Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus alvarezii) on the Physicochemical Properties of Chicken Patties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Seaweed Powder
2.2. Preparation of Chicken Patty
2.3. Texture Profile Analysis
2.4. Colour Analysis
2.5. pH Determination
2.6. Water Activity
2.7. Water Holding Capacity
2.8. Cooking Loss
2.9. Shrinkage in Diameter and Thickness
2.10. Rheological Properties
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Texture Profile Analysis
3.2. Cooking Loss, Water Holding Capacity, and pH of Patty
3.3. Colour Evaluation
3.4. Water Activity
3.5. Shrinkage of Diameter and Thickness of Chicken Patty
3.6. Dynamic Rheological Properties of Chicken Patty
3.7. Sensory Evaluation of Low-Salt Chicken Patty with Seaweed
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 21, 1–18. [Google Scholar] [CrossRef]
- Gullón, P.; Astray, G.; Gullón, B.; Franco, D.; Campagnol, P.C.B.; Lorenzo, J.M. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr. Opin. Food Sci. 2021, 40, 20–25. [Google Scholar] [CrossRef]
- Jo, K.; Lee, J.; Jung, S. Quality characteristics of low-salt chicken sausage supplemented with a winter mushroom powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 769. [Google Scholar] [CrossRef]
- Kameník, J.; Saláková, A.; Vyskočilová, V.; Pechová, A.; Haruštiaková, D. Salt, sodium chloride or sodium? Content and relationship with chemical, instrumental and sensory attributes in cooked meat products. Meat Sci. 2017, 131, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Vestergaard, C.; Koch, A.G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami. Meat Sci. 2014, 96, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.D.A. The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem. 2020, 306, 125622. [Google Scholar] [CrossRef]
- Kloss, L.; Meyer, J.D.; Graeve, L.; Vetter, W. Sodium intake and its reduction by food reformulation in the European Union—A review. NFS J. 2015, 1, 9–19. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- O’Flynn, C.C.; Cruz-Romero, M.C.; Troy, D.; Mullen, A.M.; Kerry, J.P. The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages. Meat Sci. 2014, 96, 1266–1274. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, L.; Li, J.; Tu, J.; Wang, Z. Effects of partial replacement of NaCl with KCl on bacterial communities and physicochemical characteristics of typical Chinese bacon. Food Mircobiol. 2021, 93, 103605. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res. 2020, 48, 101909. [Google Scholar] [CrossRef]
- Capillo, G.; Savoca, S.; Costa, R.; Sanfilippo, M.; Rizzo, C.; Lo Giudice, A.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Spanò, N.; et al. New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar. Drugs 2018, 16, 492. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, J.D.S.; Lazaro-Llanos, N. Mineral availability, dietary fiber contents, and short-chain fatty acid fermentation products of Caulerpa lentillifera and Kappaphycus alvarezii seaweeds. Kimika 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.; Franco, D.; Carballo, J.; Şahin, S.; Barba, F.J. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcate. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Razali, S.M.; Rozaiman, N.M.; Laizani, A.N.; Zawawi, N. Application of seaweed (Kappaphycus alvarezii) in Malaysian food products. Int. Food Res. J. 2019, 26, 1677–1687. [Google Scholar]
- Cox, S.; Abu-Ghannam, N.; Gupta, S. Effect of processing conditions on phytochemical constituents of edible Irish seaweed Himanthalia elongate. J. Food Process. Preserv. 2012, 36, 348–363. [Google Scholar] [CrossRef]
