Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Wheat Physiochemical Characteristics
2.3. Genomic DNA Isolation
2.4. Spectrophotometric Analysis of DNA
2.5. PCR Analysis
2.6. Agarose Gel Electrophoresis
2.7. Statistical Analysis
3. Results
3.1. Wheat Sample Characteristics
3.2. DNA Amplification
3.3. Clustering Using the UPGMA Method
3.4. Clustering Using the Neighbor Joining Method
3.5. Principal Component Analysis of the Physicochemical Characteristics and Scores of the Wheat Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Sousa, T.; Ribeiro, M.; Sabença, C.; Igrejas, G. The 10,000-Year Success Story of Wheat! Foods 2021, 10, 2124. [Google Scholar] [CrossRef]
- Naushad, A.; Izhar, H.; Sardar, A.; Nagib, U.K.; Ijaz, H. Multivariate analysis for various quantitative traits in wheat advanced lines. Saudi J. Biol. Sci. 2021, 28, 347–352. [Google Scholar]
- Jiang, H.; Gao, Q.; Li, L.; Kong, L.; Zhang, W.; Wu, A.; Yang, Y. Genetic Diversity of Recurrent Selection Populations with Ms2 Gene Assessed by Gliadins in Common Wheat (Triticum aestivum L.). Agric. Sci. China 2010, 9, 615–625. [Google Scholar] [CrossRef]
- Eltaher, S.; Sallam, A.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.M.; Poland, J.; Baenziger, P.S. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing. Front. Genet. 2018, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A. Maize and Wheat—Top Agricultural Products Produced, Exported and Imported by Romania. Scientific Papers Series Management. Econ. Eng. Agric. Rural Dev. 2018, 18, 339–352. [Google Scholar]
- Cappelli, A.; Cini, E. Challenges and Opportunities in Wheat Flour, Pasta, Bread, and Bakery Product Production Chains: A Systematic Review of Innovations and Improvement Strategies to Increase Sustainability, Productivity, and Product Quality. Sustainability 2021, 13, 2608. [Google Scholar] [CrossRef]
- Júnior, R.d.S.N.; Ewert, F.; Webber, H.; Martre, P.; Hertel, T.W.; van Ittersum, M.K.; Asseng, S. Needed global wheat stock and crop management in response to the war in Ukraine. Glob. Food Secur. 2022, 35, 100662. [Google Scholar] [CrossRef]
- Popescu, G.H.; Nicoale, I.; Nica, E.; Vasile, A.J.; Andreea, I.R. The influence of land-use change paradigm on Romania’s agro-food trade competitiveness—An overview. Land Use Policy 2017, 61, 293–301. [Google Scholar] [CrossRef]
- Cvijanovic, D.; Sterie, M.C.; Kovacevic, V.; Ion, R.A. Comparative analysis of wheat and sunflower seeds branches in Romania and Serbia. In Proceedings of the 5th International Conference on Economics and Social Sciences, Fostering Recovery through Metaverse Business Modelling, Bucharest, Romania, 16–17 June 2022. [Google Scholar]
- Moroșan, E.; Secareanu, A.A.; Musuc, A.M.; Mititelu, M.; Ioniță, A.C.; Ozon, E.A.; Raducan, I.D.; Rusu, A.I.; Dărăban, A.M.; Karampelas, O. Comparative Quality Assessment of Five Bread Wheat and Five Barley Cultivars Grown in Romania. Int. J. Environ. Res. Public Health 2022, 19, 11114. [Google Scholar] [CrossRef]
