Ultrasound Elastography in the Evaluations of Tendon-Related Disorders—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Source
2.2. Eligibility Criteria and Search Strategy
2.3. Study Selection
2.4. Data Items and Collection
2.5. Quality Assessment: Risk of Bias in Individual Studies
3. Results
3.1. Study Selection
3.2. Risk of Bias
3.3. Study Characteristics
3.3.1. Population
3.3.2. Ultrasound Mode
3.3.3. Pathologies
3.3.4. Tendons
- Teres minor tendon evaluation was present in 1 paper [23];
3.3.5. Reliability Indexes of Included Studies
4. Discussion
4.1. Discussion
4.2. Strengths and Limitations
4.2.1. Limitations of Included Studies
4.2.2. Methodological Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filardo, G.; Di Matteo, B.; Kon, E.; Merli, G.; Marcacci, M. Platelet-Rich Plasma in Tendon-Related Disorders: Results and Indications. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Riley, G. The Pathogenesis of Tendinopathy. A Molecular Perspective. Rheumatology 2004, 43, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffulli, N. Overuse Tendon Conditions: Time to Change a Confusing Terminology. Arthroscopy 1998, 14, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Dirrichs, T.; Quack, V.; Gatz, M.; Tingart, M.; Rath, B.; Betsch, M.; Kuhl, C.K.; Schrading, S. Shear Wave Elastography (SWE) for Monitoring of Treatment of Tendinopathies: A Double-Blinded, Longitudinal Clinical Study. Acad. Radiol. 2018, 25, 265–272. [Google Scholar] [CrossRef]
- Gennisson, J.-L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound Elastography: Principles and Techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef]
- Ozturk, A.; Grajo, J.R.; Dhyani, M.; Anthony, B.W.; Samir, A.E. Principles of Ultrasound Elastography. Abdom. Radiol. 2018, 43, 773–785. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Snoj, Ž.; Wu, C.H.; Taljanovic, M.S.; Dumić-Čule, I.; Drakonaki, E.E.; Klauser, A.S. Ultrasound Elastography in Musculoskeletal Radiology: Past, Present, and Future. Semin. Musculoskelet. Radiol. 2020, 24, 156–166. [Google Scholar] [CrossRef]
- Arda, K.; Ciledag, N.; Aktas, E.; Aribas, B.K.; Köse, K. Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography. AJR Am. J. Roentgenol. 2011, 197, 532–536. [Google Scholar] [CrossRef]
- Slane, L.C.; Martin, J.; DeWall, R.; Thelen, D.; Lee, K. Quantitative Ultrasound Mapping of Regional Variations in Shear Wave Speeds of the Aging Achilles Tendon. Eur. Radiol. 2017, 27, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. Radiographics 2017, 37, 855–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Mattiuzzi, C. The Biomarker Paradigm: Between Diagnostic Efficiency and Clinical Efficacy. Pol. Arch. Med. Wewn. 2015, 125, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; D’Addario, M.; Egger, M.; Cevallos, M.; Dekkers, O.; Mugglin, C.; Scott, P. Methods to Systematically Review and Meta-Analyse Observational Studies: A Systematic Scoping Review of Recommendations. BMC Med. Res. Methodol. 2018, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- da Costa Santos, C.M.; de Mattos Pimenta, C.A.; Nobre, M.R.C. The PICO Strategy for the Research Question Construction and Evidence Search. Rev. Lat. Am. Enfermagem. 