Does Power Output at Critical Power Intensity Interchange between Cycling and Running?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Anthropometry
2.4. Running: Stryd CP Test
2.5. Cycling: 3-min All-Out Test
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carey, D.G.; Tofte, C.; Pliego, G.J.; Raymond, R.L. Transferability of Running and Cycling Training Zones in Triathletes: Implications for Steady-State Exercise. J. Strength Cond. Res. 2009, 23, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.; Candau, R.; Barbier, B.; Busso, T.; Rouillon, J.; Chatard, J. Modelling the Transfers of Training Effects on Performance in Elite Triathletes. Int. J. Sports Med. 2002, 23, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Bentley, D.; Libicz, S.; Jougla, A.; Coste, O.; Manetta, J.; Chamari, K.; Millet, G. The Effects of Exercise Intensity or Drafting during Swimming on Subsequent Cycling Performance in Triathletes. J. Sci. Med. Sport 2007, 10, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Chollet, D.; Hue, O.; Auclair, F.; Millet, G.; Chatard, J.C. The Effects of Drafting on Stroking in Elite Male Triathletes. Eur. J. Appl. Physiol. 2000, 82, 413–417. [Google Scholar] [CrossRef]
- Gray, G.L.; Matheson, G.O.; McKenzie, D.C. The Metabolic Cost of Two Kayaking Techniques. Int. J. Sports Med. 1995, 16, 250–254. [Google Scholar] [CrossRef]
- Piacentini, M.; Bianchini, L.; Minganti, C.; Sias, M.; di Castro, A.; Vleck, V. Is the Bike Segment of Modern Olympic Triathlon More a Transition towards Running in Males than It Is in Females? Sports 2019, 7, 76. [Google Scholar] [CrossRef]
- Landers, G.J.; Blanksby, B.A.; Ackland, T.R.; Smith, D. Morphology and Performance of World Championship Triathletes. Ann. Hum. Biol. 2000, 27, 387–400. [Google Scholar] [CrossRef]
- Van Schuylenbergh, R.; vanden Eynde, B.; Hespel, P. Prediction of Sprint Triathlon Performance from Laboratory Tests. Eur. J. Appl. Physiol. 2004, 91, 94–99. [Google Scholar] [CrossRef]
- Jeukendrup, A.; Van Diemen, A. Heart Rate Monitoring during Training and Competition in Cyclists. J. Sports Sci. 1998, 16, 91–99. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J.; Fernández-Sáez, J.; Østerlie, O.; Ferriz-Valero, A. Contribution of Segments to Overall Result in Elite Triathletes: Sprint Distance. Int. J. Environ. Res. Public Health 2021, 18, 842. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J.; Fernández-Sáez, J.; Østerlie, O.; Ferriz-Valero, A. Concordance Analysis between the Segments and the Overall Performance in Olympic Triathlon in Elite Triathletes. Biology 2022, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.; Coggan, A. Training and Racing with a Power Meter; VeloPress, Ed.; VeloPress: Boulder, CO, USA, 2012; ISBN 9781934030554. [Google Scholar]
- Van Dijk, H.; Van Megen, R. The Secret of Running: Maximum Performance Gains through Effective Power Metering and Training Analysis; Meyer & Meyer Sport: Aachen, Germany, 2017; ISBN 97812551096. [Google Scholar]
- Vance, J. Run with Power: The Complete Guide to Power Meters for Running; VeloPress: Boulder, CO, USA, 2016. [Google Scholar]
- Olaya-Cuartero, J.; Sellés-Pérez, S.; Ferriz-Valero, A.; Cejuela-Anta, R. A Comparison between Different Tests for Functional Threshold Power Determination in Running. J. Phys. Educ. Hum. Mov. 2019, 1, 4–15. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Jones, A.M.; Burnley, M. Application of Critical Power in Sport. Int. J. Sport. Physiol. Perform. 2011, 6, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.S.M.; Jones, A.M. Maximal Lactate Steady State, Critical Power and EMG during Cycling. Eur. J. Appl. Physiol. 2002, 88, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Hughson, R.L.; Orok, C.J.; Staudt, L.E. A High Velocity Treadmill Running Test to Assess Endurance Running Potential. Int. J. Sports Med. 1984, 5, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Alias, S.A.; Olaya-Cuartero, J.; Ñancupil-Andrade, A.A.; García-Pinillos, F. 9/3-Minute Running Critical Power Test: Mechanical Threshold Location With Respect to Ventilatory Thresholds and Maximum Oxygen Uptake. Int. J. Sports Physiol. Perform. 2022, 17, 1111–1118. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Lee, J.B.; Sutter, K.J.; Askew, C.D.; Burkett, B.J. Identifying Symmetry in Running Gait Using a Single Inertial Sensor. J. Sci. Med. Sport 2010, 13, 559–563. [Google Scholar] [CrossRef]