- Manifesto, M.M.; Feingold, S.; Hopp, H.E.; Schlattert, A.R.; Dubcoysky, J. Molecular Markers Associated with Differences in Bread-making Quality in a Cross Between Bread Wheat Cultivars with the Same High Mr Glutenins. J. Cereal Sci. 1998, 27, 217–227. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Liang, Z.; Shi, W.; Gao, C.; Xia, G. From genetic stock to genome editing: Gene exploitation in wheat. Trends Biotechnol. 2018, 36, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Codină, G.G.; Bordei, D.; Pâslaru, V. The effects of different doses of gluten on rheological behavior of dough and bread quality. Rom. Biotechnol. Lett. 2008, 13, 37–42. [Google Scholar]
- Wang, Y.; Chen, Y.H.; Zhou, Y.; Nirasawa, S.; Tatsumi, E.; Li, X.T.; Cheng, Y.Q. Effects of konjac glucomannan on heat-induced changes of wheat gluten structure. Food Chem. 2017, 229, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Kłosok, K.; Welc, R.; Fornal, E.; Nawrocka, A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021, 26, 508. [Google Scholar] [CrossRef] [PubMed]
- Attenburrow, G.; Barnes, D.J.; Davies, A.P.; Ingman, S.J. Rheological properties of wheat gluten. J. Cereal Sci. 1990, 12, 1–14. [Google Scholar] [CrossRef]
- Hu, X.; Cheng, L.; Hong, Y.; Li, Z.; Li, C.; Gu, Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit. Rev. Food Sci. Nutr. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, F.; Steel, C.J. Protein characteristics that affect the quality of vital wheat gluten to be used in baking: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 369–381. [Google Scholar] [CrossRef]
- Žilić, S.; Barać, M.; Pešić, M.; Dodig, D.; Ignjatović-Micić, D. Characterization of Proteins from Grain of Different Bread and Durum Wheat Genotypes. Int. J. Mol. Sci. 2011, 12, 5878–5894. [Google Scholar] [CrossRef]
- Onyango, C. Starch and modified starch in bread making: A review. Afr. J. Food Sci. 2016, 10, 344–351. [Google Scholar]
- Martínez-Anaya, M.A. Enzymes and bread flavor. J. Agric. Food Chem. 1996, 44, 2469–2480. [Google Scholar] [CrossRef]
- Barrera, G.N.; Pérez, G.T.; Ribotta, P.D.; León, A.E. Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol. 2007, 225, 1–7. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Zheng, X. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem. 2020, 315, 126267. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S.; Mironeasa, C. Variability and relationship among Mixolab and Falling Number evaluation based on influence of fungal α-amylase addition. J. Sci. Food Agric. 2012, 92, 2162–2170. [Google Scholar] [CrossRef] [PubMed]
- Golea, M.C.; Oroian, M.; Codină, G.G. Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control 2023, 143, 109318. [Google Scholar] [CrossRef]
- Weidenbörner, M.; Wieczorek, C.; Appel, S.; Kunz, B. Whole wheat and white wheat flour—The mycobiota and potential mycotoxins. Food Microbiol. 2000, 17, 103–107. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, Á. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Feldman, M. Origin of cultivated wheat. In The World Wheat Book. A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., Eds.; Lavoisier Publishing: Paris, France, 2001; pp. 3–56. [Google Scholar]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Migliorini, P.; Spagnolo, S.; Torri, L.; Arnoulet, M.; Lazzerini, G.; Ceccarelli, S. Agronomic and quality characteristics of old, modern and mixture wheat varieties and landraces for organic bread chain in diverse environments of northern Italy. Eur. J. Agron. 2016, 79, 131–141. [Google Scholar] [CrossRef]