2007, 15, 508–511. [Google Scholar] [CrossRef] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.D.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.3 (Updated February 2022); John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Corrigan, P.; Cortes, D.H.; Pohlig, R.T.; Grävare Silbernagel, K. Tendon Morphology and Mechanical Properties Are Associated with the Recovery of Symptoms and Function in Patients with Achilles Tendinopathy. Orthop. J. Sports Med. 2020, 8. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, D.-B.; Wang, J.; Li, H.-Z.; Wang, Y.-C. Role of Shear Wave Elastography in the Evaluation of the Treatment and Prognosis of Supraspinatus Tendinitis. World J. Clin. Cases 2020, 8, 2977–2987. [Google Scholar] [CrossRef]
- Gatz, M.; Bode, D.; Betsch, M.; Quack, V.; Tingart, M.; Kuhl, C.; Schrading, S.; Dirrichs, T. Multimodal Ultrasound Versus MRI for the Diagnosis and Monitoring of Achilles Tendinopathy: A Prospective Longitudinal Study. Orthop. J. Sports Med. 2021, 9, 23259671211006824. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, J.E.; Lee, Y.J.; Seo, H.J.; Sheen, S.S.; Hahn, S.; Jang, B.H.; Son, H.J. Testing a Tool for Assessing the Risk of Bias for Nonrandomized Studies Showed Moderate Reliability and Promising Validity. J. Clin. Epidemiol. 2013, 66, 408–414. [Google Scholar] [CrossRef]
- Kandil, N.M.; Abdelkarim, M.A.; Abdelwahab, N.M.; Hashem, A.M. In Achilles Tendon Disorders, Will Sonoelastography Add to Grey-Scale Ultrasound? Using MRI as Gold Standard. Indian J. Radiol. Imaging 2021, 31, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Frere, R.A.; Libda, I.; Tantawy, F.; Sakr, H.M.; El-Alfy, A.T. Sonoelastography, Conventional Ultrasound and Magnetic Resonance Imaging in Detection of Rotator Cuff Lesions in Patients with Chronic Shoulder Pain. Egypt. Rheumatol. 2021, 43, 17–21. [Google Scholar] [CrossRef]
- Bang, J.-Y.; Hahn, S.; Yi, J.; Lim, Y.-J.; Jung, H.K. Clinical Applicability of Shear Wave Elastography for the Evaluation of Medial Epicondylitis. Eur. Radiol. 2021, 31, 6726–6735. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; You, Y.; Xiang, X.; Wang, L.; Qiu, L. Assessment of Common Extensor Tendon Elasticity in Patients with Lateral Epicondylitis Using Shear Wave Elastography. Quant. Imaging Med. Surg. 2020, 10, 211–219. [Google Scholar] [CrossRef]
- Shin, M.; Hahn, S.; Yi, J.; Lim, Y.-J.; Bang, J.-Y. Clinical Application of Real-Time Sonoelastography for Evaluation of Medial Epicondylitis: A Pilot Study. Ultrasound Med. Biol. 2019, 45, 246–254. [Google Scholar] [CrossRef]
- Sahan, M.H.; Inal, M.; Burulday, V.; Kultur, T. Evaluation of Tendinosis of the Long Head of the Biceps Tendon by Strain and Shear Wave Elastography. Med. Ultrason. 2018, 20, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Ghandour, A.M.; Ghandour, T.M. Strain-Based Elastography Assessment of Patients with De Quervain Tenosynovitis: A Preliminary Study. Egypt. J. Radiol. Nucl. Med. 2018, 49, 415–418. [Google Scholar] [CrossRef]
- El Badry, A.; Ghieda, U.; El Khouly, R.M.; Elreweny, E.A. Evaluation of Sonoelastography in Achilles Tendon of Healthy Volunteers and Patients with Symptomatic Achilles Tendon. Egypt. J. Radiol. Nucl. Med. 2018, 49, 119–127. [Google Scholar] [CrossRef]
