Neuromuscular Changes in Drop Jumps on Different Common Material Surfaces with Incremental Drop Heights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. Data Collection
2.4. Data Analysis
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotzamanidis, C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J. Strength Cond. Res. 2006, 20, 441–445. [Google Scholar]
- Markovic, G.; Mikulic, P. Neuro-Musculoskletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef] [PubMed]
- Matavulj, D.; Kukolj, M.; Ugarkovic, D.; Tihanyi, J.; Jaric, S. Effects of pylometric training on jumping performance in junior basketball players. J. Sports Med. Phys. Fit. 2001, 41, 159–164. [Google Scholar]
- Tricoli, V.; Lamas, L.; Carnevale, R.; Ugrinowitsch, C. Short-term effects on lower-body functional power development: Weightlifting vs. vertical jump training programs. J. Strength Cond. Res. 2005, 19, 433–437. [Google Scholar] [CrossRef]
- Chimera, N.J.; Swanik, K.A.; Swanik, B.C.; Straub, S.J. Effects of plyometric training on muscle activation strategies and performance in female athletes. J. Athl. Train. 2004, 39, 24–31. [Google Scholar]
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar] [PubMed]
- Komi, P.V.; Gollhofer, A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J. Appl. Biomech. 1997, 13, 451–460. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; Schenau, G.J.V. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med. Sci. Sports Exerc. 1978, 19, 339–346. [Google Scholar] [CrossRef]
- Peng, H.T.; Song, C.Y.; Wallace, B.J.; Kernozek, T.W.; Wang, M.H.; Wang, Y.H. Effects of relative drop heights of drop jump biomechanics in male volleyball players. Int. J. Sports Med. 2019, 40, 863–870. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, R.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sports Med. 2008, 42, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Behm, D.G. Trunk muscle activity increases with unstable squat movements. Can. J. Appl. Physiol. 2005, 30, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Anderson, K.; Curnew, R.S. Muscle force and activation under stable and unstable conditions. J. Strength Cond. Res. 2002, 16, 416–422. [Google Scholar] [PubMed]
- Carter, J.M.; Beam, W.C.; McMahan, S.G.; Barr, M.L.; Brown, L.E. The effects of stability ball training on spinal stability in sedentary individuals. J. Strength Cond. Res. 2006, 20, 429–435. [Google Scholar] [PubMed]
- Mrdakovic, V.; Ilic, D.B.; Jankovic, N.; Rajkovic, Z.; Stefanovic, D. Pre-activity modulation of lower extremity muscles within different types and heights of deep jump. J. Sports Sci. Med. 2008, 7, 269. [Google Scholar]
- Hoffrén, M.; Ishikawa, M.; Rantalainen, T.; Avela, J.; Komi, P.V. Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping. J. Electromyogr. Kinesiol. 2011, 21, 483–491. [Google Scholar] [CrossRef]
- Prieske, O.; Muehlbauer, T.; Mueller, S.; Krueger, T.; Kibele, A.; Behm, D.G.; Granacher, U. Effects of surface instability on neuromuscular performance during drop jumps and landings. Eur. J. Appl. Physiol. 2013, 113, 2943–2951. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Beurskens, R.; Behm, D.G.; Granacher, U. Effects of drop height and surface instability on neuromuscular activation during drop jumps. Scand. J. Med. Sci. Sports 2017, 27, 1090–1098. [Google Scholar] [CrossRef]
