Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network
Abstract
:1. Introduction
- We introduce a new prediction model called Recurrent High-Resolution Networks (RHRNet), which consists of HRNet as a backbone and a ConvLSTM-based decoder.
- The proposed architecture leverages the advantages of HRNet, which maintains high-resolution features along with low-resolution features throughout the network in parallel, plus a ConvLSTM-based decoder to learn the spatio-temporal relationships of all resolution feature maps from HRNet, and aggregates these features into a unified high-resolution forecast.
2. Related Work
3. Methodology
3.1. Problem Statement
3.2. Database
3.3. Proposed Architecture
3.3.1. Tiny HRNet
3.3.2. Decoder Module
4. Experiment
4.1. Data Source
4.2. Metrics and Simulating Parameter
4.3. Model Training
Algorithm 1: Training process of RHRNet |
4.4. Comparison Model
5. Result and Analysis
5.1. Model Implementation
5.2. Performance Comparison
5.2.1. Performance Comparison on Training Dataset
5.2.2. Performance Comparison on Testing Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyeneke, C.; Eguzouwa, C.; Mutabazi, C. Modeling the Effects of Traffic Congestion on Economic Activities—Accidents, Fatalities and Casualties. Biomed. Stat. Inform. 2018, 3, 7–14. [Google Scholar] [CrossRef]
- Wang, C.; Quddus, M.A.; Ison, S.G. Impact of traffic congestion on road accidents: A spatial analysis of the M25 motorway in England. Accid. Anal. Prev. 2009, 41, 798–808. [Google Scholar] [CrossRef]
- Hao, P.; Wang, C.; Wu, G.; Boriboonsomsin, K.; Barth, M. Evaluating the environmental impact of traffic congestion based on sparse mobile crowd-sourced data. In Proceedings of the Fifth IEEE Conference on Technologies for Sustainability (SusTech 2017), Phoenix, AZ, USA, 12–14 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ye, S. Research on Urban Road Traffic Congestion Charging Based on Sustainable Development. Phys. Procedia 2012, 24, 1567–1572. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, R.; Sun, S.; Gao, M.; Zheng, B.; Zhang, D.; Zhang, Y.; Carmichael, G.R.; Zhang, H. Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Meas. Tech. 2023, 23, 2983–2996. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Olayode, I.O.; Tartibu, L.K.; Okwu, M.O. Prediction and modeling of traffic flow of human-driven vehicles at a signalized road intersection using artificial neural network model: A South African road transportation system scenario. Transp. Eng. 2021, 6, 100095. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Z.; Wang, D.; Bai, J.; Havyarimana, V.; Zeng, F. Short-term traffic volume prediction by ensemble learning in concept drifting environments. Knowl.-Based Syst. 2019, 164, 213–225. [Google Scholar] [CrossRef]
- Rempe, F.; Huber, G.; Bogenberger, K. Spatio-temporal congestion patterns in urban traffic networks. In Proceedings of the International Symposium on Enhancing Highway Performance (ISEHP), Berlin, Germany, 14–16 June 2016; pp. 513–524. [Google Scholar] [CrossRef]
- Xu, L.; Yue, Y.; Li, Q. Identifying Urban Traffic Congestion Pattern from Historical Floating Car Data. Procedia Soc. Behav. Sci. 2013, 96, 2084–2095. [Google Scholar] [CrossRef]
- Park, J.; Li, D.; Murphey, Y.L.; Kristinsson, J.; McGee, R.; Kuang, M.; Phillips, T. Real time vehicle speed prediction using a neural network traffic model. In Proceedings of the 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, CA, USA, 31 July–5 August 2011; pp. 2991–2996. [Google Scholar] [CrossRef]
- Chang, H.; Lee, Y.; Yoon, B.; Baek, S. Dynamic near-term traffic flow prediction: System-oriented approach based on past experiences. IET Intell. Transp. Syst. 2012, 6, 292. [Google Scholar] [CrossRef]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Y.; Hu, J.; Zhao, Y.; Li, S.; Hu, J. Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks. Sensors 2019, 19, 2229. [Google Scholar] [CrossRef]
- Akhtar, M.; Moridpour, S. A Review of Traffic Congestion Prediction Using Artificial Intelligence. J. Adv. Transp. 2021, 2021, 8878011. [Google Scholar] [CrossRef]
- Zadobrischi, E.; Cosovanu, L.-M.; Dimian, M. Traffic Flow Density Model and Dynamic Traffic Congestion Model Simulation Based on Practice Case with Vehicle Network and System Traffic Intelligent Communication. Symmetry 2020, 12, 1172. [Google Scholar] [CrossRef]
- Google Maps. Available online: https://www.google.com/maps/place/Delhi,+India/@28.6471948,76.9531797,11z/data=!3m1!4b1!4m5!3m4!1s0x390cfd5b347eb62d:0x37205b715389640!8m2!3d28.7040592!4d77.1024902 (accessed on 4 May 2019).