- Withers, R.T.; Craig, N.P.; Bourdon, P.C.; Norton, K.I. Relative Body Fat and Anthropometric Prediction of Body Density of Male Athletes. Eur. J. Appl. Physiol. 1987, 56, 191–200. [Google Scholar] [CrossRef]
- Ross, W.D.; Marfell-Jones, M.J. Kinanthropometry. In Physiological Testing of the High-Performance Athlete; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- Flamme, G.A.; Williams, N. Sports Officials’ Hearing Status: Whistle Use as a Factor Contributing to Hearing Trouble. J. Occup. Environ. Hyg. 2013, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Doust, J.H.; Burnley, M. Determination of Critical Power Using a 3-Min All-out Cycling Test. Med. Sci. Sports Exerc. 2007, 39, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Moya Ramon, M.; Javaloyes Torres, A.; Sarabia, J.M. Hayes & Quinn’s TRIMP Concurrent Validity for Cycling. J. Sci. Cycl. 2018, 7, 17–23. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Abingdon, UK, 1988; ISBN 0805802835. [Google Scholar]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting; Oxfor Unversity Press: Oxford, UK, 2003. [Google Scholar]
- De Lucas, R.D.; De Souza, K.M.; Costa, V.P.; Grossl, T.; Guglielmo, L.G.A. Time to Exhaustion at and above Critical Power in Trained Cyclists: The Relationship between Heavy and Severe Intensity Domains. Sci. Sports 2013, 28, e9–e14. [Google Scholar] [CrossRef]
- Karsten, B.; Petrigna, L.; Klose, A.; Bianco, A.; Townsend, N.; Triska, C. Relationship between the Critical Power Test and a 20-Min Functional Threshold Power Test in Cycling. Front. Physiol. 2021, 11, 613151. [Google Scholar] [CrossRef]
- Mcgrath, E.; Mahony, N.; Fleming, N.; Raleigh, C.; Donne, B. Do Critical and Functional Threshold Powers Equate in Highly-Trained Athletes? Int. J. Exerc. Sci. 2021, 14, 45. [Google Scholar]
- Passfield, L.; Hopker, J.G.; Jobson, S.; Friel, D.; Zabala, M. Knowledge Is Power: Issues of Measuring Training and Performance in Cycling. J. Sports Sci. 2017, 35, 1426–1434. [Google Scholar] [CrossRef]
- Stevenson, J.D.; Kilding, A.E.; Plews, D.J.; Maunder, E. Prolonged Cycling Reduces Power Output at the Moderate-to-Heavy Intensity Transition. Eur. J. Appl. Physiol. 2022, 122, 2673–2682. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J. Análisis Del Rendimiento Del Segmento de Carrera a Pie En Triatlón Mediante La Potencia y La Técnica; University of Alicante: Alicante, Spain, 2019. [Google Scholar]
- Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cartón-Llorente, A.; Ramírez-Campillo, R.; García-Pinillos, F. Mechanical Power in Endurance Running: A Scoping Review on Sensors for Power Output Estimation during Running. Sensors 2020, 20, 6482. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J.; Cejuela, R. Contextualisation of Running Power: A Systematic Review. J. Phys. Educ. Sport 2020, 20, 2044–2051. [Google Scholar] [CrossRef]
- Cerezuela-Espejo, V.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Mora-Rodríguez, R.; Pallarés, J.G. Are We Ready to Measure Running Power? Repeatability and Concurrent Validity of Five Commercial Technologies. Eur. J. Sport Sci. 2021, 21, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Jauregi, A.; Garcia-Tabar, I.; Carrier, B.; Navalta, J.W.; Cámara, J. Reliability and Validity of the Stryd Power Meter during Different Walking Conditions. Gait Posture 2022, 92, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Radzak, K.; Manning, J.W.; Debeliso, M. Reliability of Trail Walking and Running Tasks Using the Stryd Power Meter. Int. J. Sports Med. 2019, 40, 498–502. [Google Scholar] [CrossRef]