- Taube, W.; Leukel, C.; Schubert, M.; Gruber, M.; Rantalainen, T.; Gollhofer, A. Differential modulation of spinal and corticospinal excitability during drop jumps. Am. Physiol. Soc. 2008, 99, 1243–1252. [Google Scholar] [CrossRef]
- Cronin, N.J.; Carty, C.P.; Barrett, R.S. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running. PLoS ONE 2011, 6, e23917. [Google Scholar] [CrossRef]
- Fleischmann, J.; Gehring, D.; Mornieux, G.; Gollhofer, A. Load-dependent movement regulation of lateral stretch shortening cycle jumps. Eur. J. Appl. Physiol. 2010, 110, 177–187. [Google Scholar] [CrossRef]
- Arampatzis, A.; Stafilidis, S.A.V.V.A.S.; Morey-Klapsing, G.A.S.P.A.R.; Brüggemann, G.P. Interaction of the human body and surfaces of different stiffness during drop jumps. Med. Sci. Sports Exerc. 2004, 36, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kotrlik, J.W.; Williams, H.A. The incorporation of effect size in information technology, learning, and performance research. Inf. Technol. Learn. Perform. J. 2003, 21, 1–7. [Google Scholar]
- Tsolakis, C.; Bogdanis, G.C.; Nikolaou, A.; Zacharogiannis, E. Influence of type of muscle contraction and gender on postactivation potentiation of upper and lower limb explosive performance in elite fencers. J. Sports Sci. Med. 2011, 10, 577. [Google Scholar]
- Beling, J.; Wolfe, G.A.; Allen, K.A.; Boyle, J.M. Lower extremity preference during gross and fine motor skills performed in sitting and standing postures. J. Orthop. Sport. Phys. Ther. 1998, 28, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography; Aspen Publishers: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Chelly, M.S.; Ghenem, M.A.; Abid, K.; Hermassi, S.; Tabka, Z.; Shephard, R.J. Effects of in-season short-term plyometric training program on leg power, jump-and sprint performance of soccer players. J. Strength Cond. Res. 2010, 24, 2670–2676. [Google Scholar] [CrossRef]
- Santos, E.J.; Janeira, M.A. The effects of plyometric training followed by detraining and reduced training periods on explosive strength in adolescent male basketball players. J. Strength Cond. Res. 2011, 25, 441–452. [Google Scholar] [CrossRef]
- Campo, S.S.; Vaeyens, R.; Philippaerts, R.M.; Redondo, J.C.; de Benito, A.M.; Cuadrado, G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 2009, 23, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Linnamo, V.; Strojnik, V.; Komi, P.V. Maximal force during eccentric and isometric actions at different elbow angles. Eur. J. Appl. Physiol. 2006, 96, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Leukel, C.; Gollhofer, A. How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar] [CrossRef] [PubMed]
Pre-Activation | ||||
---|---|---|---|---|
Gastrocnemius @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 1.01 ± 0.58 | 1.18 ± 0.57 | 1.48 ± 0.93 | 3.99 ± 4.44 |
40 cm y,z | 1 | 1.36 ± 0.97 | 1.58 ± 1.44 | 3.86 ± 3.95 |
50 cm w,x | 1.49 ± 0.54 | 1.59 ± 1.04 | 2.08 ± 1.91 | 4.30 ± 4.23 |
60 cm w,x | 1.61 ± 0.98 | 1.73 ± 1.31 | 1.93 ± 1.29 | 4.51 ± 3.29 |
Soleus @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 1.07 ± 0.41 | 1.01 ± 0.60 | 1.05 ± 0.48 | 1.91 ± 0.97 |
40 cm y,z | 1 | 1.12 ± 0.66 | 1.18 ± 0.51 | 2.23 ± 1.04 |
50 cm w,x,z | 1.48 ± 0.50 | 1.44 ± 0.79 | 1.56 ± 0.63 | 2.60 ± 1.23 |
60 cm w,x,y | 1.72 ± 0.63 | 1.98 ± 1.18 | 1.80 ± 0.85 | 3.25 ± 1.65 |
Biceps femoris # | ||||
Wood | PU | Turf | Sand | |
30 cm y,z | 0.84 ± 0.30 | 1.10 ± 0.69 | 1.07 ± 0.52 | 1.64 ± 1.31 |
40 cm y,z | 1 | 1.51 ± 1.46 | 1.23 ± 0.77 | 1.75 ± 1.11 |
50 cm w,x,z | 1.81 ± 1.51 | 2.23 ± 1.84 | 1.86 ± 1.25 | 2.36 ± 1.88 |