- Arslan, S.; Karahan, A.Y.; Oncu, F.; Bakdik, S.; Durmaz, M.S.; Tolu, I. Diagnostic Performance of Superb Microvascular Imaging and Other Sonographic Modalities in the Assessment of Lateral Epicondylosis. J. Ultrasound Med. 2018, 37, 585–593. [Google Scholar] [CrossRef]
- Turkay, R.; Inci, E.; Aydeniz, B.; Vural, M. Shear Wave Elastography Findings of de Quervain Tenosynovitis. Eur. J. Radiol. 2017, 95, 192–196. [Google Scholar] [CrossRef]
- Coombes, B.K.; Tucker, K.; Vicenzino, B.; Vuvan, V.; Mellor, R.; Heales, L.; Nordez, A.; Hug, F. Achilles and Patellar Tendinopathy Display Opposite Changes in Elastic Properties: A Shear Wave Elastography Study. Scand. J. Med. Sci. Sports 2018, 28, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.C.; Schneider, M.E.; Malliaras, P.; Chadwick, M.; Connell, D.A. Diagnostic Performance of Axial-Strain Sonoelastography in Confirming Clinically Diagnosed Achilles Tendinopathy: Comparison with B-Mode Ultrasound and Color Doppler Imaging. Ultrasound Med. Biol. 2015, 41, 15–25. [Google Scholar] [CrossRef]
- Ooi, C.C.; Richards, P.J.; Maffulli, N.; Ede, D.; Schneider, M.E.; Connell, D.; Morrissey, D.; Malliaras, P. A Soft Patellar Tendon on Ultrasound Elastography Is Associated with Pain and Functional Deficit in Volleyball Players. J. Sci. Med. Sport 2016, 19, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-B.; Yoo, J.-S.; Ryu, J.-W. Sonoelastography Findings of Biceps Tendinitis and Tendinosis. J. Ultrasound 2014, 17, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giyoung, P.; Dongrak, K.; Junghyun, P. Diagnostic Confidence of Sonoelastography as Adjunct to Greyscale Ultrasonography in Lateral Elbow Tendinopathy. Chin. Med. J. 2014, 127, 3110–3115. [Google Scholar]
- Galletti, S.; Oliva, F.; Masiero, S.; Frizziero, A.; Galletti, R.; Schiavone, C.; Salini, V.; Abate, M. Sonoelastography in the Diagnosis of Tendinopathies: An Added Value. Muscles Ligaments Tendons J. 2015, 5, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Özel, D.; Demir, Y.; Özel, B.D.; Adaş, M. A Novel Measurement to Evaluate Supraspinatus Tendinopathies with Strain Elastography. Acta Radiol. 2021, 62, 1365–1373. [Google Scholar] [CrossRef]
- Vasishta, A.; Kelkar, A.; Joshi, P.; Hapse, R. The Value of Sonoelastography in the Diagnosis of Supraspinatus Tendinopathy-a Comparison Study. Br. J. Radiol. 2019, 92, 20180951. [Google Scholar] [CrossRef]
- Seo, J.-B.; Yoo, J.-S.; Ryu, J.-W. Sonoelastography Findings of Supraspinatus Tendon in Rotator Cuff Tendinopathy without Tear: Comparison with Magnetic Resonance Images and Conventional Ultrasonography. J. Ultrasound 2015, 18, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Sprague, A.L.; Couppé, C.; Pohlig, R.T.; Cortes, D.C.; Silbernagel, K.G. Relationships between Tendon Structure and Clinical Impairments in Patients with Patellar Tendinopathy. J. Orthop. Res. 2022, 40, 2320–2329. [Google Scholar] [CrossRef]
- Ito, N.; Sigurðsson, H.B.; Pohlig, R.T.; Cortes, D.H.; Grävare Silbernagel, K.; Sprague, A.L. Reliability of Continuous Shear Wave Elastography in the Pathological Patellar Tendon. J. Ultrasound Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Hafez, M.R.M.; Ibrahim, M.A.H. Ultrasound with Shear Wave Elastography in Diagnosis and Follow-up of Common Extensor Tendinopathy in Cases with Lateral Epicondylitis: A Cross-Sectional Analytic Study. Egypt. J. Radiol. Nucl. Med. 2022, 53, 236. [Google Scholar] [CrossRef]
