Coefficients | Optimal Tilt Angle (°) βo | |
---|---|---|---|---|
a1 | a2 | |||
1 | January | 31.33 | 0.68 | 64° |
2 | February | 16.25 | 0.86 | 57° |
3 | March | 6.80 | 0.84 | 47° |
4 | April | −6.07 | 0.87 | 35° |
5 | May | −14.95 | 0.87 | 26° |
6 | June | −19.27 | 0.87 | 22° |
7 | July | −15.65 | 0.83 | 24° |
8 | August | −4.23 | 0.75 | 31° |
9 | September | 6.42 | 0.77 | 43° |
10 | October | 15.84 | 0.83 | 55° |
11 | November | 23.61 | 0.84 | 64° |
12 | December | 30.56 | 0.76 | 67° |
N. | Month | Optimal Tilt Angle (°) βo | Total Surface Area m−2 | Energy Generation kWh·Month−1 |
---|---|---|---|---|
1 | January | 64° | 989 | 1267 |
2 | February | 57° | 989 | 15,767 |
3 | March | 47° | 989 | 30,503 |
4 | April | 35° | 989 | 39,355 |
5 | May | 26° | 989 | 46,821 |
6 | June | 22° | 989 | 40,526 |
7 | July | 24° | 989 | 47,407 |
8 | August | 31° | 989 | 39,294 |
9 | September | 43° | 989 | 20,312 |
10 | October | 55° | 989 | 9318 |
11 | November | 64° | 989 | 2236 |
12 | December | 67° | 989 | 11,760 |
Total | 304,566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.S. Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland. Appl. Sci. 2023, 13, 4633. https://doi.org/10.3390/app13074633
Choi HS. Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland. Applied Sciences. 2023; 13(7):4633. https://doi.org/10.3390/app13074633
Chicago/Turabian StyleChoi, Ho Soon. 2023. "Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland" Applied Sciences 13, no. 7: 4633. https://doi.org/10.3390/app13074633
APA StyleChoi, H. S. (2023). Kinetic Photovoltaic Facade System Based on a Parametric Design for Application in Signal Box Buildings in Switzerland. Applied Sciences, 13(7), 4633. https://doi.org/10.3390/app13074633