- Bing. Bing Maps. Available online: https://www.bing.com/maps/traffic (accessed on 5 May 2019).
- Seoul TOPIS. Seoul Transport Opearation & Information Service Center. Available online: https://topis.seoul.go.kr/prdc/openPrdcMap.do (accessed on 5 May 2019).
- Baidu. Baidu Maps. Available online: https://map.baidu.com/13036895.494262943,4748316.384998233,11.52z/maplayer%3Dtrafficrealtime (accessed on 10 May 2019).
- Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC 2016), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar] [CrossRef]
- Wei, W.; Wu, H.; Ma, H. An AutoEncoder and LSTM-Based Traffic Flow Prediction Method. Sensors 2019, 19, 2946. [Google Scholar] [CrossRef]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3349–3364. [Google Scholar] [CrossRef]
- Smith, B.L.; Demetsky, M.J. Traffic Flow Forecasting: Comparison of Modeling Approaches. J. Transp. Eng. 1997, 123, 261–266. [Google Scholar] [CrossRef]
- Tan, M.-C.; Wong, S.C.; Xu, J.-M.; Guan, Z.-R.; Zhang, P. An Aggregation Approach to Short-Term Traffic Flow Prediction. IEEE Trans. Intell. Transp. Syst. 2009, 10, 60–69. [Google Scholar] [CrossRef]
- Kumar, S.V.; Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 2015, 7, 21. [Google Scholar] [CrossRef]
- Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C Emerg. Technol. 2014, 43, 50–64. [Google Scholar] [CrossRef]
- Castro-Neto, M.; Jeong, Y.; Jeong, M.K.; Han, L.D. AADT prediction using support vector regression with data-dependent parameters. Expert Syst. Appl. 2009, 36, 2979–2986. [Google Scholar] [CrossRef]
- Su, H.; Zhang, L.; Yu, S. Short-term traffic flow prediction based on incremental support vector regression. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; pp. 640–645. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, N.; Zhang, Y.; Shi, Z. Forecasting of Short-Term Metro Ridership with Support Vector Machine Online Model. J. Adv. Transp. 2018, 2018, 3189238. [Google Scholar] [CrossRef]
- Sun, Y.; Leng, B.; Guan, W. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 2015, 166, 109–121. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, C.; Yu, G. A Bayesian Network Approach to Traffic Flow Forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7, 124–132. [Google Scholar] [CrossRef]
- Hoong, P.K.; Chien, O.K.; Tan, I.; Ting, C.-Y. Road traffic prediction using Bayesian networks. In Proceedings of the IET International Conference on Wireless Communications and Applications (ICWCA 2012), Kuala Lumpur, Malaysia, 8–10 October 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, S.; Tiwari, P.; Yadav, P.; Nezhurina, M.I. ANN based short-term traffic flow forecasting in undivided two lane highway. J. Big Data 2018, 5, 48. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data. Neurocomputing 2018, 318, 297–305. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lv, Y.; Li, Z.; Wang, F.-Y. Long short-term memory model for traffic congestion prediction with online open data. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 2016), Rio de Janerio, Brazil, 1–4 November 2016; pp. 132–137. [Google Scholar]