60 cm w,x,y | 2.19 ± 1.29 | 3.37 ± 2.81 | 2.41 ± 1.61 | 2.59 ± 1.96 |
Rectus femoris @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 0.76 ± 0.32 | 0.91 ± 0.70 | 1.21 ± 0.56 | 3.27 ± 2.74 |
40 cm y,z | 1 | 1.39 ± 0.85 | 1.49 ± 0.93 | 3.73 ± 3.52 |
50 cm w,x,z | 1.79 ± 0.77 | 2.24 ± 1.45 | 1.90 ± 1.07 | 4.31 ± 3.85 |
60 cm w,x,y | 1.90 ± 0.97 | 3.13 ± 2.41 | 2.39 ± 1.35 | 5.03 ± 3.96 |
Tibialis anterior @,# | ||||
Wood a | PU a,b | Turf a,c | Sand b,c,d | |
30 cm y,z | 0.99 ± 0.54 | 0.71 ± 0.40 | 0.88 ± 0.53 | 2.09 ± 1.10 |
40 cm y,z | 1 | 0.84 ± 0.35 | 1.21 ± 0.66 | 2.44 ± 1.39 |
50 cm w,x | 1.77 ± 0.78 | 1.25 ± 0.77 | 1.71 ± 0.86 | 3.23 ± 2.23 |
60 cm w,x | 1.89 ± 0.65 | 1.69 ± 1.09 | 2.20 ± 1.09 | 3.98 ± 2.46 |
Short Latency Response | ||||
---|---|---|---|---|
Gastrocnemius @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 0.87 ± 0.34 | 0.87 ± 0.32 | 1.07 ± 0.40 | 2.26 ± 1.69 |
40 cmy,z | 1 | 1.10 ± 0.36 | 1.09 ± 0.50 | 2.40 ± 2.02 |
50 cmw,x,z | 1.68 ± 0.48 | 1.48 ± 0.48 | 1.65 ± 0.68 | 2.75 ± 1.98 |
60 cmw,x,y | 2.14 ± 0.76 | 1.97 ± 1.04 | 1.90 ± 0.74 | 3.19 ± 1.85 |
Soleus @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 0.91 ± 0.79 | 0.77 ± 0.36 | 0.91 ± 0.33 | 3.34 ± 3.23 |
40 cm y,z | 1 | 1.38 ± 0.94 | 1.35 ± 0.70 | 3.71 ± 2.92 |
50 cm w,x,z | 1.85 ± 0.46 | 2.33 ± 1.92 | 2.28 ± 1.60 | 5.13 ± 3.86 |
60 cm w,x,y | 2.73 ± 1.75 | 3.82 ± 3.31 | 2.60 ± 1.61 | 6.61 ± 4.14 |
Biceps femoris @,# | ||||
Wood a | PU a | Turf | Sand c,d | |
30 cmx,y,z | 0.93 ± 0.39 | 0.87 ± 0.35 | 1.13 ± 0.49 | 1.79 ± 1.44 |
40 cmw,y,z | 1 | 1.10 ± 0.51 | 1.24 ± 0.69 | 2.34 ± 1.94 |
50 cmw,x,z | 1.81 ± 1.57 | 1.85 ± 0.92 | 2.08 ± 1.03 | 3.64 ± 2.50 |
60 cmw,x,y | 2.49 ± 1.05 | 3.12 ± 2.31 | 3.07 ± 3.01 | 4.49 ± 2.98 |
Rectus femoris @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 0.79 ± 0.61 | 0.93 ± 0.72 | 1.07 ± 0.66 | 6.52 ± 7.38 |
40 cm y,z | 1 | 1.40 ± 0.78 | 1.54 ± 1.10 | 7.39 ± 7.74 |
50 cm w,x,z | 1.94 ± 0.95 | 2.67 ± 2.33 | 2.57 ± 2.09 | 10.06± 9.53 |
60 cm w,x,y | 3.09 ± 2.51 | 4.64 ± 4.19 | 3.04 ± 2.41 | 12.82 ± 10.59 |
Tibialis anterior @,# | ||||
Wood a | PU a | Turf a | Sand b,c,d | |
30 cm y,z | 0.81 ± 0.65 | 0.70 ± 0.30 | 0.92 ± 0.39 | 3.67 ± 4.37 |
40 cm y,z | 1 | 1.16 ± 0.57 | 1.48 ± 0.90 | 3.48 ± 3.08 |
50 cm w,x,z | 2.12 ± 0.63 | 2.29 ± 1.26 | 2.51 ± 1.43 | 4.98 ± 3.29 |
60 cm w,x,y | 3.22 ± 1.74 | 4.05 ± 2.51 | 3.62 ± 2.46 | 6.91 ± 5.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.-T.; Chang, H.-K.; Chen, H.-W.; Huang, T.-I.; Chen, H. Neuromuscular Changes in Drop Jumps on Different Common Material Surfaces with Incremental Drop Heights. Appl. Sci. 2023, 13, 5123. https://doi.org/10.3390/app13085123
Peng H-T, Chang H-K, Chen H-W, Huang T-I, Chen H. Neuromuscular Changes in Drop Jumps on Different Common Material Surfaces with Incremental Drop Heights. Applied Sciences. 2023; 13(8):5123. https://doi.org/10.3390/app13085123
Chicago/Turabian StylePeng, Hsien-Te, Hsiu-Kuang Chang, Hung-Wen Chen, Tsung-I Huang, and Hui Chen. 2023. "Neuromuscular Changes in Drop Jumps on Different Common Material Surfaces with Incremental Drop Heights" Applied Sciences 13, no. 8: 5123. https://doi.org/10.3390/app13085123
APA StylePeng, H.-T., Chang, H.-K., Chen, H.-W., Huang, T.-I., & Chen, H. (2023). Neuromuscular Changes in Drop Jumps on Different Common Material Surfaces with Incremental Drop Heights. Applied Sciences, 13(8), 5123. https://doi.org/10.3390/app13085123