- Aubry, R.L.; Power, G.A.; Burr, J.F. An Assessment of Running Power as a Training Metric for Elite and Recreational Runners. J. Strength Cond. Res. 2018, 32, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Cartón-Llorente, A.; Roche-Seruendo, L.E.; Mainer-Pardos, E.; Nobari, H.; Rubio-Peirotén, A.; Jaén-Carrillo, D.; García-Pinillos, F. Acute Effects of a 60-Min Time Trial on Power-Related Parameters in Trained Endurance Runners. BMC Sports Sci. Med. Rehabil. 2022, 14, 142. [Google Scholar] [CrossRef]
- Olaya-Cuartero, J.; Cejuela, R. Influence of Biomechanical Parameters on Performance in Elite Triathletes along 29 Weeks of Training. Appl. Sci. 2021, 11, 1050. [Google Scholar] [CrossRef]
- Albiach, J.P.; Mir-Jimenez, M.; Moreno, V.H.; Moltó, I.N.; Martínez-Gramage, J. The Relationship between VO2 Max, Power Management, and Increased Running Speed: Towards Gait Pattern Recognition through Clustering Analysis. Sensors 2021, 21, 2422. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Soto-Hermoso, V.M.; Latorre-Román, P.; Párraga-Montilla, J.A.; Roche-Seruendo, L.E. How Does Power during Running Change When Measured at Different Time Intervals? Int. J. Sports Med. 2019, 40, 609–613. [Google Scholar] [CrossRef]
- Taboga, P.; Giovanelli, N.; Spinazzè, E.; Cuzzolin, F.; Fedele, G.; Zanuso, S.; Lazzer, S. Running Power: Lab Based vs. Portable Devices Measurements and Its Relationship with Aerobic Power. Eur. J. Sport Sci. 2021, 22, 1555–1568. [Google Scholar] [CrossRef]
- Cardona, C.; Cejuela, R.; Esteve-Lanao, J. Manual Para Entrenar Deportes de Resistencia; All In Your Mind (AIYM): Guadalajara, Mexico, 2019; ISBN 9781074568122. [Google Scholar]
- Basset, F.A.; Boulay, M.R. Specificity of Treadmill and Cycle Ergometer Tests in Triathletes, Runners and Cyclists. Eur. J. Appl. Physiol. 2000, 81, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.W. The Critical Power Concept A Review. Sports Med. 1993, 16, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Gorostiaga, E.M.; Sánchez-Medina, L.; Garcia-Tabar, I. Over 55 Years of Critical Power: Fact or Artifact? Scand. J. Med. Sci. Sports 2022, 32, 116–124. [Google Scholar] [CrossRef] [PubMed]
Mean (M) | Standard Deviation (SD) | |
---|---|---|
Age (years) | 33.0 | 11.1 |
Body Mass (kg) | 71.2 | 7.1 |
Body Height (m) | 1.75 | 0.06 |
∑ 8 skinfolds (mm) | 71.9 | 22.9 |
Muscle Mass (kg) [22] | 32.2 | 2.8 |
Fat Mass (kg) [23] | 7.56 | 3.16 |
Fat Mass (%) [23] | 10.5 | 3.4 |
9-Min Effort | 3-Min Effort | ||
---|---|---|---|
Distance (km) | 2.52 ± 0.21 | 0.93 ± 0.08 | |
Absolute Power (W) | 313.9 ± 35.5 | 332.3 ± 40.3 | |
Relative Power (W/kg) | 4.40 ± 0.40 | 4.66 ± 0.52 | |
% Critical Power | 104.01 ± 11.75 | 110.11 ± 13.36 | |
Critical Power (W) | 301.8 ± 41.5 | ||
Critical Power (W/kg) | 4.23 ± 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaya-Cuartero, J.; Pueo, B.; Penichet-Tomas, A.; Villalon-Gasch, L. Does Power Output at Critical Power Intensity Interchange between Cycling and Running? Appl. Sci. 2023, 13, 5511. https://doi.org/10.3390/app13095511
Olaya-Cuartero J, Pueo B, Penichet-Tomas A, Villalon-Gasch L. Does Power Output at Critical Power Intensity Interchange between Cycling and Running? Applied Sciences. 2023; 13(9):5511. https://doi.org/10.3390/app13095511
Chicago/Turabian StyleOlaya-Cuartero, Javier, Basilio Pueo, Alfonso Penichet-Tomas, and Lamberto Villalon-Gasch. 2023. "Does Power Output at Critical Power Intensity Interchange between Cycling and Running?" Applied Sciences 13, no. 9: 5511. https://doi.org/10.3390/app13095511
APA StyleOlaya-Cuartero, J., Pueo, B., Penichet-Tomas, A., & Villalon-Gasch, L. (2023). Does Power Output at Critical Power Intensity Interchange between Cycling and Running? Applied Sciences, 13(9), 5511. https://doi.org/10.3390/app13095511