- Afrin, T.; Yodo, N. A Long Short-Term Memory-based correlated traffic data prediction framework. Knowl.-Based Syst. 2022, 237, 107755. [Google Scholar] [CrossRef]
- Luo, X.; Li, D.; Yang, Y.; Zhang, S. Spatiotemporal Traffic Flow Prediction with KNN and LSTM. J. Adv. Transp. 2019, 2019, 4145353. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, Z.; Zhang, L.; Wang, J. Advanced traffic congestion early warning system based on traffic flow forecasting and extenics evaluation. Appl. Soft Comput. 2022, 118, 108544. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, J.; Zheng, K.; Yin, H.; Zhao, P.; Zhou, X. LC-RNN: A deep learning model for traffic speed prediction. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3470–3476. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks. Sensors 2017, 17, 1501. [Google Scholar] [CrossRef]
- Chen, M.; Yu, X.; Liu, Y. PCNN: Deep Convolutional Networks for Short-Term Traffic Congestion Prediction. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3550–3559. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, J.; Shen, Q.; Cao, Y.; Ding, W.; Shi, Z.; Shi, Q. Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction. Eng. Appl. Artif. Intell. 2023, 121, 106044. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, S.; Li, J. TCP-BAST: A novel approach to traffic congestion prediction with bilateral alternation on spatiality and temporality. Inf. Sci. 2022, 608, 718–733. [Google Scholar] [CrossRef]
- Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H.; Khan, P. City-Wide Traffic Congestion Prediction Based on CNN, LSTM and Transpose CNN. IEEE Access 2020, 8, 81606–81620. [Google Scholar] [CrossRef]
- Ranjan, N.; Bhandari, S.; Khan, P.; Hong, Y.-S.; Kim, H. Large-Scale Road Network Congestion Pattern Analysis and Prediction Using Deep Convolutional Autoencoder. Sustainability 2021, 13, 5108. [Google Scholar] [CrossRef]
P.H | Precision | Recall | Accuracy | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R.H | P.N | U.N | C.L | A.E | R.H | P.N | U.N | C.L | A.E | R.H | P.N | U.N | C.L | A.E | |
10 | 0.898 | 0.872 | 0.844 | 0.836 | 0.766 | 0.887 | 0.857 | 0.826 | 0.812 | 0.726 | 0.928 | 0.884 | 0.862 | 0.857 | 0.772 |
30 | 0.866 | 0.849 | 0.822 | 0.821 | 0.719 | 0.871 | 0.853 | 0.797 | 0.810 | 0.712 | 0.886 | 0.860 | 0.847 | 0.839 | 0.754 |
60 | 0.856 | 0.847 | 0.804 | 0.746 | 0.730 | 0.853 | 0.846 | 0.701 | 0.731 | 0.705 | 0.867 | 0.842 | 0.821 | 0.757 | 0.749 |
Date | P.H | 10 Minutes | 30 Minutes | 60 Minutes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | R.H | P.N | U.N | C.L | A.E | R.H | P.N | U.N | C.L | A.E | R.H | P.N | U.N | C.L | A.E | |