- Mutiarahma, S.; Putra, V.G.; Chaniago, W.; Carrera, C.; Anggrahini, S.; Palma, M.; Setyaningsih, W. UV-Vis Spectrophotometry and UPLC–PDA Combined with Multivariate Calibration for Kappaphycus alvarezii (Doty) Doty ex Silva Standardization Based on Phenolic Compounds. Sci. Pharm. 2021, 89, 47. [Google Scholar] [CrossRef]
- Araújo, P.G.; Nardelli, A.E.; Fujii, M.T.; Chow, F. Antioxidant properties of different strains of Kappaphycus alvarezii (Rhodophyta) farmed on the Brazilian coast. Phycologia 2020, 59, 272–279. [Google Scholar] [CrossRef]
- Munsu, E.; Mohd Zaini, H.; Matanjun, P.; Ab Wahab, N.; Sulaiman, N.S.; Pindi, W. Physicochemical, sensory properties and lipid oxidation of chicken sausages supplemented with three types of seaweed. Appl. Sci. 2021, 11, 11347. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M.; O’Grady, M.N.; Kilcawley, K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef] [PubMed]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 2009, 21, 75–80. [Google Scholar] [CrossRef]
- Pindi, W.; Mah, H.W.; Munsu, E.; Ab Wahab, N. Effects of addition of Kappaphycus alvarezii on physicochemical properties and lipid oxidation of mechanically deboned chicken meat (MDCM) sausages. Br. Food J. 2017, 119, 2229–2239. [Google Scholar] [CrossRef]
- Wan Rosli, W.I.; Solihah, M.A.; Aishah, M.; Nik Fakurudin, N.A.; Mohsin, S.S.J. Colour, textural properties, cooking characteristics and fibre content of chicken patty added with oyster mushroom (Pleurotus sajor-caju). Int. Food Res. J. 2011, 18, 621–627. [Google Scholar]
- Kumari, A.; Mane, B.G.; Thakur, D.; Khurana, S.K. Effect of incorporation of Lungru (Diplazium esculentum) on physicochemical, microbiological and sensory quality of chicken patties. J. Meat Sci. Technol. 2015, 3, 28–31. [Google Scholar]
- Cegiełka, A.; Gniewosz, M.; Hać-Szymańczuk, E.; Chlebowska-Śmigiel, A. Effect of the addition of pullulan on the quality of low-fat homogenized scalded sausages. CYTA J. Food 2017, 15, 147–154. [Google Scholar] [CrossRef]
- Serdaroglu, M.; Ozsumer, M.S. Effects of soy protein, whey powder and wheat gluten on quality characteristics of cooked beef sausages formulated with 5, 10 and 20% fat. Electron. J. Pol. Agric. Univ. 2003, 6, 3. [Google Scholar]
- Huo, M.; Guo, Y. Electric field enhances shear resistance of polymer melts via orientational polarization in microstructures. Polymers 2020, 12, 335. [Google Scholar] [CrossRef]
- Lis, A.; Staniewski, B.; Ziajka, J. A comparison of butter texture measurements with the AP 4/2 penetrometer and TA. XT. Plus texture analyzer. Int. J. Food Prop. 2021, 24, 1744–1757. [Google Scholar] [CrossRef]
- Cofrades, S.; Benedıí, J.; Garcimartin, A.; Sánchez-Muniz, F.J.; Jimenez-Colmenero, F. A comprehensive approach to formulation of seaweed-enriched meat products: From technological development to assessment of healthy properties. Food Res. Int. 2017, 99, 1084–1094. [Google Scholar] [CrossRef]
- Barretto, A.C.d.S.; Pacheco, M.T.B.; Pollonio, M.A.R. Effect of the addition of wheat fiber and partial pork back fat on the chemical composition, texture and sensory property of low-fat bologna sausage containing inulin and oat fiber. Food Sci. Technol. 2015, 35, 100–107. [Google Scholar] [CrossRef]
- Ventanas, S.; Puolanne, E.; Tuorila, H. Temporal changes of flavour and texture in cooked bologna type sausages as affected by fat and salt content. Meat Sci. 2010, 85, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Cheung, P.C. Nutritional evaluation of some subtropical red and green seaweeds: Part I-proximate composition, amino acid profiles and some physicochemical properties. Food Chem. 2000, 71, 475–482. [Google Scholar] [CrossRef]
- Cox, S.; Abu-Ghannam, N. Enhancement of the phytochemical and fibre content of beef patties with Himanthalia elongata seaweed. Int. J. Food Sci. Technol. 2013, 48, 2239–2249. [Google Scholar] [CrossRef]
