Industrial Roll-to-Roll Printing Register Control Using a Pulse-Width Subdivision Detection Algorithm
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Color Mark Detection and Positioning Model
2.2. Register Control Algorithm Based on Pulse Width Subdivision
2.2.1. Pulse-Width Subdivision Color Mark Positioning Model
2.2.2. Optimized Feedforward Register Control
2.2.3. Analysis of Detection Reliability and Influencing Factors
3. Results
3.1. Establishment of the Register Controller Experimental Platform
3.2. Establishment of Register Controller Experimental Platform
3.3. Industrial Application
4. Discussion
5. Conclusions
- (1)
- We studied the principle of register color mark detection. It was identified that the resolution of the encoder pulse, sensor electrical edge jitter, color mark printing quality and mechanical vibration are the main interference factors that show that the most traditional detection method based on the encoder and photoelectric sensor cannot effectively work.
- (2)
- The proposed pulse-width subdivision detection algorithm can effectively improve the accuracy of register error detection based on the same hardware platform configuration.
- (3)
- Different compensation output intensities can greatly affect execution time; we also found that for all output policy parameters, an optimal value exists for the control speed and stability, but if this is too fast or too slow, the compensation time reduces production efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, C.; Wang, H.S.; Hou, L.W.; Jiang, L.-L. Sliding Mode Compensation Control for Diaphragm Tension in Unwinding Process of Lithium Battery Diaphragm Slitting Machine. IEEE Access 2020, 8, 21302–21313. [Google Scholar] [CrossRef]
- Lee, J.; Byeon, J.; Lee, C. Theories and Control Technologies for Web Handling in the Roll-to-Roll Manufacturing Process. Int. J. Precis. Eng. Manuf. Green Technol. 2020, 7, 525–544. [Google Scholar] [CrossRef]
- Yin, Z.P.; Huang, Y.A.; Bu, N.B.; Wang, X.; Xiong, Y. Inkjet printing for flexible electronics: Materials, processes and equipments. Chin. Sci. Bull. 2010, 55, 3383–3407. [Google Scholar] [CrossRef]
- Hassanin, A.A.I.M.; El-Samie, F.E.A.; Banby, G.M.E. A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations. Multimed. Tools Appl. 2019, 78, 34437–34457. [Google Scholar] [CrossRef]
- Gao, Z.; Bumgardner, C.; Song, N.; Zhang, Y.; Li, J.; Li, X. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat. Commun. 2016, 7, 11586. [Google Scholar] [CrossRef]
- Jeong, J.; Gafurov, A.N.; Park, P.; Kim, I.; Kim, H.-C.; Kang, D.; Oh, D.; Lee, T.-M. Tension Modeling and Precise Tension Control of Roll-to-Roll System for Flexible Electronics. Flex. Print. Electron. 2021, 6, 015005. [Google Scholar] [CrossRef]
- Lee, B.; Kim, Y.; Kim, J.; Park, J.; Kim, H.; Oh, D. Preview control of web position in roll-to-roll printing using alignment patterns. Microsyst. Technol. 2020, 26, 3315–3321. [Google Scholar] [CrossRef]
- Noh, J.; Jo, M.; Jeon, H.; Kim, M.; Jo, J.; Lee, C. Web Wrinkle Defects due to Temperature Profile in Roll-to-Roll Manufacturing Systems. Polymers 2023, 15, 457. [Google Scholar] [CrossRef]
- Kim, S.K.; Ahn, C.K. Decentralized Tension Control with Active-damping Injection for Large-scale Roll-to-Roll Systems. IEEE Syst. J. 2020, 15, 5694–5703. [Google Scholar] [CrossRef]
- Yan, J.Y.; Du, X. Neural-Network-Based Adaptive Model Predictive Control for a Flexure-Based Roll-to-Roll Contact Printing System. IEEE-ASME Trans. Mechatron. 2022, 27, 1083–4435. [Google Scholar] [CrossRef]
- Li, J.; Mei, X.; Tao, T.; Liu, S. Research on the register system modelling and control of gravure printing press. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2012, 226, 626–635. [Google Scholar] [CrossRef]
- Lee, J.; Shin, K.H.; Kang, H. Design of a register controller considering inherent characteristics of a roll-to-roll continuous manufacturing system. Int. J. Adv. Manuf. Technol. 2019, 102, 1433–3015. [Google Scholar] [CrossRef]
- Wei, Y.B.; Hong, Q.Y.; Liang, Z.X. A Simulation Study of Gravure Register System with Active Disturbance Rejection Control. Procedia Comput. Sci. 2020, 166, 222–230. [Google Scholar] [CrossRef]