- Corrigan, P.; Hornsby, S.; Pohlig, R.T.; Willy, R.W.; Cortes, D.H.; Silbernagel, K.G. Tendon Loading in Runners with Achilles Tendinopathy: Relations to Pain, Structure, and Function during Return-to-Sport. Scand. J. Med. Sci. Sports 2022, 32, 1201–1212. [Google Scholar] [CrossRef]
- Wada, T.; Itoigawa, Y.; Yoshida, K.; Kawasaki, T.; Maruyama, Y.; Kaneko, K. Increased Stiffness of Rotator Cuff Tendons in Frozen Shoulder on Shear Wave Elastography. J. Ultrasound Med. 2020, 39, 89–97. [Google Scholar] [CrossRef]
- Gatz, M.; Betsch, M.; Bode, D.; Schweda, S.; Dirrichs, T.; Migliorini, F.; Tingart, M.; Quack, V. Intra Individual Comparison of Unilateral Achilles Tendinopathy Using B-Mode, Power Doppler, Ultrasound Tissue Characterization and Shear Wave Elastography. J. Sport. Med. Phys. Fit. 2020, 60, 1462–1469. [Google Scholar] [CrossRef]
- Breda, S.J.; van der Vlist, A.; de Vos, R.-J.; Krestin, G.P.; Oei, E.H.G. The Association between Patellar Tendon Stiffness Measured with Shear-Wave Elastography and Patellar Tendinopathy-a Case-Control Study. Eur. Radiol. 2020, 30, 5942–5951. [Google Scholar] [CrossRef]
- Yurdaışık, I. Comparison of Two-Dimensional Shear Wave Elastography and Point Shear Wave Elastography Techniques with Magnetic Resonance Findings in Detection of Patellar Tendinopathy. Eklem Hastalik Cerrahisi 2019, 30, 275–281. [Google Scholar] [CrossRef]
- Yun, S.J.; Jin, W.; Cho, N.S.; Ryu, K.N.; Yoon, Y.C.; Cha, J.G.; Park, J.S.; Park, S.Y.; Choi, N.Y. Shear-Wave and Strain Ultrasound Elastography of the Supraspinatus and Infraspinatus Tendons in Patients with Idiopathic Adhesive Capsulitis of the Shoulder: A Prospective Case-Control Study. Korean J. Radiol. 2019, 20, 1176–1185. [Google Scholar] [CrossRef]
- Chimenti, R.L.; Bucklin, M.; Kelly, M.; Ketz, J.; Flemister, A.S.; Richards, M.S.; Buckley, M.R. Insertional Achilles Tendinopathy Associated with Altered Transverse Compressive and Axial Tensile Strain during Ankle Dorsiflexion. J. Orthop. Res. 2017, 35, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-U.; Joo, S.Y.; Kim, S.K.; Lee, S.-H.; Park, S.-R.; Jeong, C. Real-Time Sonoelastography in the Diagnosis of Rotator Cuff Tendinopathy. J. Shoulder Elbow Surg. 2016, 25, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, F.; Kuyucu, E.; Kocyigit, A.; Herek, D.T.; Savkin, R.; Aslan, U.B. Investigation of Biomechanical Characteristics of Intact Supraspinatus Tendons in Subacromial Impingement Syndrome: A Cross-Sectional Study with Real-Time Sonoelastography. Am. J. Phys. Med. Rehabil. 2016, 95, 588–596, (A). [Google Scholar] [CrossRef]
- Kocyigit, F.; Kuyucu, E.; Kocyigit, A.; Herek, D.T.; Savkin, R.; Aslan, U.B.; Karabulut, N. Association of Real-Time Sonoelastography Findings with Clinical Parameters in Lateral Epicondylitis. Rheumatol. Int. 2016, 36, 91–100, (B). [Google Scholar] [CrossRef]
- Dirrichs, T.; Quack, V.; Gatz, M.; Tingart, M.; Kuhl, C.K.; Schrading, S. Shear Wave Elastography (SWE) for the Evaluation of Patients with Tendinopathies. Acad. Radiol. 2016, 23, 1204–1213. [Google Scholar] [CrossRef]