- Debrecéni, O.; Lípová, P.; Bučko, O.; Cebulska, A.; Kapelánski, W. Effect of pig genotypes from Slovak and Polish breeds on meat quality. Arch. Anim. Breed. 2018, 61, 99–107. [Google Scholar] [CrossRef]
- Ferrini, G.; Comaposada, J.; Arnau, J.; Gou, P. Colour modification in a cured meat model dried by Quick-Dry-Slice process and high pressure processed as a function of NaCl, KCl, K-lactate and water contents. Innov. Food Sci. Emerg. Technol. 2012, 13, 69–74. [Google Scholar] [CrossRef]
- Aleson-Carbonell, L.; Fernandez-Lopez, J.; Perez-Alvarez, J.A.; Kuri, V. Functional and sensory effects of fibre-rich ingredients on breakfast fresh sausages manufacture. Food Sci. Technol. Int. 2005, 11, 89–97. [Google Scholar] [CrossRef]
- Zhong, H.; Gao, X.; Cheng, C.; Liu, C.; Wang, Q.; Han, X. The structural characteristics of seaweed polysaccharides and their application in gel drug delivery systems. Mar. Drugs 2020, 18, 658. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Kim, H.W.; Lee, M.A.; Chung, H.J.; Kim, C.J. Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat Sci. 2012, 91, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Kumar, V.; Bhosle, S.; Sahoo, J.; Chatli, M.K. Dietary fibers as functional ingredients in meat products and their role in human health. Int. J. Livest. Prod. 2011, 2, 45–54. [Google Scholar]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food. Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Jury, V.; de Lamballerie, M.; Duranton, F.; Pottier, L.; Martin, J.L. Salt intake from processed meat products: Benefits, risks and evolving practices. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1453–1473. [Google Scholar] [CrossRef] [PubMed]
- Leandro, A.; Pereira, L.; Gonçalves, A.M. Diverse applications of marine macroalgae. Mar. Drugs 2019, 18, 17. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Lim, S.T.; Kim, C.J. The quality characteristics of salted ground pork patties containing various fat levels by microwave cooking. Korean J. Food Sci. Anim. Resour. 2016, 36, 538. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.D.; Holley, R.A. Factors influencing gel formation by myofibrillar proteins in muscle foods. Compr. Rev. Food Sci. Food Saf. 2011, 10, 33–51. [Google Scholar] [CrossRef]
- Babji, A.S.; Ramachandran, R.; Ismail, N.H. Effects of Addition of Seaweed (Kappaphycus alvarezii), Fish Gelatin and Chicken Feet Gelatin on the Quality Characteristics of Chicken Sausages. In Proceedings of the International Seminar on Tropical Animal Production (ISTAP), Yogyakarta, Indonesia, 12–14 September 2017; pp. 414–418. [Google Scholar]
Ingredients | Formulation (%) | ||||
---|---|---|---|---|---|
Control | F1 | F2 | F3 | F4 | |
Chicken breast | 65.0 | 65.0 | 65.0 | 65.0 | 65.0 |
Seaweed | 0 | 2 | 2 | 4 | 4 |
Ice water | 25.0 | 23.5 | 23.0 | 21.5 | 21.0 |
Potato starch | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Salt | 1.5 | 1.0 | 1.5 | 1.0 | 1.5 |
Sugar | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Black pepper | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
White pepper | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Garlic | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Total | 100 | 100 | 100 | 100 | 100 |
Formulation | Hardness (N) | Chewiness (N) | Cohesiveness | Elasticity (mJ) |
---|---|---|---|---|
Control (C) | 1.32 ± 0.06 d | 1.06 ± 0.02 b | 0.76 ± 0.02 c | 0.93 ± 0.01 b |
F1 (2KA, 1.0S) | 1.81 ± 0.18 c | 1.41 ± 0.02 b | 0.78 ± 0.01 bc | 0.95 ± 0.03 ab |
F2 (2KA, 1.5S) | 2.44 ± 0.07 b | 1.98 ± 0.18 a | 0.79 ± 0.02 bc | 0.96 ± 0.02 ab |
F3 (4KA, 1.0S) | 2.62 ± 0.08 ab | 2.01 ± 0.18 a | 0.82 ± 0.03 ab | 0.98 ± 0.03 ab |