- Li, W.; Bian, C.-M.; Wei, Y.-M.; Liu, A.-J.; Chen, G.-Y.; Pu, Z.-E.; Liu, Y.-X.; Zheng, Y.-L. Evaluation of genetic diversity of sichuan common wheat landraces in China by SSR markers. J. Integr. Agric. 2013, 12, 1501–1511. [Google Scholar] [CrossRef]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Al-Turki, T.A.; Basahi, M.A. Assessment of ISSR based molecular genetic diversity of Hassawi rice in Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 591–599. [Google Scholar] [CrossRef]
- Vieira, M.B.; Faustino, M.V.; Lourenço, T.F.; Oliveira, M.M. DNA-Based Tools to Certify Authenticity of Rice Varieties—An Overview. Foods 2022, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, M. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Cabral, P.D.S.; de Souza, L.C.; da Costa, G.F.; Silva, F.H.L.; Soares, T.C.B. Investigation of the Genetic Diversity of Common Bean (Phaseolus Vulgaris.) Cultivars Using Molecular Markers. Genet. Mol. Res. 2018, 17, gmr18106. [Google Scholar] [CrossRef]
- Codină, G.G.; Dabija, A.; Oroian, M. Prediction of Pasting Properties of Dough from Mixolab Measurements Using Artificial Neuronal Networks. Foods 2019, 8, 447. [Google Scholar] [CrossRef]
- Roldán-Ruiz, I.; Dendauw, J.; Van Bockstaele, E.; Depicker, A.; De Loose, M. AFLP Markers Reveal High Polymorphic Rates in Ryegrasses (Lolium spp.). Mol. Breed. 2000, 6, 125–134. [Google Scholar] [CrossRef]
- Li, S.; Ramakrishnan, M.; Vinod, K.K.; Kalendar, R.; Yrjälä, K.; Zhou, M. Development and Deployment of High-Throughput Retrotransposon-Based Markers Reveal Genetic Diversity and Population Structure of Asian Bamboo. Forests 2020, 11, 31. [Google Scholar] [CrossRef]
- Popa, N.C.; Tamba-Berehoiu, R.; Popescu, S.; Varga, M.; Codină, G.G. Predective model of the alveografic parameters in flours obtained from Romanian grains. Rom. Biotechnol. Lett. 2009, 14, 4234–4242. [Google Scholar]
- Codină, G.G.; Mironeasa, S.; Bordei, D.; Leahu, A. Mixolab versus Alveograph and Falling Number. Czech J. Food Sci. 2010, 28, 185–191. [Google Scholar] [CrossRef]
- Martínez, M.M.; Gómez, M. Rheological and microstructural evolution of the most common gluten-free flours and starches during bread fermentation and baking. J. Food Eng. 2017, 197, 78–86. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, D.; Cao, W.; Dai, T.; Jing, Q. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regul. 2003, 41, 117–127. [Google Scholar] [CrossRef]
- Kulathunga, J.; Reuhs, B.L.; Zwinger, S.; Simsek, S. Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat. Foods 2021, 10, 761. [Google Scholar] [CrossRef]