- Enk, T.; Urban, P.; Dattner, M.; Vomhoff, H.; Heise, A. Influence of paperboard production on web movement and register quality in printing process. J. Print Media Technol. Res. 2020, 9, 103–114. [Google Scholar] [CrossRef]
- Jung, H.; Nguyen, H.; Choi, J.; Yim, H.; Shin, K.-H. High-precision register error control using active-motion-based roller in roll-to-roll gravure printing. Jpn. J. Appl. Phys. 2018, 57, 05GB04. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Zhou, M.; Wong, D.S.-H.; Chen, L.; Deng, Z. Model-based feedforward register control of roll-to-roll web printing systems. Control. Eng. Pract. 2016, 51, 58–68. [Google Scholar] [CrossRef]
- Chen, Z.; He, J.; Zheng, Y.; Song, T.; Deng, Z. An Optimized Feedforward Decoupling PD Register Control Method of Roll-to-Roll Web Printing Systems. IEEE Trans. Autom. Sci. Eng. 2016, 13, 274–283. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C.; Shin, K. Modeling and compensation of the machine directional register in roll-to-roll printing. Control. Eng. Pract. 2013, 21, 645–654. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Zhang, T.; Wong, D.S.-H.; Deng, Z. Modeling and Register Control of the Speed-Up Phase in Roll-to-Roll Printing Systems. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1438–1449. [Google Scholar] [CrossRef]
- Liu, S.; Mei, X.; Li, J.; He, K.; Wen, Q. Design Feedforward Active Disturbance Rejection Control Controller for Multi-color Register System. J. Mech. Eng. 2015, 51, 143–150. [Google Scholar] [CrossRef]
- Lee, J.; Isto, P.; Jeong, H.; Park, J.; Lee, D.; Shin, K.-H. Register mark measurement errors in high-precision roll-to-roll continuous systems: The effect of register mark geometry on measurement error. Appl. Phys. Lett. 2016, 109, 2925. [Google Scholar] [CrossRef]
- Lee, J.; Seong, J.; Park, J.; Park, S.; Lee, D.; Shin, K.-H. Register control algorithm for high resolution multilayer printing in the roll-to-roll process. Mech. Syst. Signal Process. 2015, 60–61, 706–714. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, T.; Zheng, Y.; Wong, D.S.-H.; Deng, Z. Fully Decoupled Control of the Machine Directional Register in Roll-to-Roll Printing System. IEEE Trans. Ind. Electron. 2020, 68, 10007–10018. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Y.; Chen, Z.; Deng, Z. Comparing Three Different Decoupling Control Approaches for Roll-to-Roll Printing Systems. J. Dyn. Syst. Meas. Control 2022, 144, 081005. [Google Scholar] [CrossRef]
- Lee, J.; Shin, K.; Jung, H. Control Scheme for Rapidly Responding Register Controller Using Response Acceleration Input in Industrial Roll-To-Roll Manufacturing Systems. IEEE Trans. Ind. Electron. 2022, 69, 5215–5224. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, J.S.; Kim, H.S.; Choi, J.G. Register Marks Position Measurement System to Numerically Evaluate the Fidelity of Engraved Pattern Position in a Printing Roll. J. Korean Soc. Precis. Eng. 2022, 39, 701–709. [Google Scholar] [CrossRef]
- Lee, J.; Park, S.; Shin, K.-H.; Jung, H. Smearing defects: A root cause of register measurement error in roll-to-roll additive manufacturing system. Int. J. Adv. Manuf. Technol. 2018, 98, 3155–3165. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.; Kim, H.; Kim, J.; Oh, D. Individual Drive Cross-Coupled Torque Control System for Pressure Uniformization in Roll-to-Roll Printing. Trans. Korean Soc. Mech. Eng. A 2021, 45, 1226–4873. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Kim, T.; Lee, B.; Park, J.; Oh, D. Printing pressure uniformization through adaptive feedforward control in roll-to-roll printing process. Microsyst. Technol. 2019, 26, 265–273. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, L.; Xue, B.; Ji, R.; Du, D.; Chang, B. Sag feedback based multi-roll coordinating optimal control of a low-tension roll-to-roll system. J. Manuf. Syst. 2021, 61, 351–364. [Google Scholar] [CrossRef]
- Huang, P.-Y.; Cheng, M.-Y.; Su, K.-H.; Kuo, W.-L. Control of roll-to-roll manufacturing based on sensorless tension estimation and disturbance compensation. J. Chin. Inst. Eng. 2021, 44, 89–103. [Google Scholar] [CrossRef]