- Tudisco, C.; Bisicchia, S.; Stefanini, M.; Antonicoli, M.; Masala, S.; Simonetti, G. Tendon Quality in Small Unilateral Supraspinatus Tendon Tears. Real-Time Sonoelastography Correlates with Clinical Findings. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 393–398. [Google Scholar] [CrossRef]
- Aubry, S.; Nueffer, J.-P.; Tanter, M.; Becce, F.; Vidal, C.; Michel, F. Viscoelasticity in Achilles Tendonopathy: Quantitative Assessment by Using Real-Time Shear-Wave Elastography. Radiology 2015, 274, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Ng, G.Y.; Lee, W.C.; Fu, S.N. Changes in Morphological and Elastic Properties of Patellar Tendon in Athletes with Unilateral Patellar Tendinopathy and Their Relationships with Pain and Functional Disability. PLoS ONE 2014, 9, e108337. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.-S.; Kang, C.H.; Hong, S.-J.; Jeong, W.-K. Ultrasound Elastography of Lateral Epicondylosis: Clinical Feasibility of Quantitative Elastographic Measurements. AJR Am. J. Roentgenol. 2014, 202, 1094–1099. [Google Scholar] [CrossRef]
- Sconfienza, L.M.; Silvestri, E.; Cimmino, M.A. Sonoelastography in the Evaluation of Painful Achilles Tendon in Amateur Athletes. Clin. Exp. Rheumatol. 2010, 28, 373–378. [Google Scholar] [PubMed]
- Gatz, M.; Betsch, M.; Dirrichs, T.; Schrading, S.; Tingart, M.; Michalik, R.; Quack, V. Eccentric and Isometric Exercises in Achilles Tendinopathy Evaluated by the VISA-A Score and Shear Wave Elastography. Sports Health 2020, 12, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Thiese, M.S. Observational and Interventional Study Design Types; an Overview. Biochem. Med. 2014, 24, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, J.L.; Ellis, R.; Hodges, P.W.; OSullivan, C.; Hides, J.; Fernandez-Carnero, S.; Arias-Buria, J.L.; Teyhen, D.S.; Stokes, M.J. Imaging with Ultrasound in Physical Therapy: What Is the PT’s Scope of Practice? A Competency-Based Educational Model and Training Recommendations. Br. J. Sports Med. 2019, 53, 1447–1453. [Google Scholar] [CrossRef]
- Fu, S.-C.; Rolf, C.; Cheuk, Y.-C.; Lui, P.P.; Chan, K.-M. Deciphering the Pathogenesis of Tendinopathy: A Three-Stages Process. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2010, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Andarawis-Puri, N.; Flatow, E.L.; Soslowsky, L.J. Tendon Basic Science: Development, Repair, Regeneration, and Healing. J. Orthop. Res. 2015, 33, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Fusini, F.; Langella, F.; Busilacchi, A.; Tudisco, C.; Gigante, A.; Massé, A.; Bisicchia, S. Real-Time Sonoelastography: Principles and Clinical Applications in Tendon Disorders. A Systematic Review. Muscles Ligaments Tendons J. 2017, 7, 467–477. [Google Scholar] [CrossRef]
- De Zordo, T.; Fink, C.; Feuchtner, G.M.; Smekal, V.; Reindl, M.; Klauser, A.S. Real-Time Sonoelastography Findings in Healthy Achilles Tendons. AJR Am. J. Roentgenol. 2009, 193, W134–W138. [Google Scholar] [CrossRef] [PubMed]
- Dighe, M.; Hippe, D.S.; Thiel, J. Artifacts in Shear Wave Elastography Images of Thyroid Nodules. Ultrasound Med. Biol. 2018, 44, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Lee, Y.-G.; Park, H.-S.; Cho, R.-K.; Lee, H.-J. Comparison of Gene Expression of Inflammation- and Fibrosis-Related Factors between the Anterior and Posterior Capsule in Patients with Rotator Cuff Tear and Shoulder Stiffness. Orthop. J. Sports Med. 2021, 9, 23259671211032544. [Google Scholar] [CrossRef]