- Rizkalla, A.A.; Attia, S.A.A.; Abd El-Hady, E.A.A.; Hanna, N.S.; Nasseef, J.E. Genetic Diversity Based on ISSR and Protein Markers Associated with Earliness Trait in Wheat. World Appl. Sci. J. 2012, 20, 23–33. [Google Scholar] [CrossRef]
- Rekha, M.; Sindhu, S.; Sushila, K.; Jag, S. The Use of SSR and ISSR Markers for Assessing DNA Polymorphism and Genetic Diversity among Indian Bread Wheat Cultivars. Progress. Agric. 2012, 12, 82–89. [Google Scholar]
- Sofalian, O.; Chaparzadeh, N.; Javanmard, A.; Hejazi, M.S. Study the Genetic Diversity of Wheat Landraces from Northwest of Iran Based on ISSR Molecular Markers. Int. J. Agric. Biol. 2008, 10, 466–468. [Google Scholar]
- Karaca, M.; Izbirak, A. Comparative Analysis of Genetic Diversity in Turkish Durum Wheat Cultivars Using RAPD and ISSR Markers. J. Food Agric. Environ. 2008, 6, 219–225. [Google Scholar]
- Sadigova, S.; Sadigov, H.; Eshghi, R.; Salayeva, S.; Ojaghi, J. Application of Rapd and Issr Markers to Analyses Molecular Relationships in Azerbaijan Wheat Accessions (Triticum aestivum L.). Bulg. J. Agric. Sci. 2014, 20, 87–95. [Google Scholar]
- Mousavifard, S.S.; Saeidi, H.; Rahiminejad, M.R.; Shamsadini, M. Molecular Analysis of Diversity of Diploid Triticum Species in Iran Using ISSR Markers. Genet. Resour. Crop Evol. 2015, 62, 387–394. [Google Scholar] [CrossRef]
- Du, J.-K.; Yao, Y.-Y.; Ni, Z.-F.; Peng, H.-R.; Sun, Q.-X. Genetic diversity revealed by ISSR molecular marker in common wheat, spelt, compactum and progeny of recurrent selection. Yi Chuan Xue Bao 2002, 29, 445–452. [Google Scholar]
- Nazarzadeh, Z.; Onsori, H.; Akrami, S. Genetic Diversity of Bread Wheat (Triticum aestivum L.) Genotypes Using RAPD and ISSR Molecular Markers. J. Genet. Resour. 2020, 6, 69–76. [Google Scholar] [CrossRef]
- Deshmukh, R.; Tomar, N.S.; Tripathi, N.; Tiwari, S. Identification of RAPD and ISSR Markers for Drought Tolerance in Wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2012, 18, 101–104. [Google Scholar] [CrossRef]
- Shokry, A.M.; Edris, S.; Ramadan, A.M.; Gadalla, N.O.; Bahieldin, A.; Arabia, S.; Engineering, G.; Division, B. Detection of Wheat (Triticum aestivum) Cultivars with Contrasting Performance under Abiotic Stresses. Life Sci. J. 2013, 10, 2746–2756. [Google Scholar]
- Majeed, D.M.; Ismail, E.N.; Al-Mishhadani, I.I.; Sakran, N.M. Assessment of Genetic Diversity among Wheat Selected Genotypes and Local Varieties for Salt Tolerance by Using RAPD and ISSR Analysis. Iraqi J. Sci. 2018, 59, 278–286. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Singh, K.; Singh, T.; Singh, V.; Verma, O.; Singh, S. Divergence Analysis in Certain Genotypes of Wheat (Triticum aestivum L. em. Thell). J. Pharmacogn. Phytochem. 2019, 8, 507–510. [Google Scholar]
- Kumar, P.; Sharma, V.; Sanger, R.; Kumar, P.; Yadav, M.K. Analysis of Molecular Variation among Diverse Background Wheat (Triticum aestivum L.) Genotypes with the Help of ISSR Markers. Int. J. Chem. Stud. 2020, 8, 271–276. [Google Scholar] [CrossRef]
- Ng, W.L.; Tan, S. Inter-Simple Sequence Repeat (ISSR) Markers: Are We Doing It Right? ASM Sci. J. 2015, 9, 30–39. [Google Scholar]