- Kang, H.; Lee, C.; Shin, K. A novel cross directional register modeling and feedforward control in multi-layer roll-to-roll printing. J. Process. Control. 2010, 20, 643–652. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Y.; Chen, Z.; Deng, Z. A Direct-Decoupling Closed-Loop Control Method for Roll-to-Roll Web Printing Systems. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1367–1379. [Google Scholar] [CrossRef]
- Chen, L.; Sun, H.; Jia, Q.; Zhang, Y.; Cao, S.; Zhao, W.; Yu, T. Research on the Intelligent Recognition System of Printing Roller Surface Defects Based on Machine Vision. J. Phys. Conf. Ser. 2020, 1518, 012058. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, F.; Ruan, S. Identification and Detection of Surface Defects of Outer Package Printed Matter Based on Machine Vision. J. Korea TAPPI 2020, 52, 3–11. [Google Scholar] [CrossRef]
- Shi, H.; Yu, W.Y. Research on machine vision based register control system used in chromatic printing machine. Comput. Eng. Appl. 2011, 47, 242–244. [Google Scholar]
- Fan, L.N.; Zhou, S.S.; Jiang, L. Research of Register Error Detection Method Based on Machine Vision. Packag. Eng. 2011, 32, 74–76. [Google Scholar]
- Chen, Y.; He, P.; Gao, M.; Zhang, E. Automatic Feature Region Searching Algorithm for Image Registration in Printing Defect Inspection Systems. Appl. Sci. 2019, 9, 4838. [Google Scholar] [CrossRef]
- Lee, C.H.; Huang, H.J.; Chang, J.P.; Chen, Y.-C. Incremental Optical Encoder Based on a Sinusoidal Transmissive Pattern. IEEE Photonics J. 2021, 14, 1–6. [Google Scholar] [CrossRef]
- Gutierrez, Y.V.; O’Sullivan, D.L.; Kavanagh, R.C. Small-Signal Modeling of the Incremental Optical Encoder for Motor Control. IEEE Trans. Ind. Electron. 2020, 67, 3452–3461. [Google Scholar] [CrossRef]
Resolution | 1024 | 2048 | 3600 | 4096 | 5000 | 8192 | 10,000 | 20,000 | 40,000 | Circumference (mm) |
---|---|---|---|---|---|---|---|---|---|---|
Accuracy (mm) | 0.39 | 0.195 | 0.111 | 0.097 | 0.08 | 0.049 | 0.04 | 0.02 | 0.01 | 400 |
0.488 | 0.244 | 0.139 | 0.122 | 0.1 | 0.061 | 0.05 | 0.025 | 0.012 | 500 | |
0.585 | 0.292 | 0.166 | 0.146 | 0.12 | 0.073 | 0.06 | 0.03 | 0.015 | 600 | |
0.683 | 0.342 | 0.194 | 0.171 | 0.14 | 0.085 | 0.07 | 0.035 | 0.017 | 700 | |
0.781 | 0.39 | 0.222 | 0.868 | 0.16 | 0.097 | 0.08 | 0.04 | 0.02 | 800 |
Periods | MFPD | Periods | Well-Tuned PD | Periods | Traditional | Proposed | ||
---|---|---|---|---|---|---|---|---|
2 | −0.05 | 0.19 | 1 | −0.04 | −0.07 | 5 | 0.03 | 0.05 |
7 | −0.07 | 0.10 | 6 | 0.10 | −0.05 | 6 | 0.11 | 0.02 |
12 | 0.03 | 0.16 | 13 | 0.13 | 0.05 | 7 | 0.08 | −0.01 |
17 | 0.19 | 0.24 | 20 | 0.22 | 0.15 | 11 | 0.08 | 0.01 |
22 | 0.08 | 0.08 | 27 | 0.12 | 0.05 | 13 | 0.11 | 0.04 |
27 | −0.01 | −0.03 | 34 | 0.02 | 0.06 | 14 | 0.12 | −0.01 |
32 | −0.08 | −0.13 | 40 | −0.06 | −0.04 | 15 | −0.02 | 0.05 |
37 | −0.22 | −0.15 | 47 | −0.08 | −0.06 | 17 | −0.12 | −0.01 |
42 | −0.15 | −0.07 | 53 | −0.02 | −0.16 | 20 | −0.08 | −0.02 |
47 | 0.07 | −0.15 | 60 | 0.06 | −0.15 | 21 | 0.03 | −0.01 |
52 | 0.10 | −0.14 | 67 | 0.10 | −0.12 | 23 | −0.08 | 0 |
57 | 0.16 | −0.04 | 74 | −0.02 | −0.09 | 26 | −0.05 | 0 |
62 | 0.20 | 0.02 | 82 | −0.14 | −0.13 | 28 | −0.08 | 0.02 |
67 | 0.16 | 0.04 | 90 | −0.03 | −0.01 | 30 | −0.02 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Chen, Y.; Xie, J.; Chen, B. Industrial Roll-to-Roll Printing Register Control Using a Pulse-Width Subdivision Detection Algorithm. Appl. Sci. 2023, 13, 5307. https://doi.org/10.3390/app13095307
Liu B, Chen Y, Xie J, Chen B. Industrial Roll-to-Roll Printing Register Control Using a Pulse-Width Subdivision Detection Algorithm. Applied Sciences. 2023; 13(9):5307. https://doi.org/10.3390/app13095307
Chicago/Turabian StyleLiu, Bangchao, Youping Chen, Jingming Xie, and Bing Chen. 2023. "Industrial Roll-to-Roll Printing Register Control Using a Pulse-Width Subdivision Detection Algorithm" Applied Sciences 13, no. 9: 5307. https://doi.org/10.3390/app13095307
APA StyleLiu, B., Chen, Y., Xie, J., & Chen, B. (2023). Industrial Roll-to-Roll Printing Register Control Using a Pulse-Width Subdivision Detection Algorithm. Applied Sciences, 13(9), 5307. https://doi.org/10.3390/app13095307