- Redondo-Alonso, L.; Chamorro-Moriana, G.; Jiménez-Rejano, J.J.; López-Tarrida, P.; Ridao-Fernández, C. Relationship between Chronic Pathologies of the Supraspinatus Tendon and the Long Head of the Biceps Tendon: Systematic Review. BMC Musculoskelet. Disord. 2014, 15, 377. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, J.L.; Teyhen, D.S.; Elliott, J.M.; Cook, K.; Langevin, H.M.; Dahl, H.H.; Stokes, M. Rehabilitative Ultrasound Imaging: Understanding the Technology and Its Applications. J. Orthop. Sports Phys. Ther. 2007, 37, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Igelström, E.; Campbell, M.; Craig, P.; Katikireddi, S.V. Cochrane’s Risk of Bias Tool for Non-Randomized Studies (ROBINS-I) Is Frequently Misapplied: A Methodological Systematic Review. J. Clin. Epidemiol. 2021, 140, 22–32. [Google Scholar] [CrossRef]
- Sconfienza, L.M.; Albano, D.; Allen, G.; Bazzocchi, A.; Bignotti, B.; Chianca, V.; Facal de Castro, F.; Drakonaki, E.E.; Gallardo, E.; Gielen, J.; et al. Clinical Indications for Musculoskeletal Ultrasound Updated in 2017 by European Society of Musculoskeletal Radiology (ESSR) Consensus. Eur. Radiol. 2018, 28, 5338–5351. [Google Scholar] [CrossRef] [PubMed]
Database | Search Strategy |
---|---|
PubMed | “Elasticity Imaging Techniques”[Mesh] AND “Tendinopathy”[Mesh] |
Scopus | Tendinopath* AND Elastograph* Filters by keywords: Human, Humans, Elastography; Ultrasound Elastography |
Web of Science | Tendinopath* AND Elastograph* |
Study | Shear Wave Velocity (m/s) | Shear Modulus (kPa) | Strain Ratio |
---|---|---|---|
Elsayed et al., 2022 [43] | ICC inter-observer: 0.974 (0.953–0.986) ICC intra-observer: 0.998 (0.995–0.999) | ||
Kandil et al., 2021 [22] | Achilles Tendon Sensitivity: 87.5% Specificity: 100% Accuracy in differentiating normal and pathological tendons: 90% | ||
Frere et al., 2021 [23] | Rotator Cuff Lesions Tendinopathy: Sensitivity 93.8%: Specificity 95% Partial thickness tears: Sensitivity 90%; Specificity 92.3% Full thickness tears: Sensitivity 90%; Specificity 100% | ||
Bang et al., 2021 [24] | Epicondylitis Sensitivity: 100%; Specificity: 97% | Epicondylitis Sensitivity: 100%; Specificity: 97% | Epicondylitis Sensitivity: 85.7%; Specificity: 97% |
Breda et al., 2020 [47] | Patellar Tendinopathy Athletes with Patellar Tendinopathy ICC (95% CI): 0.95 (0.92–0.97) mean value Healthy Athletes ICC (95% CI): 0.79 (0.65–0.88) mean value | ||
Zhu et al., 2019 [25] | Common Extensor Tendon in Lateral Epicondylitis ICC (95% IC): 0.986 (0.964–0.994) Sensitivity: 93%; Specificity: 93% | ||
Shin et al., 2019 [26] | Medial Epicondylitis Sensitivity: 89.7%; Specificity: 100% | ||
Sahan et al., 2018 [27] | Tendinosis of the Long Head of Biceps Tendon LHBT Group: transverse plane Sensitivity: 100%; Specificity 100% LHBT Group: longitudinal plane Sensitivity: 100%; Specificity: 90% | ||
Ghandour et al., 2018 [28] | De Quervain Tenosynovitis Positive Predictive Value: 95%; Negative Predictive Value: 90% Sensitivity: 92%; Specificity: 93% | ||
El Badry et al., 2018 [29] | Achilles Tendinopathy Sensitivity 89.1%; Specificity: 96.1% | ||