- Spisni, E.; Imbesi, V.; Giovanardi, E.; Petrocelli, G.; Alvisi, P.; Valerii, M.C. Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019, 11, 2879. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef] [PubMed]
Genotype Number | Scientific Name | Accession Name | Country | Biological Status |
---|---|---|---|---|
TA1 | T. aestivum L. | Izvor | Romania | Modern variety 1 |
TA2 | T. aestivum L. | Glosa | Romania | Modern variety 1 |
TA3 | T. aestivum L. | Miranda | Romania | Modern variety 1 |
TA4 | T. aestivum L. | Andrada | Romania | Modern variety 1 |
TA5 | T. aestivum L. | Dumbrava | Romania | Modern variety 1 |
TA6 | T.aestivum L. | Aurelius | Austria | Modern variety 1 |
TA7 | T. aestivum L. | Sofru | France | Modern variety 1 |
TA8 | T. aestivum L. | Sosthene | France | Modern variety 1 |
TA9 | T. aestivum L. | Amicus | Austria | Modern variety 1 |
TA10 | T. aestivum L. | Sothys | France | Modern variety 1 |
TA11 | T. aestivum L. | Flavor | France | Modern variety 1 |
TA12 | T. aestivum L. | Solindo | France | Modern variety 1 |
TA13 | T. aestivum L. | Izalco | France | Modern variety 1 |
TA14 | T. aestivum L. | Tonnage | Austria | Modern variety 1 |
TA15 | T. aestivum L. | Sophie | France | Modern variety 1 |
TA16 | T. aestivum L. | Apache | France | Modern variety 1 |
TA17 | T. aestivum L. | Anapurna | France | Modern variety 1 |
TA18 | T. aestivum L. | Illico | Switzerland | Modern variety 1 |
TA19 | T. aestivum L. | Sf. Ilie | Romania | Modern variety 1 |
TA20 | T. aestivum L. | Lucăcești | Romania | Modern variety 1 |
TA21 | T. aestivum L. | Udești 1 | Romania | Modern variety 1 |
TA22 | T. aestivum L. | Udești 2 | Romania | Modern variety 1 |
TA23 | T. aestivum L. | Udești 3 | Romania | Modern variety 1 |
TA24 | T. aestivum L. | Frumoasa | Romania | Modern variety 1 |
TA25 | T. aestivum L. | Tișăuți | Romania | Modern variety 1 |
TM26 | T. monococcum L. | SVGB-11842 | Romania | Landrace 2 |
TM27 | T.monococcum L. | SVGB-11861 | Romania | Breeding line 3 |
TS28 | T. spelta L. | Ebners Rotkorn | Austria | Modern variety 1 |
TS29 | T. spelta L. | Frankenkorn | Austria | Modern variety 1 |
TS30 | T. spelta L. | Alkoran | Russia | Modern variety 1 |
TS31 | T. spelta L. | Oberkulmer Rotkorn | Germany | Modern variety 1 |
Primer | Sequence (5′-3′) 1 | Tm (°C) | (%) GC |
---|---|---|---|
UBC841 | GAGAGAGAGAGAGAGAYC | 58 | 50 |
UBC843 | CTCTCTCTCTCTCTCTRA | 56 | 44.4 |
UBC854 | TCTCTCTCTCTCTCTCRG | 58 | 50 |
UBC855 | ACACACACACACACACYT | 56 | 44.4 |
UBC857 | ACACACACACACACACYG | 58 | 50 |
UBC859 | TGTGTGTGTGTGTGTGRC | 58 | 50 |
UBC880 | GGAGAGGAGAGGAGA | 48 | 60 |
UBC808 | AGAGAGAGAGAGAGAGC | 52 | 52.9 |
UBC810 | GAGAGAGAGAGAGAGAT | 50 | 47.1 |
UBC834 | AGAGAGAGAGAGAGAGYT | 56 | 44.4 |
UBC890 | VHVGTGTGTGTGTGTGT | 52 | 41.2 |
Chemical Data | Minimum | Maximum | Mean | Standard Deviation | Variance |
---|---|---|---|---|---|
Moisture (%) | 10.80 | 12.90 | 11.86 | 0.55 | 0.31 |
Ash (%) | 1.18 | 2.06 | 1.45 | 0.23 | 0.05 |
Protein (%) | 9.90 | 16.90 | 13.09 | 1.67 | 2.80 |
Wet gluten (%) | 21.70 | 39.70 | 28.74 | 3.47 | 12.05 |
Lipid (%) | 1.50 | 2.42 | 1.73 | 0.24 | 0.06 |