12-03 | 08:00 | 0.8784 | 0.8735 | 0.8336 | 0.8359 | 0.7709 | 0.8653 | 0.8541 | 0.8463 | 0.8296 | 0.7063 | 0.8522 | 0.8293 | 0.7770 | 0.7302 | 0.6978 |
09:00 | 0.9142 | 0.8726 | 0.8496 | 0.8236 | 0.7845 | 0.8220 | 0.8294 | 0.8180 | 0.8357 | 0.7292 | 0.8150 | 0.8293 | 0.7930 | 0.7118 | 0.7263 | |
10:00 | 0.8732 | 0.8793 | 0.8231 | 0.8554 | 0.7936 | 0.8688 | 0.8500 | 0.8210 | 0.8286 | 0.7514 | 0.8529 | 0.8489 | 0.8222 | 0.7341 | 0.6954 | |
11:00 | 0.9261 | 0.8784 | 0.8344 | 0.8490 | 0.7748 | 0.8439 | 0.8347 | 0.8120 | 0.8361 | 0.7164 | 0.8475 | 0.8375 | 0.8160 | 0.7447 | 0.6882 | |
12-04 | 08:00 | 0.8888 | 0.8716 | 0.8279 | 0.8264 | 0.7605 | 0.8550 | 0.8340 | 0.8369 | 0.8250 | 0.7232 | 0.8386 | 0.8407 | 0.8281 | 0.7638 | 0.7041 |
09:00 | 0.8952 | 0.8743 | 0.8430 | 0.8417 | 0.7466 | 0.8667 | 0.8243 | 0.8284 | 0.8212 | 0.7338 | 0.8863 | 0.8400 | 0.8083 | 0.7425 | 0.6935 | |
10:00 | 0.9176 | 0.8639 | 0.8120 | 0.8412 | 0.7699 | 0.9070 | 0.8437 | 0.8265 | 0.8296 | 0.7227 | 0.8651 | 0.8400 | 0.8225 | 0.7512 | 0.6908 | |
11:00 | 0.9112 | 0.8716 | 0.8763 | 0.8427 | 0.7630 | 0.8321 | 0.8383 | 0.8441 | 0.8282 | 0.7152 | 0.8435 | 0.8317 | 0.7881 | 0.7408 | 0.7162 | |
12-05 | 08:00 | 0.9094 | 0.8714 | 0.8461 | 0.8320 | 0.6998 | 0.8263 | 0.8301 | 0.8246 | 0.8344 | 0.7355 | 0.8384 | 0.8194 | 0.8474 | 0.7239 | 0.6908 |
09:00 | 0.9083 | 0.8473 | 0.8339 | 0.8536 | 0.7942 | 0.8500 | 0.8262 | 0.8364 | 0.8265 | 0.7329 | 0.8464 | 0.8358 | 0.7898 | 0.7348 | 0.6882 | |
10:00 | 0.9572 | 0.8677 | 0.8432 | 0.8398 | 0.7884 | 0.8669 | 0.8420 | 0.8442 | 0.8217 | 0.7203 | 0.8232 | 0.8230 | 0.7943 | 0.7415 | 0.6949 | |
11:00 | 0.8909 | 0.8645 | 0.8023 | 0.8349 | 0.7527 | 0.8534 | 0.8335 | 0.8213 | 0.8187 | 0.7237 | 0.8430 | 0.8354 | 0.8089 | 0.7215 | 0.7068 | |
12-06 | 08:00 | 0.8992 | 0.8576 | 0.8164 | 0.8238 | 0.7976 | 0.8413 | 0.8262 | 0.8173 | 0.8105 | 0.7208 | 0.8232 | 0.8335 | 0.8207 | 0.7430 | 0.6995 |
09:00 | 0.8863 | 0.8662 | 0.8713 | 0.8373 | 0.7692 | 0.8375 | 0.8369 | 0.8281 | 0.8190 | 0.7338 | 0.8277 | 0.8402 | 0.8029 | 0.7075 | 0.6459 | |
10:00 | 0.8863 | 0.8762 | 0.8325 | 0.8373 | 0.7104 | 0.8575 | 0.8371 | 0.8237 | 0.8311 | 0.7324 | 0.8597 | 0.8303 | 0.8341 | 0.7568 | 0.6560 | |
11:00 | 0.9197 | 0.8788 | 0.8180 | 0.8419 | 0.6973 | 0.8671 | 0.8566 | 0.8432 | 0.8344 | 0.6886 | 0.8442 | 0.8358 | 0.8271 | 0.7447 | 0.7089 | |
12-07 | 08:00 | 0.9095 | 0.8703 | 0.8279 | 0.8456 | 0.7213 | 0.8608 | 0.8226 | 0.8231 | 0.8190 | 0.6664 | 0.8536 | 0.8286 | 0.7982 | 0.7300 | 0.6989 |
09:00 | 0.8863 | 0.8628 | 0.8535 | 0.8354 | 0.7693 | 0.8712 | 0.8313 | 0.8387 | 0.8335 | 0.6635 | 0.8398 | 0.8337 | 0.7782 | 0.7275 | 0.7075 | |
10:00 | 0.8774 | 0.8757 | 0.8487 | 0.8284 | 0.6964 | 0.8725 | 0.8386 | 0.8461 | 0.8361 | 0.7309 | 0.8688 | 0.8378 | 0.7805 | 0.7522 | 0.6838 | |