Arslan et al., 2018 [30] | Lateral Epicondylosis Positive Predictive Value: 90.7%; Negative Predictive Value: 80.7% Accuracy rates: 85.0% Sensitivity: 78%; Specificity: 92% | ||
Turkay et al., 2017 [31] | De Quervain Tenosynovitis Sensitivity: 85%; Specificity: 95% | ||
Coombes et al., 2017 [32] | Achilles and Patellar Tendinopathies Mid Achilles: ICC (95% CI): 0.71 (0.24–0.91) Sensitivity: 75%; Specificity: 68.2% Insertional Achilles: ICC (95% CI): 0.69 (0.11–0.92) Sensitivity: 78.6%; Specificity: 81% Mid Patellar: ICC (95% CI): 0.71 (0.22–0.91) Sensitivity: 76.5%; Specificity: 82.1% Proximal Patellar: ICC (95% IC): 0.80 (0.42–0.94) Sensitivity: 35.3%; Specificity: 92.9% | ||
Ooi et al., 2016 [34] | Patellar Tendinopathy Positive Predictive Value: 66.7%; Negative Predictive Value: 57.1% Diagnostic Accuracy: 62.9%; Sensitivity: 70%; Specificity: 53.3% | ||
Tudisco et al., 2015 [55] | Unilateral Supraspinatus Tendon Tear Affected Shoulder: 0.75 ± 0.08 mean Healthy Shoulder: 1.01 ± 0.07 mean | ||
Seo et al., 2015 [40] | Supraspinatus Tendon in Rotator Cuff Tendinopathy without Tear Interobserver reliability with MRI (K coefficient): Correlation coefficient: 0.829 | ||
Ooi et al., 2015 [33] | Achilles Tendinopathy Accuracy in the diagnosis of clinically Symptomatic Achilles Tendinopathy: 97.8% Sensitivity: 97.5%; Specificity: 94.5% | ||
Galletti et al., 2015 [37] | Diagnosis of Tendinopathies Shoulder: 80.4% positive; 19.5% negative (alterations) Elbow: 81.5% positive; 18.4% negative (alterations) Patellar: 73% positive; 26.9% negative (alterations) Achilles: 77.1% positive; 22.8% negative (alterations) | ||
Seo et al., 2014 [35] | Biceps Tendinitis and Tendinosis (longitudinal view) Sensitivity: 94.4%; Specificity: 92.1%; Accuracy: 92.7% (mean) (considering grade 2 and grade 3 as pathological) Interobserver reliability with US (K coefficient): Correlation coefficient: 0.840 | ||
Giyoung et al., 2014 [36] | Lateral Elbow Tendinopathy Accuracy: 96.4%; Sensitivity: 96.4%; Specificity: 96.4% | ||
Sconfienza et al., 2010 [59] | Achilles Tendon Inter-reader agreement (K value): 0.897 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossetto, G.; Scalona, E.; Comotti, P.; Gatti, L.; Di Maso, D.; Gobbo, M.; Lopomo, N.F. Ultrasound Elastography in the Evaluations of Tendon-Related Disorders—A Systematic Review. Appl. Sci. 2023, 13, 4920. https://doi.org/10.3390/app13084920
Rossetto G, Scalona E, Comotti P, Gatti L, Di Maso D, Gobbo M, Lopomo NF. Ultrasound Elastography in the Evaluations of Tendon-Related Disorders—A Systematic Review. Applied Sciences. 2023; 13(8):4920. https://doi.org/10.3390/app13084920
Chicago/Turabian StyleRossetto, Gianluca, Emilia Scalona, Paolo Comotti, Lorenzo Gatti, Denise Di Maso, Massimiliano Gobbo, and Nicola Francesco Lopomo. 2023. "Ultrasound Elastography in the Evaluations of Tendon-Related Disorders—A Systematic Review" Applied Sciences 13, no. 8: 4920. https://doi.org/10.3390/app13084920
APA StyleRossetto, G., Scalona, E., Comotti, P., Gatti, L., Di Maso, D., Gobbo, M., & Lopomo, N. F. (2023). Ultrasound Elastography in the Evaluations of Tendon-Related Disorders—A Systematic Review. Applied Sciences, 13(8), 4920. https://doi.org/10.3390/app13084920