Starch (%) | 53.45 | 64.10 | 58.55 | 5.11 | 26.21 |
Falling Number (%) | 83.0 | 404 | 265.43 | 8.32 | 69.42 |
Damaged starch (UCDc) | 1.40 | 19.40 | 9.92 | 3.24 | 10.54 |
Primer | Number of Amplified Fragments | Number of Polymorphic Fragments | Fragment Length (bp) | Polymorphism Percentage | Polymporphic Information Content (PIC) |
---|---|---|---|---|---|
UBC808 | 8 | 7 | 280–2250 | 87.5 | 0.34 |
UBC810 | 4 | 4 | 400–1000 | 100 | 0.39 |
UBC855 | 5 | 5 | 300–2500 | 100 | 0.37 |
UBC857 | 6 | 6 | 200–1500 | 100 | 0.42 |
UBC859 | 3 | 3 | 250–1000 | 100 | 0.32 |
UBC880 | 3 | 3 | 650–2000 | 100 | 0.33 |
TA1 | TA2 | TA3 | TA4 | TA5 | TA6 | TA7 | TA8 | TA9 | TA10 | TA11 | TA12 | TA13 | TA14 | TA15 | TA16 | TA17 | TA18 | TA19 | TA20 | TA21 | TA22 | TA23 | TA24 | TA25 | TA26 | TA27 | TA28 | TA29 | TA30 | TA31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TA1 | |||||||||||||||||||||||||||||||
TA2 | 0.042 | ||||||||||||||||||||||||||||||
TA3 | 0.026 | 0.016 | |||||||||||||||||||||||||||||
TA4 | 0.02 | 0.022 | 0.006 | ||||||||||||||||||||||||||||
TA5 | 0.004 | 0.038 | 0.022 | 0.016 | |||||||||||||||||||||||||||
TA6 | 0.01 | 0.052 | 0.036 | 0.03 | 0.014 | ||||||||||||||||||||||||||
TA7 | 0.033 | 0.009 | 0.007 | 0.013 | 0.029 | 0.043 | |||||||||||||||||||||||||
TA8 | 0.004 | 0.038 | 0.022 | 0.016 | 0.018 | 0.014 | 0.029 | ||||||||||||||||||||||||
TA9 | 0.064 | 0.022 | 0.038 | 0.044 | 0.06 | 0.074 | 0.031 | 0.06 | |||||||||||||||||||||||
TA10 | 0.024 | 0.018 | 0.002 | 0.004 | 0.02 | 0.034 | 0.09 | 0.02 | 0.04 | ||||||||||||||||||||||
TA11 | 0.016 | 0.058 | 0.042 | 0.036 | 0.02 | 0.006 | 0.049 | 0.02 | 0.08 | 0.04 | |||||||||||||||||||||
TA12 | 0.014 | 0.028 | 0.012 | 0.006 | 0.01 | 0.024 | 0.019 | 0.01 | 0.05 | 0.01 | 0.03 | ||||||||||||||||||||
TA13 | 0.056 | 0.098 | 0.082 | 0.076 | 0.06 | 0.046 | 0.089 | 0.06 | 0.12 | 0.08 | 0.04 | 0.07 | |||||||||||||||||||
TA14 | 0.006 | 0.036 | 0.02 | 0.014 | 0.002 | 0.016 | 0.027 | 0.002 | 0.058 | 0.018 | 0.022 | 0.008 | 0.062 | ||||||||||||||||||
TA15 | 0.036 | 0.078 | 0.062 | 0.056 | 0.04 | 0.026 | 0.069 | 0.04 | 0.1 | 0.06 | 0.02 | 0.05 | 0.02 | 0.042 | |||||||||||||||||
TA16 | 0.088 | 0.046 | 0.062 | 0.068 | 0.084 | 0.098 | 0.055 | 0.084 | 0.024 | 0.064 | 0.104 | 0.074 | 0.144 | 0.082 | 0.124 | ||||||||||||||||
TA17 | 0.078 | 0.036 | 0.052 | 0.058 | 0.074 | 0.088 | 0.045 | 0.074 | 0.014 | 0.054 | 0.094 | 0.064 | 0.134 | 0.072 | 0.114 | 0.01 | |||||||||||||||
TA18 | 0.069 | 0.027 | 0.043 | 0.049 | 0.065 | 0.079 | 0.036 | 0.065 | 0.005 | 0.045 | 0.085 | 0.055 | 0.125 | 0.063 | 0.105 | 0.019 | 0.009 | ||||||||||||||
TA19 | 0.094 | 0.052 | 0.068 | 0.074 | 0.09 | 0.104 | 0.061 | 0.09 | 0.03 | 0.07 | 0.11 | 0.08 | 0.15 | 0.088 | 0.13 | 0.006 | 0.016 | 0.025 | |||||||||||||
TA20 | 0.008 | 0.034 | 0.018 | 0.012 | 0.004 | 0.018 | 0.025 | 0.004 | 0.056 | 0.016 | 0.024 | 0.006 | 0.064 | 0.002 | 0.044 | 0.08 | 0.07 | 0.061 | 0.086 | ||||||||||||
TA21 | 0.006 | 0.048 | 0.032 | 0.026 | 0.01 | 0.004 | 0.039 | 0.01 | 0.07 | 0.03 | 0.01 | 0.02 | 0.05 | 0.012 | 0.03 | 0.094 | 0.084 | 0.075 | 0.1 | 0.014 | |||||||||||