11:00 | 0.9123 | 0.8885 | 0.8313 | 0.8335 | 0.8078 | 0.8975 | 0.8282 | 0.8042 | 0.8139 | 0.7157 | 0.8532 | 0.8390 | 0.7865 | 0.7290 | 0.6839 | |
12-08 | 08:00 | 0.9226 | 0.8631 | 0.8496 | 0.8320 | 0.7830 | 0.8616 | 0.8347 | 0.8352 | 0.8185 | 0.7329 | 0.8411 | 0.8356 | 0.8088 | 0.7063 | 0.7065 |
09:00 | 0.9376 | 0.8521 | 0.8273 | 0.8300 | 0.7627 | 0.8866 | 0.8347 | 0.8322 | 0.8185 | 0.7329 | 0.8509 | 0.8457 | 0.8198 | 0.7389 | 0.7048 | |
10:00 | 0.8842 | 0.8587 | 0.8502 | 0.8698 | 0.7764 | 0.8437 | 0.8323 | 0.8295 | 0.8127 | 0.7200 | 0.8292 | 0.8346 | 0.7846 | 0.7135 | 0.6986 | |
11:00 | 0.8637 | 0.8535 | 0.8673 | 0.8608 | 0.7473 | 0.8375 | 0.8301 | 0.8296 | 0.8306 | 0.7167 | 0.8225 | 0.8421 | 0.8125 | 0.7140 | 0.7188 | |
12-09 | 08:00 | 0.8751 | 0.8616 | 0.8469 | 0.8260 | 0.7022 | 0.8699 | 0.8484 | 0.8388 | 0.8014 | 0.7278 | 0.8553 | 0.8371 | 0.8241 | 0.7539 | 0.6978 |
09:00 | 0.8903 | 0.8708 | 0.8399 | 0.8341 | 0.7546 | 0.8464 | 0.8279 | 0.8146 | 0.8397 | 0.7312 | 0.8339 | 0.8404 | 0.7763 | 0.7471 | 0.7162 | |
10:00 | 0.8999 | 0.8711 | 0.8279 | 0.8494 | 0.7300 | 0.8555 | 0.8221 | 0.8234 | 0.8006 | 0.7442 | 0.8612 | 0.8346 | 0.8390 | 0.7331 | 0.7101 | |
11:00 | 0.8842 | 0.8793 | 0.8543 | 0.8242 | 0.7827 | 0.8661 | 0.8303 | 0.8259 | 0.8282 | 0.7220 | 0.8523 | 0.8349 | 0.8089 | 0.7394 | 0.6989 | |
12-10 | 08:00 | 0.9176 | 0.8676 | 0.8541 | 0.8441 | 0.8029 | 0.8574 | 0.8547 | 0.8466 | 0.8270 | 0.7396 | 0.8442 | 0.8385 | 0.8215 | 0.7065 | 0.7152 |
09:00 | 0.8991 | 0.8560 | 0.8295 | 0.8313 | 0.7768 | 0.8322 | 0.8344 | 0.8417 | 0.8352 | 0.7150 | 0.8218 | 0.8385 | 0.7930 | 0.7176 | 0.6915 | |
10:00 | 0.8958 | 0.8588 | 0.8332 | 0.8455 | 0.7587 | 0.8402 | 0.8422 | 0.8397 | 0.8423 | 0.7478 | 0.8412 | 0.8363 | 0.8125 | 0.7256 | 0.6903 | |
11:00 | 0.9012 | 0.8522 | 0.8480 | 0.8675 | 0.7700 | 0.8784 | 0.8378 | 0.8356 | 0.8405 | 0.7338 | 0.8651 | 0.8274 | 0.8217 | 0.7430 | 0.7060 | |
Average | 0.9004 | 0.8674 | 0.8390 | 0.8398 | 0.7599 | 0.8572 | 0.8359 | 0.8304 | 0.8259 | 0.7227 | 0.8448 | 0.8355 | 0.8075 | 0.7335 | 0.6979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranjan, S.; Kim, Y.-C.; Ranjan, N.; Bhandari, S.; Kim, H. Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network. Appl. Sci. 2023, 13, 5512. https://doi.org/10.3390/app13095512
Ranjan S, Kim Y-C, Ranjan N, Bhandari S, Kim H. Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network. Applied Sciences. 2023; 13(9):5512. https://doi.org/10.3390/app13095512
Chicago/Turabian StyleRanjan, Sachin, Yeong-Chan Kim, Navin Ranjan, Sovit Bhandari, and Hoon Kim. 2023. "Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network" Applied Sciences 13, no. 9: 5512. https://doi.org/10.3390/app13095512
APA StyleRanjan, S., Kim, Y. -C., Ranjan, N., Bhandari, S., & Kim, H. (2023). Large-Scale Road Network Traffic Congestion Prediction Based on Recurrent High-Resolution Network. Applied Sciences, 13(9), 5512. https://doi.org/10.3390/app13095512