F4 (4KA, 1.5S) | 2.86 ± 0.18 a | 2.20 ± 0.30 a | 0.86 ± 0.01 a | 1.01 ± 0.03 a |
Formulation | Cooking Loss (%) | Extracted Water (%) | pH |
---|---|---|---|
Control (C) | 16.85 ± 0.01 a | 12.60 ± 0.66 a | 5.47 ± 0.10 c |
F1 (2KA, 1.0S) | 15.19 ± 0.03 b | 11.26 ± 1.01 ab | 5.64 ± 0.20 bc |
F2 (2KA, 1.5S) | 12.37 ± 0.02 c | 10.03 ± 0.31 bc | 5.92 ± 0.02 ab |
F3 (4KA, 1.0S) | 10.38 ± 0.04 d | 8.50 ± 0.50 cd | 6.05 ± 0.02 a |
F4 (4KA, 1.5S) | 10.02 ± 0.02 e | 8.25 ± 0.23 d | 6.06 ± 0.08 a |
Formulation | L* | a* | b* |
---|---|---|---|
Control (C) | 54.37 ± 0.98 a | 3.69 ± 0.19 c | 19.17 ± 0.91 a |
F1 (2KA, 1.0S) | 52.20 ± 1.93 ab | 3.74 ± 0.19 c | 15.52 ± 0.34 b |
F2 (2KA, 1.5S) | 50.45 ± 6.40 ab | 4.15 ± 0.55 bc | 18.45 ± 0.41 ab |
F3 (4KA, 1.0S) | 47.99 ± 1.37 ab | 4.51 ± 0.13 ab | 17.91 ± 1.18 b |
F4 (4KA, 1.5S) | 44.80 ± 0.68 b | 5.06 ± 0.10 a | 17.44 ± 1.73 b |
Formulation | Water Activity |
---|---|
Control (C) | 0.947 ± 0.00 a |
F1 (2KA, 1.0S) | 0.940 ± 0.01 ab |
F2 (2KA, 1.5S) | 0.936 ± 0.00 ab |
F3 (4KA, 1.0S) | 0.933 ± 0.01 ab |
F4 (4KA, 1.5S) | 0.920 ± 0.00 b |
Formulation | Shrinkage of Diameter (%) | Shrinkage of Thickness (%) |
---|---|---|
Control (C) | 31.33 ± 3.21 a | 53.00 ± 3.61 a |
F1 (2KA, 1.0S) | 18.00 ± 3.46 ab | 36.67 ± 11.55 a |
F2 (2KA, 1.5S) | 14.67 ± 1.53 c | 26.67 ± 15.28 ab |
F3 (4KA, 1.0S) | 13.33 ± 1.53 c | 20.67 ± 9.29 ab |
F4 (4KA, 1.5S) | 6.33 ± 3.51 d | 15.33 ± 6.11 b |
Formulation | Strain Oscillation Test | |
---|---|---|
G′ (kPa) | G″ (kPa) | |
Control (C) | 4.76 ± 0.40 a | 1.48 ± 0.05 a |
F1 (2KA, 1.0S) | 7.23 ± 0.98 a | 2.09 ± 0.42 a |
F2 (2KA, 1.5S) | 7.27 ± 1.51 a | 2.30 ± 0.51 a |
F3 (4KA, 1.0S) | 12.87 ± 1.21 b | 4.84 ± 4.41 a |
F4 (4KA, 1.5S) | 17.24 ± 0.49 c | 4.50 ± 3.37 a |
Formulation | Sensory Attributes | |||||
---|---|---|---|---|---|---|
Colour | Aroma | Hardness | Elasticity | Juiciness | Overall Acceptance | |
Control (C) | 4.70 ± 1.58 a | 5.60 ± 1.40 a | 3.97 ± 1.27 a | 4.03 ± 1.54 a | 5.37 ± 1.43 a | 4.33 ± 1.37 a |
F1 (2KA, 1.0S) | 4.97 ± 1.10 ab | 5.03 ± 1.35 a | 4.50 ± 1.11 ab | 4.43 ± 1.17 a | 5.13 ± 1.41 ab | 4.40 ± 1.28 a |
F2 (2KA, 1.5S) | 5.10 ± 1.03 abc | 5.00 ± 1.31 a | 5.20 ± 1.24 b | 4.60 ± 1.59 ab | 4.60 ± 1.04 ab | 4.70 ± 0.88 ab |
F3 (4KA, 1.0S) | 5.60 ± 1.07 bc | 4.83 ± 1.18 a | 5.30 ± 1.06 bc | 5.50 ± 1.20 bc | 4.40 ± 1.19 b | 5.27 ± 0.94 b |
F4 (4KA, 1.5S) | 5.87 ± 0.97 c | 4.73 ± 1.66 a | 6.03 ± 1.13 c | 5.67 ± 1.24 c | 4.33 ± 1.42 b | 6.10 ± 1.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pindi, W.; Qin, L.W.; Sulaiman, N.S.; Mohd Zaini, H.; Munsu, E.; Wahab, N.A.; Mohd Noor, N.Q.I. Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus alvarezii) on the Physicochemical Properties of Chicken Patties. Appl. Sci. 2023, 13, 5447. https://doi.org/10.3390/app13095447
Pindi W, Qin LW, Sulaiman NS, Mohd Zaini H, Munsu E, Wahab NA, Mohd Noor NQI. Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus alvarezii) on the Physicochemical Properties of Chicken Patties. Applied Sciences. 2023; 13(9):5447. https://doi.org/10.3390/app13095447
Chicago/Turabian StylePindi, Wolyna, Lim Wei Qin, Nurul Shaeera Sulaiman, Hana Mohd Zaini, Elisha Munsu, Noorakmar Ab Wahab, and Nor Qhairul Izreen Mohd Noor. 2023. "Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus alvarezii) on the Physicochemical Properties of Chicken Patties" Applied Sciences 13, no. 9: 5447. https://doi.org/10.3390/app13095447
APA StylePindi, W., Qin, L. W., Sulaiman, N. S., Mohd Zaini, H., Munsu, E., Wahab, N. A., & Mohd Noor, N. Q. I. (2023). Effects of Salt Reduction and the Inclusion of Seaweed (Kappaphycus alvarezii) on the Physicochemical Properties of Chicken Patties. Applied Sciences, 13(9), 5447. https://doi.org/10.3390/app13095447