TA22 | 0.009 | 0.033 | 0.017 | 0.011 | 0.005 | 0.019 | 0.024 | 0.005 | 0.055 | 0.015 | 0.025 | 0.005 | 0.065 | 0.003 | 0.045 | 0.079 | 0.069 | 0.06 | 0.085 | 0.001 | 0.015 | ||||||||||
TA23 | 0.009 | 0.033 | 0.017 | 0.011 | 0.005 | 0.019 | 0.024 | 0.005 | 0.055 | 0.015 | 0.025 | 0.005 | 0.065 | 0.003 | 0.045 | 0.079 | 0.069 | 0.06 | 0.085 | 0.001 | 0.015 | 0 | |||||||||
TA24 | 0.001 | 0.031 | 0.015 | 0.009 | 0.007 | 0.021 | 0.022 | 0.007 | 0.053 | 0.013 | 0.027 | 0.003 | 0.067 | 0.005 | 0.047 | 0.077 | 0.067 | 0.058 | 0.083 | 0.003 | 0.017 | 0.002 | 0.002 | ||||||||
TA25 | 0.078 | 0.12 | 0.104 | 0.098 | 0.082 | 0.068 | 0.111 | 0.082 | 0.142 | 0.102 | 0.062 | 0.092 | 0.022 | 0.084 | 0.042 | 0.166 | 0.156 | 0.147 | 0.172 | 0.086 | 0.072 | 0.087 | 0.087 | 0.089 | |||||||
TA26 | 0.074 | 0.116 | 0.1 | 0.094 | 0.078 | 0.064 | 0.107 | 0.078 | 0.138 | 0.098 | 0.058 | 0.088 | 0.018 | 0.08 | 0.038 | 0.162 | 0.152 | 0.143 | 0.168 | 0.082 | 0.068 | 0.083 | 0.083 | 0.085 | 0.004 | ||||||
TA27 | 0.066 | 0.108 | 0.092 | 0.086 | 0.07 | 0.056 | 0.099 | 0.07 | 0.13 | 0.09 | 0.05 | 0.08 | 0.01 | 0.072 | 0.03 | 0.154 | 0.144 | 0.135 | 0.16 | 0.074 | 0.06 | 0.075 | 0.075 | 0.077 | 0.012 | 0.008 | |||||
TA28 | 0.122 | 0.08 | 0.096 | 0.102 | 0.118 | 0.132 | 0.089 | 0.118 | 0.058 | 0.098 | 0.138 | 0.108 | 0.178 | 0.116 | 0.158 | 0.034 | 0.044 | 0.053 | 0.028 | 0.114 | 0.128 | 0.113 | 0.113 | 0.111 | 0.2 | 0.196 | 0.188 | ||||
TA29 | 0.169 | 0.127 | 0.143 | 0.149 | 0.165 | 0.179 | 0.136 | 0.165 | 0.105 | 0.145 | 0.185 | 0.155 | 0.225 | 0.163 | 0.205 | 0.081 | 0.091 | 0.1 | 0.075 | 0.161 | 0.175 | 0.16 | 0.16 | 0.158 | 0.247 | 0.243 | 0.235 | 0.047 | |||
TA30 | 0.104 | 0.68 | 0.084 | 0.1 | 0.104 | 0.11 | 0.07 | 0.098 | 0.075 | 0.078 | 0.12 | 0.1 | 0.159 | 0.101 | 0.18 | 0.02 | 0.026 | 0.035 | 0.061 | 0.1 | 0.109 | 0.104 | 0.104 | 0.095 | 0.182 | 0.178 | 0.161 | 0.06 | 0.052 | ||
TA31 | 0.13 | 0.078 | 0.11 | 0.079 | 0.13 | 0.136 | 0.096 | 0.124 | 0.101 | 0.104 | 0.146 | 0.126 | 0.185 | 0.127 | 0.206 | 0.046 | 0.052 | 0.061 | 0.087 | 0.126 | 0.135 | 0.13 | 0.13 | 0.121 | 0.208 | 0.204 | 0.187 | 0.006 | 0.026 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golea, C.M.; Galan, P.-M.; Leti, L.-I.; Codină, G.G. Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania. Appl. Sci. 2023, 13, 4992. https://doi.org/10.3390/app13084992
Golea CM, Galan P-M, Leti L-I, Codină GG. Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania. Applied Sciences. 2023; 13(8):4992. https://doi.org/10.3390/app13084992
Chicago/Turabian StyleGolea, Camelia Maria, Paula-Maria Galan, Livia-Ioana Leti, and Georgiana Gabriela Codină. 2023. "Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania" Applied Sciences 13, no. 8: 4992. https://doi.org/10.3390/app13084992
APA StyleGolea, C. M., Galan, P. -M., Leti, L. -I., & Codină, G. G. (2023). Genetic Diversity and Physicochemical Characteristics of Different Wheat Species (Triticum aestivum L., Triticum monococcum L., Triticum spelta L.) Cultivated in Romania. Applied Sciences, 13(8), 4992. https://doi.org/10.3390/app13084992